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SOME NOTES ON THE EULER OBSTRUCTION OF A FUNCTION

NICOLAS DUTERTRE AND NIVALDO G. GRULHA JR.

Abstract. In this paper, we present an alternative proof of the Brasselet, Massey, Parameswaran

and Seade formula for the Euler obstruction of a function [5] using Ebeling and Gusein-Zade’s
results on the radial index and the Euler obstruction of 1-forms [11].

1. Introduction

Let (X, 0) ⊂ (CN , 0) be an equidimensional reduced complex analytic germ. The Euler
obstruction EuX(0) was defined by MacPherson [20] as a tool to prove the conjecture about
existence and unicity of Chern classes in the singular case. Since that the Euler obstruction has
been deeply investigated by many authors as Brasselet, Schwartz, Seade, Sebastiani, Gonzalez-
Sprinberg, Lê, Teissier, Sabbah, Dubson, Kato and others. For an overview about the Euler
obstruction see [2, 3].

In [4] a Lefschetz type formula for the Euler obstruction was given by Brasselet, Lê and Seade.
This formula relates the Euler obstruction EuX(0) to the topology of the Milnor fibre of a generic
linear form l : (X, 0)→ (C, 0). It shows that the Euler obstruction, as a constructible function,
satisfies the Euler condition relatively to generic linear forms (Theorem 2.3).

In [5], the authors studied how far the equality given in the above theorem is from being true
if we replace the generic linear form l with some other analytic function on X with at most an
isolated stratified critical point at 0. For this, they defined the Euler obstruction Euf,X(0) of a
function f on a complex analytic variety X, which can be seen as a generalization of the Milnor
number, and they established a Lefschetz type formula for this new invariant (Theorem 2.5).

The definition of the Euler obstruction of a function was extended by Ebeling and Gusein-
Zade in [11] to the case of complex 1-forms. When the 1-form is the differential of a holomorphic
function f , they recovered the Euler obstruction of the function (up to sign). They also define the
radial index of a 1-form, which is a generalization to the singular case of the classical Poincaré-
Hopf index. Then they established relations between the local Euler obstruction of a 1-form, the
radial index and Euler characteristics of complex links.

In this paper, we use the results of Ebeling and Gusein-Zade to give an alternative proof of
the Brasselet, Massey, Parameswaran and Seade formula for the Euler obstruction of a function
(Theorem 2.5).

The main idea of the original proof of Theorem 2.5 was to construct a vector field that
combines all the properties needed to prove the result, essentially using Poincaré-Hopf type
theorems. Let us say some words about our proof, which uses combinatorial techniques and is a
less extensive and less constructive proof than the original one in [5]. We first give an expression
of the Euler obstruction of a 1-form in terms of the radial indices of this form on the closures
of the strata of X and Euler characteristics of complex links (this relation appears first in [11],
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Corollary 1, with a different proof). As a corollary, we obtain a formula for EuX(0)− Euf,X(0)
in terms of Euler characteristics of complex links and the Euler characteristics of the Milnor
fibre of f on the closures of the stata of X. Then we use the addivity of the Euler characteristic
to get a relation between Euf,X(0) and the Euler characteristics of the Milnor fibres of f on the
strata of X.
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2. The Euler obstruction

Let us now introduce some objects in order to define the Euler obstruction.

Let (X, 0) ⊂ (CN , 0) be an equidimensional reduced complex analytic germ of dimension d in
an open set U ⊂ CN . We consider a complex analytic Whitney stratification {Vi} of U adapted
to X and we assume that {0} is a stratum. We choose a small representative of (X, 0) such that
0 belongs to the closure of all the strata. We denote it by X and we write X = ∪qi=0Vi where
V0 = {0} and Vq = Xreg, the set of smooth points of X. We assume that the strata V0, . . . , Vq−1

are connected and that the analytic sets V0, . . . , Vq−1 are reduced. We set di = dimVi for
i ∈ {1, . . . , q} (note that dq = d).

Let G(d,N) denote the Grassmanian of complex d-planes in CN . On the regular part Xreg of
X the Gauss map φ : Xreg → U ×G(d,N) is well defined by φ(x) = (x, Tx(Xreg)).

Definition 2.1. The Nash transformation (or Nash blow-up) X̃ of X is the closure of the image
Im(φ) in U×G(d,N). It is a (usually singular) complex analytic space endowed with an analytic

projection map ν : X̃ → X which is a biholomorphism away from ν−1(Sing(X)) .

The fiber of the tautological bundle T over G(d,N), at the point P ∈ G(d,N), is the set of
vectors v in the d-plane P . We still denote by T the corresponding trivial extension bundle over

U × G(d,N). Let T̃ be the restriction of T to X̃, with projection map π. The bundle T̃ on X̃
is called the Nash bundle of X.

Let us recall the original definition of the Euler obstruction, due to MacPherson [20]. Let
z = (z1, . . . , zN ) be local coordinates in CN around {0}, such that zi(0) = 0. We denote by Bε
and Sε the ball and the sphere centered at {0} and of radius ε in CN . Let us consider the norm
‖z‖ =

√
z1z1 + · · ·+ zNzN . Then the differential form ω = d‖z‖2 defines a section of the real

vector bundle T (CN )∗, cotangent bundle on CN . Its pull-back restricted to X̃ becomes a section

of the dual bundle T̃ ∗ which we denote by ω̃. For ε small enough, the section ω̃ is nonzero

over ν−1(z) for 0 < ‖z‖ ≤ ε. The obstruction to extend ω̃ as a nonzero section of T̃ ∗ from

ν−1(Sε) to ν−1(Bε), denoted by Obs(T̃ ∗, ω̃) lies in H2d(ν−1(Bε), ν
−1(Sε);Z). Let us denote by

Oν−1(Bε),ν−1(Sε) the orientation class in H2d(ν
−1(Bε), ν

−1(Sε);Z).

Definition 2.2. The local Euler obstruction of X at 0 is the evaluation of Obs(T̃ ∗, ω̃) on
Oν−1(Bε),ν−1(Sε), i.e.:

EuX(0) = 〈Obs(T̃ ∗, ω̃),Oν−1(Bε),ν−1(Sε)〉.

An equivalent definition of the Euler obstruction was given by Brasselet and Schwartz in the
context of vector fields [6].

The idea of studying the Euler obstruction using hyperplane sections appears in the works of
Dubson [8] and Kato [13], but the approach we follow here comes from [4, 5].
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Theorem 2.3 ([4]). Let (X, 0) and {Vi} be given as before, then for each generic linear form l,
there is ε0 such that for any ε with 0 < ε < ε0 and δ 6= 0 sufficiently small, the Euler obstruction
of (X, 0) is equal to:

EuX(0) =

q∑
i=1

χ
(
Vi ∩Bε ∩ l−1(δ)

)
· EuX(Vi),

where χ denotes the Euler-Poincaré characteristic, EuX(Vi) is the value of the Euler obstruction
of X at any point of Vi, i = 1, . . . , q, and 0 < |δ| � ε� 1.

We define now an invariant introduced by Brasselet, Massey, Parameswaran and Seade in
[5], which measures in a way how far the equality given in Theorem 2.3 is from being true if
we replace the generic linear form l with some other function on X with at most an isolated
stratified critical point at 0. Let f : X → C be a holomorphic function which is the restriction of
a holomorphic function F : U → C. A point x in X is a critical point of f if it is a critical point
of F|V (x), where V (x) is the stratum containing x. We assume that f has an isolated singularity
(or an isolated critical point) at 0, i.e. that f has no critical point in a punctured neighborhood
of 0 in X. In order to define this new invariant, the authors constructed in [5] a stratified vector
field on X, denoted by ∇Xf . This vector field is homotopic to ∇F |X and one has ∇Xf(x) 6= 0
unless x = 0.

Let ζ̃ be the lifting of ∇Xf as a section of the Nash bundle T̃ over X̃ without singularity
over ν−1(X ∩ Sε). Let O(ζ̃) ∈ H2n

(
ν−1(X ∩ Bε), ν−1(X ∩ Sε)

)
be the obstruction cocycle to

the extension of ζ̃ as a nowhere zero section of T̃ inside ν−1(X ∩Bε).

Definition 2.4. The local Euler obstruction Euf,X(0) is the evaluation of O(ζ̃) on the funda-
mental class of the pair (ν−1(X ∩Bε), ν−1(X ∩ Sε)).

The following result is the Brasselet, Massey, Parameswaran and Seade formula [5] that
compares the Euler obstruction of the space X with that of a function on X.

Theorem 2.5. Let (X, 0) and {Vi} be given as before and let f : (X, 0) → (C, 0) be a function
with an isolated singularity at 0. For 0 < |δ| � ε� 1 we have:

EuX(0)− Euf,X(0) =

(
q∑
i=1

χ
(
Vi ∩Bε ∩ f−1(δ)

)
· EuX(Vi)

)
.

In this paper, we present an alternative proof for this result using Ebeling and Gusein-Zade’s

work [11] . In order to do this, let us consider the Nash bundle T̃ on X̃. The corresponding dual

bundles of complex and real 1-forms are denoted, respectively, by T̃ ∗ → X̃ and T̃ ∗R → X̃.

Definition 2.6. Let (X, 0) and {Vα} be given as before. Let ω be a (real or complex) 1-form on
X, i.e. a continuous section of either T ∗RCN |X or T ∗CN |X . A singularity of ω in the stratified
sense means a point x where the kernel of ω contains the tangent space of the corresponding
stratum.

This means that the pull-back of the form to Vα vanishes at x. Given a section η of T ∗RCN |A,

A ⊂ V , there is a canonical way of constructing a section η̃ of T̃ ∗R |Ã, Ã = ν−1A, such that if η
has an isolated singularity at the point 0 ∈ X (in the stratified sense), then we have a never-zero

section η̃ of the dual Nash bundle T̃ ∗R over ν−1(Sε ∩X) ⊂ X̃. Let

o(η) ∈ H2d(ν−1(Bε ∩X), ν−1(Sε ∩X);Z)

be the cohomology class of the obstruction cycle to extend this to a section of T̃ ∗R over ν−1(Bε ∩X).
Then we can define (c.f. [7]):
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Definition 2.7. The local Euler obstruction of the real differential form η at an isolated singu-
larity is the integer EuX,0 η obtained by evaluating the obstruction cohomology class o(η) on the
orientation fundamental cycle [ν−1(Bε ∩X), ν−1(Sε ∩X)].

In the complex case, one can perform the same construction, using the corresponding complex
bundles. If ω is a complex differential form, section of T ∗CN |A with an isolated singularity, one
can define the local Euler obstruction EuX,0 ω. Notice that, as explained in [7] p.151, it is equal
to the local Euler obstruction of its real part up to sign:

EuX,0 ω = (−1)dEuX,0Re ω.

This is an immediate consequence of the relation between the Chern classes of a complex vector
bundle and those of its dual. Remark also that when we consider the differential of a function
f , we have the following equality (see [11]):

EuX,0 df = (−1)dEuf,X(0).

3. The complex link, radial index and Euler obstruction

In this section, we recall the definition of the complex link and of the radial index. We also
present a formula of Ebeling and Gusein-Zade which expresses the radial index of a 1-form in
terms of Euler characteristics of complex links and Euler obstructions.

The complex link is an important object in the study of the topology of complex analytic
sets. It is analogous to the Milnor fibre and was studied first in [15]. It plays a crucial role
in complex stratified Morse theory (see [12]) and appears in general bouquet theorems for the
Milnor fibre of a function with isolated singularity (see [16, 17, 22, 23]). It is related to the
multiplicity of polar varieties and also the local Euler obstruction (see [8, 9, 18, 19]). Let us
recall briefly its definition. Let M be a complex analytic manifold equipped with a Riemannian
metric and let Y ⊂ M be a complex analytic variety equipped with a Whitney stratification.
Let V be a stratum of Y and let p be a point in V . Let N be a complex analytic submanifold
of M which meets V transversally at the single point p. By choosing local coordinates on N , in
some neighborhood of p we can assume that N is an Euclidian space Ck.

Definition 3.1. The complex link of V in Y is the set denoted by lkC(V, Y ) and defined as
follows:

lkC(V, Y ) = Y ∩N ∩Bε ∩ l−1(δ),

where l : N → C is a generic linear form and 0 < |δ| � ε� 1.

The fact that the complex link of a stratum is well-defined, i.e. independent of all the choices
made to define it, is explained in [19, 9, 12]. It is also independent of the embedding of the
analytic variety Y (see [19]).

In [11], Ebeling and Gusein-Zade established relations between the local Euler obstruction
of a 1-form, its radial index and Euler characteristics of complex links. The radial index is a
generalization to the singular case of the Poincaré-Hopf index.

This index for 1-forms is a natural extension of the equivalent notion for vector fields, a notion
first introduced by King and Trotman in a 1995 preprint only recently published [14] and then
studied by Ebeling and Gusein-Zade in [10] and by Aguilar, Seade and Verjovsky in [1].

In order to define this index, let us consider first the real case. Let Z ⊂ Rn be a closed
subanalytic set equipped with a Whitney stratification {Sα}α∈Λ. Let ω be a continuous 1-form
defined on Rn. We say that a point P in Z is a zero (or a singular point) of ω on Z if it is a
zero of ω|S , where S is the stratum that contains P . In the sequel, we define the radial index of
ω at P , when P is an isolated zero of ω on Z. We can assume that P = 0 and we denote by S0

the stratum that contains 0.
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Definition 3.2. A 1-form ω is radial on Z at 0 if, for an arbitrary non-trivial subanalytic arc
ϕ : [0, ν[→ Z of class C1, the value of the form ω on the tangent vector ϕ̇(t) is positive for t
small enough.

Let ε > 0 be small enough so that in the closed ball Bε, the 1-form has no singular points
on Z \ {0}. Let S0, . . . , Sr be the strata that contain 0 in their closure. Following Ebeling and
Gusein-Zade, there exists a 1-form ω̃ on Rn such that:

(1) The 1-form ω̃ coincides with the 1-form ω on a neighborhood of Sε.
(2) The 1-form ω̃ is radial on Z at the origin.
(3) In a neighborhood of each zero Q ∈ Z ∩Bε \{0}, Q ∈ Si, dim Si = k, the 1-form ω̃ looks

as follows. There exists a local subanalytic diffeomorphism h : (Rn,Rk, 0)→ (Rn, Si, Q)
such that h∗ω̃ = π∗1 ω̃1 +π∗2 ω̃2 where π1 and π2 are the natural projections π1 : Rn → Rk
and π2 : Rn → Rn−k, ω̃1 is a 1-form on a neighborhood of 0 in Rk with an isolated zero
at the origin and ω̃2 is a radial 1-form on Rn−k at 0.

Definition 3.3. The radial index indR
Z,0 ω of the 1-form ω on Z at 0 is the sum:

1 +

r∑
i=0

∑
Q|ω̃|Si

(Q)=0

indPH(ω̃, Q, Si),

where indPH(ω̃, Q, Si) is the Poincaré-Hopf index of the form ω̃|Si
at Q and where the sum is

taken over all zeros of the 1-form ω̃ on (Z \ {0}) ∩ Bε. If 0 is not a zero of ω on Z, we put

indR
Z,0 ω = 0.

A straightforward corollary of this definition is that the radial index satisfies the law of
conservation of number (see Remark 9.4.6 in [7] or the remark before Proposition 1 in [11]).

Let us go back to the complex case. As in Section 2, (X, 0) ⊂ (CN , 0) is an equidimensional
reduced complex analytic germ of dimension d in an open set U ⊂ CN . Let ω be a complex
1-form on U with an isolated singular point on X at the origin.

Definition 3.4. The complex radial index indC
X,0 ω of the complex 1-form ω on X at the origin

is (−1)d times the index of the real 1-form given by the real part of ω.

Let us write ni = (−1)d−di−1
(
χ
(
lkC(Vi, X)

)
− 1
)

, where {Vi} is the Whitney stratification

of (X, 0) considered before. In particular for an open stratum Vi of X, lkC(Vi, X) is empty and
so ni = 1. Let us define the Euler obstruction EuY,0 ω to be equal to 1 for a zero-dimensional
connected variety Y . Under this conditions Ebeling and Gusein-Zade proved in [11] the following
result which relates the radial index of a 1-form to Euler obstructions.

Theorem 3.5. Let (X, 0) ⊂ (CN , 0) be the germ of a reduced complex analytic space at the
origin, with a Whitney stratification {Vi}, i = 0, . . . , q, where V0 = {0} and Vq is the regular
part of X. Then:

indC
X,0 ω =

q∑
i=0

ni · EuVi,0
ω.

4. Corollaries of Theorem 3.5 and alternative proof of Theorem 2.5

In this section, we give some corollaries of Theorem 3.5, among them an alternative proof of
Theorem 2.5.

As in the previous sections, (X, 0) ⊂ (CN , 0) is an equidimensional reduced complex analytic
germ of dimension d in an open set U , equipped with a Whitney stratification {Vi} such that 0
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belongs to the closure of all the strata. We write X = ∪qi=0Vi where V0 = {0} and Vq = Xreg.

We assume that the strata V0, . . . , Vq−1 are connected and that the analytic sets V0, . . . , Vq−1

are reduced. We set di = dimVi for i ∈ {1, . . . , q}. Let f : X → C be a holomorphic function
which is the restriction of a holomorphic function F : U → C. We assume that f has an isolated
singularity at 0.

Let us see what happens when we apply Theorem 3.5 to the form
∑
zkdzk. Let us consider

(z1, z2, . . . , zN ) as complex coordinates of CN , where zk = uk +
√
−1vk. This implies that

(u1, v1, . . . , uN , vN ) are real coordinates of R2N . Let ω be a 1-form defined by ω =
∑
k zkdzk, it

means that:

ω =
∑
k

(uk −
√
−1vk)(duk +

√
−1dvk),

and so that:

ω =
∑
k

(ukduk + vkdvk) +
√
−1
∑

(ukdvk − vkduk).

In this case, the real 1-form Re ω =
∑

(ukduk+vkdvk) is a radial 1-form, and indR
X,0 Re ω = 1.

Since indC
X,0 ω = (−1)dindR

X,0 Re ω, we find that:

indC
X,0 ω = (−1)dindR

X,0 Re ω = (−1)d.

As it was remarked before,

EuX,0 ω = (−1)dEuX,0 Re ω.

Using this information and the definition of ni given in Section 3, we have the next equality:

niEuVi,0
ω = (−1)d−di−1

(
χ
(
lkC(Vi, X)

)
− 1
)

(−1)diEuVi
(0).

Therefore, by Theorem 3.5 we conclude that:

(−1)d = (−1)d

[
q−1∑
i=0

(
1− χ

(
lkC(Vi, X)

))
EuVi

(0) + EuX(0)

]
,

and so we arrive to the following lemma:

Lemma 4.1. We have:

(1) EuX(0) = 1 +

q−1∑
i=0

(
χ
(
lkC(Vi, X)

)
− 1
)

EuVi
(0).

When we apply Theorem 3.5 to the form df , we obtain a similar result for the Euler obstruction
of the function f .

Lemma 4.2. We have:

1− χ(f−1(δ) ∩X ∩Bε) =

q∑
i=0

(
1− χ

(
lkC(Vi, X)

))
Euf,Vi

(0).

Proof. On the one hand, applying Theorem 3.5 to the form df , we have:

indC
X,0 df =

q∑
i=0

niEuVi,0
df = (−1)d−di−1

(
χ
(
lkC(Vi, X)

)
− 1
)

(−1)diEuf,Vi
(0).

On the other hand, by Theorem 3 of [11] we have:

indC
X,0 df = (−1)d

(
1− χ(f−1(δ) ∩X ∩Bε)

)
.
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It follows that:

1− χ(f−1(δ) ∩X ∩Bε) =

q∑
i=0

(
1− χ

(
lkC(Vi, X)

))
Euf,Vi

(0).

�

Before stating the next result, let us set Bf,X(0) = EuX(0)− Euf,X(0).

Corollary 4.3. We have:

χ(f−1(δ) ∩X ∩Bε) =

q∑
i=0

(
1− χ

(
lkC(Vi, X)

))
Bf,Vi

(0).

Proof. By the previous lemma, we have the following equation:

(2) Euf,X(0) = 1− χ(f−1(δ) ∩X ∩Bε) +

q−1∑
i=0

(
χ
(
lkC(Vi, X)

)
− 1
)

Euf,Vi
(0).

By the difference (1)− (2) we arrive at:

(3) Bf,X(0) = χ(f−1(δ) ∩X ∩Bε) +

q−1∑
i=0

(
χ
(
lkC(Vi, X)

)
− 1
)

Bf,Vi
(0).

Hence we find:

χ(f−1(δ) ∩X ∩Bε) =

q∑
i=0

(
1− χ

(
lkC(Vi, X)

))
Bf,Vi

(0).

�

In [11, Corollary 1], Ebeling and Gusein-Zade give an “inverse” of the formula of Theorem
3.5. They use combinatorial theory (Möbius inverse). In the sequel, we give an inductive proof
of that result. Let us recall the notations of [11]. The strata Vi of X are partially ordered:
Vi ≺ Vj (we shall write i ≺ j) if Vi ⊂ Vj and Vi 6= Vj . For two strata Vi and Vj with Vi � Vj
(we shall write i � j), let Nij be the normal slice of the variety Vj to the stratum Vi at a point

of it and let Ml|Nij
be the complex link of Vi in Vj . We denote χ(Z)− 1 by χ(Z). For i ≺ j, let

mij be defined as follows:

mij = (−1)dim X−dim Vi

∑
i=k0≺···≺kr=j

χ(Ml|Nk0k1
) · · ·χ(Ml|Nkr−1kr

),

and let us set mii = 1.

Corollary 4.4. Let ω be a complex 1-form with an isolated zero on X at the origin. We have:

EuX,0 ω =

q∑
i=0

miq · indC
Vi,0

ω.

Proof. This is clearly true if dim X = 0. Let us assume that dim X = d ≥ 1 and prove the result
by induction on the depth of the stratification. The first step is to consider the case when X has
an isolated singularity at the origin. In this case, the stratification will be {V0 = {0}, V1 = Xreg}
and

n0 = (−1)d−1(χ(lkC(V0, X)− 1) = (−1)d−1χ(Ml|N01
),

EuX,0 ω = 1, n1 = 1 and EuV1,0
ω = EuX,0 ω. Applying Theorem 3.5, we get:

indC
X,0 ω = (−1)d−1χ(Ml|N01

) + EuX,0 ω,
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and so:

EuX,0 ω = indC
X,0 ω + (−1)dχ(Ml|N01

).

This is exactly the expected formula because indC
V0,0 ω = 1 and m01 = (−1)dχ(Ml|N01

).
Let us prove the general case. By the induction hypothesis, for each k ∈ {0, . . . , d − 1}, we

have:

EuVk,0
ω =

∑
j | Vj⊂Vk

mik · indC
Vj ,0

ω.

But we know by Theorem 3.5 that:

EuX,0 ω = indC
X,0 ω −

d−1∑
k=0

nk · EuVk,0
ω.

Replacing EuVk,0
ω by its above value, we obtain:

EuX,0 ω = indC
X,0 ω −

d−1∑
k=0

nk

indC
Vk,0

ω +
∑

j | Vj⊂∂Vk

mjk · indC
Vj ,0

ω

 .

We see that each indVj ,0
C ω appears in each term

nk

indC
Vk,0

ω +
∑

j | Vj⊂∂Vk

mjk · indC
Vj ,0

ω

 ,

for which Vj ⊂ Vk. Therefore we can write:

EuX,0 ω = indC
X,0 ω −

d−1∑
j=0

indC
Vj ,0

ω

nj +
∑

k | Vj⊂∂Vk

mjk · nk

 .

Let us examine Aj = nj +
∑
k | Vj⊂∂Vk

mjk · nk. We have:

Aj = (−1)d−dj−1χ(Ml|Njq
)+

∑
k | Vj⊂∂Vk

(
(−1)dk−dj−1

∑
j=k0≺···≺kr=k

χ(Ml|Nk0k1
) · · ·χ(Ml|Nkr−1kr

)× (−1)d−dk−1χ(Ml|Nkq
)
)
.

Therefore, we see that:

Aj = (−1)d−dj−1χ(Ml|Njq
)+

∑
k | Vj⊂∂Vk

(−1)d−dj−1
∑

j=k0≺···≺kr+1=q

χ(Ml|Nk0k1
) · · ·χ(Ml|Nkrkr+1

)

 ,

i.e. Aj = −mjq. We get the desired result. �

When we apply this to the form ω =
∑
zkdzk, we get:

EuX(0) =

q∑
i=0

∑
i=k0≺···≺kr=q

χ(Ml|Nk0k1
) · · ·χ(Ml|Nkr−1kr

). (∗)
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This formula is still valid if V0 6= {0}. In this case, we can introduce the stratum V−1 = {0}.
The above formula becomes:

EuX(0) =

q∑
i=−1

∑
i=k0≺···≺kr=q

χ(Ml|Nk0k1
) · · ·χ(Ml|Nkr−1kr

).

But since generically the linear form l has no singularity at 0 on V0, the Milnor fibre Ml|Vk
of

l : Vk → C is contractible for k ≥ 0, which implies that χ(Ml|N−1k
) = 0 for k ≥ 0.

Applied to the form df , Corollary 4.4 gives:

Euf,X(0) = −
q∑
i=0

χ(Mf |Vi
)

∑
i=k0≺···≺kr=q

χ(Ml|Nk0k1
) · · ·χ(Ml|Nkr−1kr

), (∗∗)

where Mf |Vi
denotes the Milnor fibre of f : Vi → C, because Euf,X(0) = (−1)dEuX,0 df and

indC
Vi,0

df = (−1)di−1χ(Mf |Vi
).

We are now in position to give the alternative proof of Theorem 2.5.

Proof. Using the two equalities (∗) and (∗∗) above, we find:

EuX(0)− Euf,X(0) =

q∑
i=0

χ(Mf |Vi
)

∑
i=k0≺···≺kr=q

χ(Ml|Nk0k1
) · · ·χ(Ml|Nkr−1kr

).

By the additivity of the Euler characteristic, for each i ∈ {0, . . . , q} we have:

χ(Mf |Vi
) =

∑
j |Vj⊂Vi

χ(Mf |Vj
).

Therefore, we have:

EuX(0)− Euf,X(0) =

q∑
i=0

 ∑
j |Vj⊂Vi

χ(Mf |Vj
)

 ∑
i=k0≺···≺kr=q

χ(Ml|Nk0k1
) · · ·χ(Ml|Nkr−1kr

).

As in the proof of the previous corollary, we see that each χ(Mf |Vj
) appears in an expression ∑

j |Vj⊂Vi

χ(Mf |Vj
)

 ∑
i=k0≺···≺kr=q

χ(Ml|Nk0k1
) · · ·χ(Ml|Nkr−1kr

),

when Vj ⊂ Vi. We can factorize χ(Mf |Vj
) in the above equality and get:

EuX(0)− Euf,X(0) =

q∑
j=0

χ(Mf |Vj
)

 ∑
i |Vj⊂Vi

∑
i=k0≺···≺kr=q

χ(Ml|Nk0k1
) · · ·χ(Ml|Nkr−1kr

)

 .

But by the equality (∗) and the remark that follows it, we see that:∑
i |Vj⊂Vi

∑
i=k0≺···≺kr=q

χ(Ml|Nk0k1
) · · ·χ(Ml|Nkr−1kr

),

is exactly EuX(Vj). �
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