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THE GEOMETRY OF DOUBLE FOLD MAPS

G. PEÑAFORT-SANCHIS

Abstract. We study the geometry of a family of singular map germs (C2, 0) → (C3, 0) called
double folds. As an analogy to David Mond’s fold map germs of the form

f(x, y) = (x, y2, f3(x, y)), f3 ∈ O2,

double folds are of the form
f(x, y) = (x2, y2, f3(x, y)).

This family provides lots of interesting germs, such as finitely determined homogeneous corank
2 germs. We also introduce analytic invariants adapted to this family.

1. Introduction

A classification of complex analytic map germs from the plane to 3-space under A-equivalence,
that is, changes of coordinates in the source and target, was carried out by David Mond [8]. Like
in the work of a taxonomist, Mond’s list starts with the simplest singular map germs, the so
called fold maps. We say that a map germ f : (C2, 0) → (C3, 0) is a fold map if its first two
coordinate functions form a Whitney fold, T : (C2, 0) → (C2, 0), T (x, y) = (x, y2). The image
of a fold map f(x, y) = (x, y2, f3) looks like the graph of the function f3 ‘folded’ along the OX
axis. The third coordinate function of a fold map can be any but, under A-equivalence, we
can assume that it is of the form yp, where p = T ∗P for some germ P in the ring of germs of
functions in two variables O2. Hence, the normal form of a fold map is

f(x, y) = (x, y2, yp).

Fold maps are easy to study because they are germs of corank 1 and because they behave well
under the action of the group G = {1, i}, generated by the reflection i(x, y) = (x,−y). One can
see that all lifted double points of a double fold f (that is, pairs (z, z′) ∈ C2 × C2 such that
f(z) = f(z′) and, if z = z′, then f is singular at z) are of the form (z, i(z)).

In this work we explore a family which is also related to a group, while it contains lots of
interesting corank 2 maps. In general, corank 2 maps are much harder to study than corank 1
ones, but the group action and some ideas lent by the fold case are going to help us. To generate
the simplest corank 2 maps for our studies, we can not allow linear terms in f . Thus, we are going
to ‘fold’ twice, once through OX and once through OY axis. We denote α : (C2, 0) → (C2, 0)
the folded hankerchief

α(x, y) = (x2, y2).

Take the reflections i1(x, y) = (−x, y) and i2(x, y) = (x,−y) and the rotation i3(x, y) = (−x,−y).
We write G for the group {1, i1, i2, i3}. The orbit of any z ∈ C2 is Gz = α−1(α(z)) and z is a
singular point of α if and only if z belongs to Fix(i1) ∪ Fix(i2) = OX ∪ OY . Now, related to
the group G, we have a family of maps of the form

f(x, y) = (x2, y2, f3(x, y)),

which we call double folds.
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Section 2 covers the basics about double folds. First we compute their multiple point schemes
(this was first done by Marar and Nuño-Ballesteros, who introduced double folds in [5]). Then
we introduce a decomposition of the multiple point spaces related to the group G. In Section 3
we restrict ourselves to the double fold family and define the notion of DF-stability (and that
of SDF-stability). DF-stable singularities are the ones preserved by small perturbations inside
the double fold world. We show that the DF-stable singularities are the stable singularities,
plus another kind of singularities, namely the standard self tangencies (and also the standard
quadruple points in the special double fold case). We introduce an equivalent notion, DF-
genericity, to characterize DF-stability in terms of transversality conditions on the facets of the
Coxeter complex of the group G. Section 4 deals with DF-stabilizations, where only DF-stable
singularities appear. We use these deformations and the decomposition of the multiple point
spaces given in 2 to relate certain numbers to double folds. These numbers are candidates for
A-invariants (up to a permutation of indices induced by an isomorphism of G). In Section 5 we
consider general families of map germs (Cn, 0)→ (Cn+1, 0), constructed in the same manner as
the folds and double folds: choosing a finite map germ α : Cn → Cn and attaching any (n+ 1)-
th coordinate function to obtain a map germ of the form (α, fn+1). We find results relating
the A-equivalence of this kind of germs to some subgroup of K-equivalence adapted to each α.
These results imply that the numbers introduced in section 4 are A-invariant among the finitely
determined quasihomogeneous double folds.

Thanks are due to David Mond and to the author’s supervisors, Juan José Nuño Ballesteros
and Washington Luiz Marar, for guidance and useful conversations about the topic of this paper.
The author wants to thank also the referee for many valuable comments and suggestions.

2. multiple point schemes

Definition 2.1. We call double fold (abbreviated as DF ) any map germ f : (C2, 0) → (C3, 0)
of the form f(x, y) = (x2, y2, f3(x, y)). The function germ f3 ∈ O2 can be written in the form
f3(x, y) = P0(x2, y2) + xP1(x2, y2) + yP2(x2, y2) + xyP3(x2, y2), for some Pi ∈ O2. Under
A-equivalence, we can eliminate P0. Then we obtain a double fold in normal form

f(x, y) = (x2, y2, xp1 + yp2 + xyp3),

with pi = α∗Pi, for some Pi ∈ O2. We call special double folds (abbreviated as SDF ) the double
folds in normal form such that p3 = 0.

Example 2.2. Fold and double fold families are not exclusive. The cross-cap is usually param-
eterized as a fold in normal form (x, y) 7→ (x, y2, xy), but it can also be regarded as double fold
with parameterization (x, y) 7→ (x2, y2, x+ y) (see figure 1).

Multiple point spaces were introduced by Mond [9] as a key tool to study map germs

(Cn, 0)→ (Cp, 0), n < p.

Initial papers about map germs (C2, 0) → (C3, 0) (like [7], [8] and [9]) focussed mainly on the
case of corank 1, but some recent ones (for instance [5], [6] and the present paper) deal with
corank 2 germs. Altough this was done first by Marar and Nuño-Ballesteros, who introduced
double folds in [5], we shall sumarize here the computations of some of their multiple point
spaces for a better understanding.

Multiple point spaces in the target are computed as described in [10]. Let f : X → (Cn+1, 0)
be a finite map germ, where X is a n-dimensional Cohen-Macaulay space. Let f∗OX denote
OX as On+1-module via f . The k-multiple point space in the target is given by the (k − 1)-th



252 G. PEÑAFORT-SANCHIS

Figure 1. The cross-cap is a double fold.

Fitting ideal of the module f∗OX defined next: Take a presentation of f∗OX , that is, an exact
sequence

Opn+1
λ−→ Oqn+1

ϕ−→ f∗OX −→ 0.

The matrix M(f) which represents λ is called a presentation matrix for f∗OX . The k-th Fit-
ting ideal of f∗OX is the ideal Fk(f) generated by the minors of size min(p, q) − k of M(f) if
k < min(p, q), and Fk(f) = On+1 otherwise. The following method to compute certain presen-
tation matrices can be found in [10, Section 2.2]: Assume f = (f1, . . . , fn+1) : X → Cn+1 is such
that f̃ = (f1, . . . fn) : X → (Cn, 0) is finite. If g1, . . . gr are generators of f̃∗OX , then they are
generators of f∗OX too. Therefore, we obtain an epimorphism ϕ : Orn+1 → OX which sends the
canonical vector ei to the generator gi. For any 1 ≤ i ≤ r, there exist germs aij ∈ On, 1 ≤ j ≤ r
such that fn+1gi =

∑r
j=1 f̃

∗aijgj . If X1, . . . , Xn+1 denote the variables in Cn+1 and δij is the
Kronecker’s delta function, then the matrix M(f) with entries aij(X1, . . . , Xn) − δijXn+1 is a
presentation matrix for f∗OX .

Given a double fold f(x, y) = (x2, y2, xp1 + yp2 + xyp3), we use the method explained above
to find M(f). Take g1 = 1, g2 = x, g3 = y, g4 = xy as generators of α∗O2. For i = 1, we have
f3g1 = xp1 + yp2 + xyp3 = 0 · g1 + α∗P1g2 + α∗P2g3 + α∗P3g4. Therefore, the elements of the
first column of the matrix are −Z,P1, P2, P3. After computing f3gi for i = 2, 3, 4, we get the
matrix

M(f) =


−Z XP1 Y P2 XY P3

P1 −Z Y P3 Y P2

P2 XP3 −Z XP1

P3 P2 P1 −Z

 ,

where Pi represents Pi(X,Y ). Since M(f) has size 4 × 4, f has no points with multiplicity
greater than 4. For special double folds, the space of quadruple points in the image is given by
the ideal F3(f) = 〈P1(X,Y ), P2(X,Y ), Z〉 and F2(f) = (F3(f))2. Hence, triple points of special
double folds appear concentrated at quadruple points.

We define the source double point space D(f) as the zero locus of the pull back f∗(F1(f)).
In the double fold case we have D(f) = V

(
(p1 + yp3)(p2 + xp3)(xp1 + yp2)

)
. Its defining ideal

factorizes as the product of the ideals I1 := 〈p1 + yp3〉, I2 := 〈p2 + xp3〉 and I3 := 〈xp1 + yp2〉.
Analogously, the source triple point space, defined as V (f∗(F2(f)), is given by the product of
the ideals I1,2 := 〈p1 +yp3, p2 +xp3〉, I1,3 := 〈p1 +yp3, p2−xp3〉 and I2,3 := 〈p2 +xp3, p1−yp3〉.
Quadruple points (again with the structure induced by the target) are given by the zeros of
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Figure 2. The image of a double cone.

I := 〈p1, p2, p3〉. We observe the collapse of triple points in the special double fold case: If p3
equals zero, then the radical of I1,2I1,3I2,3 is 〈p1, p2〉, which is the ideal defining the quadruple
point locus.

Definition 2.3. Given a double fold f = (α, xp1 + yp2 +xyp3), we decompose the double point
locus as the union of Di(f), 1 ≤ i ≤ 3, with Di(f) := V (Ii) and the triple point space as the
union of Di,j(f), 1 ≤ i < j ≤ 3, with Di,j := V (Ii,j). Finally, we denote D1,2,3(f) = V (I1,2,3)
the quadruple point locus.

Remark 2.4. It’s immediate that:

• w belongs to Dl(f) if and only if il(w) does so. Moreover f(w) = f(il(w)).
• w belongs to Dl,k(f) if and only if il(w) and ik(w) do so. Moreover

f(w) = f(il(w)) = f(ik(w)).

• w belongs to D1,2,3(f) if and only if i1(w), i2(w) and i3(w) do so. Moreover

f(w) = f(i1(w)) = f(i2(w)) = f(i3(w)).

Example 2.5. Take the family (x, y) 7→ (x2, y2, λ1x + λ2y + λ3xy), λi ∈ C. Assume λ3 6= 0,
then its double points are the following: D1(f) = V (λ1 + yλ3) is the line y = −λ1/λ3, which is
obviously i1-invariant, D2(f) is the i2-invariant line x = −λ2/λ3 and, if λ2 6= 0, then D3(f) is
the i3-invariant line y = −λ1x/λ2. We find the triple points where these lines meet:

D1,2(f) = {(−λ2/λ3,−λ1/λ3)}, D1,3(f) = {(λ2/λ3,−λ1/λ3)}

and

D2,3(f) = {(−λ2/λ3, λ1/λ3)}

(see figure 3). In the case λ3 = 0 we have a special double fold. Thus, its triple points should
appear collapsed at quadruple points, with equations p1 = p2 = 0. Since p1 = λ1 and p2 = λ2, the
appearance of quadruple point forces λ1 = λ2 = 0 and hence, the map is the folded hankerchief.
Another map that fits into this family is the so called double cone (x, y) 7→ (x2, y2, xy) (Figure
2). It parameterizes the cone Z2 = XY , but does so in a two-to-one way. Indeed, its double
point branch D3(f) = V (xp1 + yp2) = V (0) equals C2.
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Figure 3. Image and double points of a double fold (see Example 2.5).

3. double fold stability

In this section we study the singularity types which are characteristic of the double folds.
By a singularity type we mean an A-equivalence class of multigerms f : (C2, S) → (C3, y).
A singularity type, represented by f0, is stable if it appears in any section fs, s ∈ C, of any
deformation of f0. It is well known that in the case C2 → C3 the stable types are transverse
double points, triple points and cross-caps. Our goal is to make a version of the concept of
stability adapted specifically for double folds. Some types, despite not being stable, are preserved
by deformations which occur inside the double fold world. We call them DF-stable types and
these deformations DF-deformations. This concept can be adapted to the special double fold
case and we shall use the notation (S)DF to refer respectively to both, the double fold and the
special double fold case.

Definition 3.1. We call (S)DF-deformation of f0 any germ F : (C2×C, 0)→ (C3, 0) of the form
F (x, t) = ft(x), such that the germ ft : (C2, 0)→ (C3, 0) is a (special) double fold for all t. We
call (S)DF-unfolding any map germ F : (C2×C, 0)→ (C3×C, 0) of the form F (x, t) = (ft(x), t)
such that ft(x) is a (S)DF-deformation.

Definition 3.2. We say a multigerm ξ is (S)DF-stable if any (S)DF-unfolding F of a multigerm
f of type ξ is trivial. That is, if there exist some unfoldings of the identity Ψ,Φ such that
f × id = Ψ ◦ F ◦ Φ. A (special) double fold f : U → C3 is (S)DF-stable if all its multigerms at
f−1(f(w)), w ∈ U are (S)DF-stable.

Remark 3.3. Every stable type is (S)DF-stable.

A priori, it might seem difficult to identify all possible (S)DF-stable maps, but a better
understanding of the map α will help us to do so. The map α is the invariant map associated
to the Coxeter group G (see [3] for Coxeter group theory). For any Coxeter Group there is a
Coxeter complex, in this case C := {C2 \ (OX ∪ OY ), OX \ {0}, OY \ {0}, {0}}. The Coxeter
complex stratifies the space in a way such that the behavior of the group, and thus that of
α, changes whenever we go from a facet to another. Consequently, much information about a
double fold is contained in the way its multiple point spaces meet the Coxeter complex. The
following proposition is an example of this.

Lemma 3.4. The germ of a fold f(x, y) = (x2, y2, xp1 + yp2 +xyp3) centered at a point w ∈ C2

is a cross-cap if and only if one of the three conditions is verified:
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i) w ∈ OX \ {0} and the restricted function (p2 + xp3)|OX has a simple zero at w.
ii) w ∈ OY \ {0} and the restricted function (p1 + yp3)|OY has a simple zero at w.
iii) w = 0 and p1(w) 6= 0 6= p2(w).

Proof. A monogerm of map from C2 to C3 is a cross-cap if and only if its source double point
space is smooth (this follows immediately from [6, Theorem 3.3]). Since cross-caps are singular
monogerms, they lie on OX ∪OY . Assume first that w ∈ OX \{0}. Looking at the 2×2 minors
of the differential of f at w it follows that f is singular at w if and only if p2 + xp3 vanishes
at w. Now the source double point space of the germ of f at w is D2(f), given by the zeros
of p2 + xp3 (notice that, by Remark 2.4, the branches of double points D1(f) and D3(f) at
OX \ {0} produce multigerms, not monogerms). Therefore, the double point space of the germ
of f at w is smooth if and only if the Milnor number of the germ of function p2 +yp3 at w equals
0. This happens if and only if at least one of the partial derivatives ∂p2+xp3

∂x and ∂p2+xp3
∂y does

not vanish at w. Since p2 and p3 are functions of x2 and y2, we deduce that ∂p2+xp3
∂y vanishes at

OX. Hence, f has a cross-cap at w ∈ OX \ {0} if and only p2 + xp3 vanishes at w and ∂p2+xp3
∂x

does not, that is, if and only if the restriction (p2 + xp3)|OX has a simple zero at w. The case
w ∈ OY \ {0} is analogous. Assume now w = 0. The source double point of f is the germ of
complex space given by the zeros of (p1 +xp3)(p2 + p3)(xp1 + yp2). The non vanishing of p1 and
p2 at 0 is a necessary and sufficient condition for this germ of complex space to be smooth. �

Points where the source double point space meets the facets of the Coxeter complex in a
generic way are called (S)DF-generic. We shall determine the different possible (S)DF-generic
singularities and then show that they are exactly the (S)DF-stable singularities. Let us state
the (S)DF-genericity conditions rigorously:

Definition 3.5. Let f = (α, xp1 + yp2 + xyp3) : U → C3 be a double fold. We say that a point
w ∈ C2, that belongs to a facet C ∈ C, is DF-generic if:

1) (p1 + yp3)|C , (p2 + xp3)|C and (xp1 + yp2)|C are transverse to {0} at w, with the
exception (xp1 + yp2)|{0} (notice that no double fold in canonical form could verify this
transversality condition).

2) (p1 + yp3, p2 + xp3)|C , (p1 + yp3, p2 − xp3)|C and (p2 + xp3, p1 − yp3)|C are transverse
to {(0, 0)} at w.

3) w is not a quadruple point of f .
A double fold f : U → C3 is DF-generic if all points w ∈ U are DF-generic

Conditions 1) and 2) adapt to the special double fold case just taking p3 = 0 but, since
quadruple points are more likely to appear at special double folds (they are the zeros of just two
equations in C2), the SDF genericity conditions don’t include condition 3).

Definition 3.6. Let f = (α, xp1 + yp2) : U → C3 be a special double fold, we say that a point
w ∈ C2, that belongs to a facet C ∈ C, is SDF-generic if:

1) p1|C , p2|C and (xp1+yp2)|C are transverse to {0} at w, with the exception (xp1+yp2)|{0}.
2) (p1, p2)|C is transverse to {(0, 0)} at w.

A special double fold f : U → C3 is SDF-generic if all points w ∈ U are SDF-generic

Remark 3.7. It is immediate from its defining ideals that every point belonging to D1(f)∩OX
or to D2(f) ∩ OY must belong to D3(f) too. It is also immediate that D3(f) always crosses
the facet {0}. Apart from these exceptions, which are inherent to the double fold family, the
genericity conditions imply the following more geometric assertion: Given a regular stratification
of D(f), the strata have their expected dimension (double points have dimension 1 and triple
(quadruple) points have dimension 0) and are transverse to the strata of the Coxeter complex C.



256 G. PEÑAFORT-SANCHIS

Figure 4. Images of a standard self tangency and a standard quadruple point.

Let us introduce our new candidates to be (S)DF-generic multigerms.

Definition 3.8. We call a standard self tangency the multigerm formed by two smooth branches
with Morse contact. We call a standard quadruple point the multigerm formed by four smooth
branches such that every three of them meet transversally. These singularities are depicted in
Figure 4.

Proposition 3.9. All standard self tangencies are A-equivalent. All standard quadruple points
are A-equivalent.

Proof. In [12] it is shown that the A-class of a bigerm with smooth branches is determined
by the contact type of its branches. Since there is only one contact class of Morse type, all
standard self tangencies are equivalent. Let f be a multigerm of standard quadruple point.
Any three of its branches form a triple point and there is only one A-class of triple points.
Therefore, there exists a change of coordinates that takes f to a multigerm whose branches send
(x, y) respectively to (x, y, 0), (x, 0, y), (0, x, y) and g(x, y) for some regular monogerm g with
Im g = {U1X + U2Y + U3Z = 0}, Ui ∈ O3. The plane tangent to Im g is determined by the
equation t1X+t2Y +t3Z = 0, with ti = Ui(0, 0). If we assume t1 = 0, then the intersection of the
tangent plane with the branches {Y = 0} and {Z = 0} is the line {Y = Z = 0}. This contradicts
the transversality of these three branches. We deduce t1 6= 0 and, analogously, t2 6= 0 6= t3. The
change (X,Y, Z) 7→ (U1X,U2Y, U3Z) defines a germ of diffeomorphism that takes our multigerm
to the one with image {XY Z(X + Y + Z) = 0}. Now the four branches of our multigerm send
(x, y) to (u1x, u2y, 0), (u1x, 0, u3y), (0, u2x, u3y) and

(a1x+ b1y, a2x+ b2y,−(a1 + b1)x− (a2 + b2)y),

where ui = Ui ◦ f , and a1, a2, b1, b2 are some function germs in O2. We take germs of diffeo-
morphisms at the source, at the four different points where our multigerm is centered. The first
three diffeomorphisms send (x, y) respectively to (x/u1, y/u2), (x/u1, y/u3) and (x/u2, y/u3).
The fourth diffeomorphism is the inverse of the germ

(x, y) 7→ (a1x+ b1y, a2x+ b2y).

These four source coordinate changes take the multigerm to one multigerm defined by four
branches sending (x, y) respectively to (x, y, 0), (x, 0, y), (0, x, y) and (x, y,−x − y). Hence, all
germs of standard quadruple point are equivalent. �

Lemma 3.10. The (S)DF-generic points are regular points, transverse double points, cross-caps,
standard self tangencies and triple points (resp. standard quadruple points).
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Proof. Given a (special) double fold f and a point w = (x0, y0) ∈ C2 satisfying the (S)DF-
genericity conditions, we shall determine the type of singularity of the multigerm of f at
f−1(f(w)). First of all, notice that singular points lie in OX∪OY and the genericity condition 2)
implies that all triple points belong to the facet C2\(OX∪OY ). Hence, from genericity condition
1), together with Lemma 3.4, it follows that all points where f is singular are cross-caps.

Now suppose that f is regular at w and the point w belongs to Dl(f), 1 ≤ l ≤ 3. Take the
vector fields along f defined by the cross product η := ∂f

∂x ×
∂f
∂y and ηl = η ◦ il, for 1 ≤ l ≤ 3.

The branches of the multigerm of f at w and ilw are transverse unless η × ηl or, equivalently,
ξl := (η− ηl)× (η+ ηl) vanish at w. We study the different cases a), b) and c), where w belongs
to D1(f), D2(f) and D3(f) respectively.

Case a) Let w belong to D1(f), then we have:
ξ1|w = 4x0y0(4x0

∂(xp1+xyp3)
∂y |w, 4y0 ∂(xp1+xyp3)∂x |w, (∂(xp1+xyp3)∂y |w ∂yp2∂x |w −

∂(xp1+xyp3)
∂x |w ∂yp2∂y |w)).

Suppose first w /∈ OX ∪ OY , then ξ1|w vanishes if and only if ∂p1+yp3
∂x |w = ∂p1+yp3

∂y |w = 0,
that is, if and only if p1 + yp3 is not transverse to {0} at w. This is in contradiction with
the first genericity condition. Suppose now w ∈ OX ∪ OY and notice w /∈ OY because it
would be a singular point. Thus, we have w ∈ OX \ {0}. We claim that the bigerm of f at
(±x0, 0) forms a standard self tangency at (X0, 0, 0), where X0 = x20. The genericity conditions
imply that P1 has a simple zero at (X0, 0) and P2 does not vanish at (X0, 0). Let the germ
of f : C2 → C3 at x0 parameterize one of the branches and let φ : C3 → C be the germ at
(X0, 0, 0) which defines the other branch implicitly. Then, following Montaldi [11], the contact
between the branches is given by the K-class of the composition φ ◦ f . The branches are given
by (Z2 ±

√
XP1)2 − Y P 2

2 ± 2Y
√
XP2P3 − XY P 2

3 = 0. After choosing the preimage (x0, 0)
and composing we get the function 4x(p1 + yp3)(xp1 + yp2), which is of Morse type in (x0, 0).
Therefore, the multigerm of f at (±x0, 0) is a standard self tangency.

Case b) is symmetric interchanging indices 1 and 2, and OX and OY .
Case c) If w ∈ D3(f), then we can assume w ∈ D3(f) \ (OX ∪ OY ) because otherwise

w ∈ D1(f) ∪D2(f). We have

ξ3|w = 4x0y0

(
4x0

∂(xp1 + yp2)

∂y
|w, −4y0

∂(xp1 + yp2)

∂x
|w,(∂(xp1 + yp2)

∂y
|w
∂xyp3
∂x

|w −
∂(xp1 + yp2)

∂x
|w
∂xyp3
∂y
|w
))

,

which vanishes if and only if ∂xp1+yp2∂x and ∂xp1+yp2
∂y vanish in w, if and only if xp1 + yp2 is not

transverse to {0} at w.
As we have seen before, all triple points (and therefore all quadruple points) belong to the

facet C2 \ (OX ∩ OY ), where the second genericity condition implies that the branches are
transverse. Therefore, all triple points are transverse (respectively all quadruple points are
standard quadruple points). �

Lemma 3.11. Every (special) double fold admits a (S)DF-deformation ft defined in a neigh-
borhood U × V of (0, 0) ∈ C2 × C such that, for every t ∈ V , ft is (S)DF-generic.

Proof. Let f = (α, xp1 + yp2 +xyp3) be a representative defined at some neighborhood U of the
origin. we consider DF-deformations of the form fa,b,c = (α, x(p1 + a) + y(p2 + b) + xy(p3 + c)).
Denote ∆ the analytic space of the points (a, b, c) ∈ C3, such that for some point w in U the map
fa,b,c does not satisfy all genericity conditions. We claim that ∆ is a proper subspace of C3. Take
the first function, p1+yp3, of the first condition and any facet of the Coxeter complex C ∈ C. We
consider the map ψ : C×C3 → C, given by ψ(w, a, b, c) = p1(w)+a+y(p3(w)+c). This is clearly
a submersion. Therefore, the Basic Transversality Lemma [2, Lemma 4.6] tells us that, for almost
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every (a, b, c) ∈ C3, the map fa,b,c is transverse to 0. We can proceed analogously for all the
maps given by the DF-genericity conditions to finally show that, for almost every (a, b, c) ∈ C3,
all the genericity conditions hold at every point in U . Thus, ∆ is a proper subspace. Hence, we
can find some particular (a, b, c) ∈ C3 and some neighborhood V of 0, such that t(a, b, c) /∈ C3

for any t ∈ V . If we take the DF-deformation

ft(x, y) = (x2, y2, x(p1 + ta) + y(p2 + tb) + xy(p3 + tc)

defined at U × V , then for any t ∈ V , the map ft has only DF -generic points at U . The special
double fold case is analogous. �

Theorem 3.12. (S)DF-stable and (S)DF-generic points are the same. As a consequence:
The DF-stable singularities are
• Transverse double points, cross-caps and triple points.
• Standard self tangencies.

The SDF-stable singularities are
• Transverse double points and cross-caps.
• Standard self tangencies.
• Standard quadruple points.

Proof. By Lemma 3.11, the DF-stable singularities must be DF-generic. Now take a DF-generic
point w of a double fold f . If w is a transverse double point, a cross-cap or a triple point, then it
is stable and, hence, DF-stable. Suppose w is a standard self tangency and Let F = (ft, t) be a
DF-unfolding of f . Assume w ∈ D1(f). Then, as we have seen in the proof of Lemma 3.10, the
point belongs to OX \ {0}, (p1 + yp3)|OX has a simple zero at w and the functions p2 + xp3 and
xp1 + yp2 don’t vanish at w. Therefore, there exist a neighborhood U × V of (w, 0) and a curve
of points wt ∈ U ∩OX \ {0}, with t ∈ V and w0 = w, such that (p1 + yp3)|OX has a simple zero
and the functions p2 + xp3 and xp1 + yp2 don’t vanish at wt. All this points are also standard
self tangencies and, since they are all A-equivalent by 3.9, they are DF-stable. The proof holds
in the special case and is analogous for standard quadruple points. �

4. counting (s)df-stable points

A usual way to study germs is to count the number of stable 0-dimensional points of each
type which appear in a stabilization of the original germ. One can show that these numbers can
be obtained as the dimension (as C-vector space) of certain local algebras related to the different
stable 0-dimensional types. We adapt these techniques specifically to (S)DF-deformations and
to (S)DF-stable points.

Definition 4.1. We call (S)DF-stabilization any (S)DF-deformation F such that there exists a
neighborhood U × V of (0, 0) ∈ C2 × C such that, for every t ∈ V , ft is (S)DF-stable.

Remark 4.2. By Lemma 3.11 and Theorem 3.12, every (special) double fold admits a (S)DF-
stabilization.

Definition 4.3. For any (special) double fold f we define:
STi(f) = 1

2 dimCO1/j
∗
i Ii(f), for i = 1, 2,

Ci(f) = dimCO1/j
∗
kIi(f), for (i, k) = (1, 2), (2, 1),

T (f) = dimCO2/I1,2(f) (in the special DF case: QD(f) = 1
4 dimCO2/〈p1, p2〉),

where j1 and j2 denote the inclusions of OX and OY into C2 respectively.



DOUBLE FOLDS 259

Figure 5. A non SDF-stable special double fold (see Example 4.6).

Remark 4.4. We don’t include indices for the triple points in different branches because the
complex spaces Di,j(f) are all isomorphic, since O2/I1,2(f) ∼= O2/I1,3(f) ∼= O2/I2,3(f) via the
isomorphisms induced by i1 and i2.

Proposition 4.5. Let STi(f), Ci(f) and T (f) (respectively QD(f)) be finite. Let fs be a (S)DF-
stabilization of f . Then, for a small enough s 6= 0, the following equalities hold:

STi(f) = # standard self tangencies f(Di(fs)),
Ci(f) = # cross-caps in Di(fs) \ {0},
T (f) = # triple points of fs (QD(f) = # standard quadruple points of fs).

Proof. Take the zero locus of the different ideals which appear in 4.3. If STi(f), Ci(f) and T (f)
(respectively QD(f)) are finite, then the spaces are 0-dimensional. In this case, the codimension
of any of these spaces equals the number of generators of its defining ideal. Hence, the spaces are
complete intersection and the Principle of Conservation of Number (see for example [4, Theorem
6.4.7]) applies to them. We only need to check that, if the multigerm of fs at f−1s (fs(w)) is
(S)DF-generic, then the numbers are 1 if it is the considered singularity and 0 otherwise. �

Example 4.6. Take the family of special double folds

(x, y) 7→ (x2, y2, x(a1x
2 + b1y

2 − c1) + y(a2x
2 + b2y

2 − c2)).

The double points D1(f) and D2(f) are given by a1x2 + b1y
2 = c1 and a2x2 + b2y

2 = c2. In the
real case, these two spaces collapse to the point 0 if c1 = c2 = 0. For the germ

f(x, y) = (x2, y2, x(x2 + 2y2) + y(2x2 + y2))

(Figure 5), we can easily compute ST1 = 1/2 dimC(O1/〈x2〉) = 1 and similarly ST2 = 1 and
C1 = C2 = 2. We also have QD = 1/4 dimC(O2/〈2x2 + y2, 2y2 + x2〉) = 1. Now take the
2-parameter deformation ft = (x2, y2, x(x2 + 2y2 − t1) + y(2x2 + y2 − t2)), where t = (t1, t2).
We see that, for almost every fixed t with t1 6= 0 6= t2, ft is a SDF-stable map where we can
find (Figure 6) a standard self tangency and two cross-caps along D1(ft) \ {0} and the same on
D2(ft) \ {0}. We also see the cross-cap at ft(0) and a standard quadruple point. For these good
values of t we can also see that, apart from the restrictions on Di(f) ∩D3(f) and D3(f) ∩ {0}
(see Remark 3.7), the regular stratification of D(ft) is transverse to every facet of the Coxeter
complex.
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Figure 6. A SDF-stable deformation of the surface shown in figure 5.

Example 4.7. If we take the double cone (x, y) 7→ (x2, y2, xy) of Example 2.5, we see easily
that STi = 0, Ci = dimCO1/m1 = 1 for i = 1, 2 and T = dimCO2/m2. In fact

ft(x, y) = (x2, y2, tx+ ty + xy)

is a DF-stabilization of the double cone where each section t 6= 0 has, as in figure 3, three
cross-caps (one in D1(f) \ {0}, one in D2(f) \ {0} and the other at 0) and one triple point.

Remark 4.8. Let ST (f), C(f), T (f) (and respectively QD(f) in the special case) denote the
number of standard self tangencies, cross-caps, triple points (and standard quadruple points)
respectively that appear taking a (S)DF-stabilization of f . It is known that C(f) and T (f)
are well defined A-invariants of f . It is immediate that Q(f) is also invariant, because any
map showing a quadruple point can be deformed (outside the special double fold world) into
another that shows 4 triple points. It is not clear whether ST is A-invariant or not, but it
is easy to see that the numbers with indices STi(f) and Ci(f) are not. Given a double fold
f , we can interchange x and y at the source and then permute the first two coordinates at
the target to obtain a new double fold, say g, such that ST1(f) = ST2(g), ST2(f) = N1(g),
C1(f) = C2(g) and C2(f) = C1(g). Apart from the permutation of indices 1 and 2 that this
change of coordinates produces, examples suggest that changes of coordinates don’t make the
singularities jump from one space Di(f) to another one. Therefore, the numbers STi(f) and
Ci(f) seem to be A-invariant, modulo a simultaneous permutation of all indices 1 and 2 (and
that would make ST A-invariant). However, we have only succeeded in showing it for finitely
determined quasi homogeneous double folds (Corollary 5.6).

5. A-equivalence and Kα-equivalence

The aim of this section is to mimic a result of David Mond [8, Theorem 4.1:1], which shows
the coincidence between the A-equivalence of folds f : (C2, 0) → (C3, 0), f(x, y) = (x, y2, f3)
and some easier to use equivalence of the third coordinate function, f3, defined ad hoc. This
equivalence is given by a subgroup of K called KT which behaves well with respect to the
Whitney Fold T (x, y) = (x, y2). We take, instead of the Whitney Fold, any finite mapping
α : (Cn, 0) → (Cn, 0) and consider mappings (α, fn+1) : (Cn, 0) → (Cn+1, 0). We define the
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group Kα and the generalization of one direction of Mond’s results comes easily: Kα-equivalence
for fn+1 implies A-equivalence for (α, fn+1).

As usual, we denote Rn the group of germs of biholomorphism ϕ : (Cn, 0)→ (Cn, 0).

Definition 5.1. Let α : (Cn, 0) → (Cn, 0) be a finite germ. We define Rα as the subgroup
consisting of the germs ϕ ∈ Rn such that there exists a germ ϕ̂ ∈ Rn such that

ϕ̂ ◦ α = α ◦ ϕ.

We say that two germs g, h ∈ On are Kα-equivalent if there exist a function κ ∈ α∗O2, κ(0) 6= 0
and a germ of diffeomorphism ϕ ∈ Rα, such that

g = κ · h ◦ ϕ.

Example 5.2. Let α(x, y) = (x2, y2), then any diffeomorphism ϕ ∈ Rα is of the form

ϕ(x, y) = (xϕ1, yϕ2) or ϕ(x, y) = (yϕ1, xϕ2)

for some functions ϕ1, ϕ2 ∈ α∗O2, ϕi(0, 0) 6= 0. In particular, if g, h ∈ C[x, y] are homogeneous
Kα-equivalent polynomials, the factors κ and h ◦ ϕ are homogeneous. Hence, on one hand, κ
is a constant in C∗. On the other hand, since ϕ is a diffeomorphism, both h and h ◦ ϕ are
homogeneous of the same degree. We can replace ϕ by its linear part without changing the
composition. Thus, we can assume that ϕ is of the form (x, y) 7→ (ax, by) or (x, y) 7→ (by, ax).

Lemma 5.3. A diffeomorphism ϕ ∈ Rn belongs to Rα if and only if the algebras α∗On and
(α ◦ ϕ)∗On are equal.

Proof. Let ϕ ∈ Rα with ϕ̂ ◦ α ◦ ϕ = α. Any function h ◦ α ∈ α∗On is equal to

(h ◦ ϕ̂) ◦ α ◦ ϕ ∈ (α ◦ ϕ)∗On.

Now take h◦α◦ϕ ∈ (α◦ϕ)∗On. This function is equal to h◦ϕ̂−1◦ϕ̂◦α◦ϕ = (h◦ϕ̂−1)◦α ∈ α∗On.
Now suppose that the two sub-algebras above are equal, then there exist some functions ϕ̂i

such that αi = ϕ̂i ◦α ◦ϕ. Take ϕ̂ = (ϕ̂1, . . . , ϕ̂n). Then we have α = ϕ̂ ◦α ◦ϕ. As α is finite and
ϕ is a biholomorphism, α and α ◦ ϕ have the same finite multiplicity. Therefore ϕ̂ must have
multiplicity 1, and hence is a biholomorphism. �

Theorem 5.4. Let α : (Cn, 0) → (Cn, 0) be a finite germ and fn+1, gn+1 be two Kα-equivalent
functions of On, then the map germs (Cn, 0) → (Cn+1, 0) f = (α, fn+1) and g = (α, gn+1) are
A-equivalent.

Proof. f ∼Kα g implies that there exists θα : (Cn × C, 0)→ (C, 0) of the form

θα(X,Z) = θ(α(X), Z)

for some germ of function θ and such that θα(0, ·) is a germ of biholomorphism, and there exists
ϕ ∈ Rαn such that g(X) = θα(X, f ◦ ϕ(X)). Since ϕ ∈ Rαn, then there exists some germ of
biholomorphism ϕ̂ such that α = ϕ̂ ◦ α ◦ ϕ. We define ψ1 : Cn+1 → Cn by ψ1 = ϕ̂ ◦ π1 and
ψ2 = θ ◦ (ψ1, π2), where πi represents the projection over the i-th component of Cn × C. Now
we define ψ = (ψ1, ψ2) : (Cn+1, 0)→ (Cn+1, 0) and, for every X ∈ Cn, we have

ψ ◦ (α, f) ◦ ϕ(X) =
(
ϕ̂(α(ϕ(X))), θ(ϕ̂(α(ϕ(X))), f(ϕ(X)))

)
=(

α(X), θα(X, f(ϕ(X)))
)

= (α, g)(X).

As a consequence of ϕ̂ and θα(X, ·) being biholomorphisms, we have that ψ is a biholomorphism.
�
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Again, examples suggest that the converse of Theorem 5.4 also holds: A-equivalence of
(α, fn+1) and (α, gn+1) implies Kα-equivalence of fn+1 and gn+1. However we have not suc-
ceed in proving this in general. It was proved by Mond in [8] that it holds when α is the
Whitney Fold. We have only succeeded in showing it for finitely determined quasihomogeneous
double folds.

It is shown in [5] that any quasihomogeneous double fold must be a homogeneous one. There
are only two ways to obtain a homogeneous double fold f(x, y) = (α, xp1 + yp2 + xyp3). One is
p3 = 0 and the other p1 = p2 = 0. Every finitely determined double fold must have a reduced
double point space, which is given by (p1+yp3)(p2+xp3)(xp1+yp2) = 0. We deduce immediately
that every finitely determined quasihomogeneous double fold must be, in fact, a homogeneous
special double fold.

Theorem 5.5. Let f = (α, f3) and g = (α, g3) be A-equivalent finitely determined quasihomo-
geneous double folds , then f3 and g3 are Kα-equivalent.

Proof. Suppose there exist ψ and ϕ such that g = ψ ◦ f ◦ ϕ. Denote by ϕi,xj the derivative of
the i-th component with respect to the variable xj . Taking into account that p1, p2 ∈ m2, the
2-jet of the first two coordinate functions of the equality g = ψ ◦ f ◦ ϕ gives us

x2 = ψ1,X(ϕ2
1,xx

2 + ϕ1,xϕ1,yxy + ϕ2
2,yy

2) + ψ1,Y (ϕ2
2,xx

2 + ϕ2,xϕ2,yxy + ϕ2
2,yy

2),

y2 = ψ2,X(ϕ2
1,xx

2 + ϕ1,xϕ1,yxy + ϕ2
2,yy

2) + ψ2,Y (ϕ2
2,xx

2 + ϕ2,xϕ2,yxy + ϕ2
2,yy

2).

Since dϕ is invertible, we have ϕ1,xϕ2,y 6= 0 or ϕ1,yϕ2,x 6= 0. In the first case from the equations
we obtain ϕ1,y = ϕ2,x = 0 and, in the second case ϕ1,x = ϕ2,y = 0. Suppose we are in the first
case (the second one is analogous). Then the differential of ϕ is of the form dϕ(u, v) = (au, bv)
for some a, b ∈ C∗.

Notice that w is a source double point of g if and only if it is so for f ◦ ϕ, if and only if ϕ(w)
is a source double point of f . Since f and g are finitely determined, their double point spaces
are reduced and thus ϕ|D(g) : D(g) → D(f) is an isomorphism between complex space germs.
We claim that ϕ|D3(g) is an isomorphism between D3(g) and D3(f). We proceed by reduction
to the absurd: suppose there is a irreducible component R of D3(g), such that ϕ(R) 6⊂ D3(f).
For example, suppose ϕ(R) ⊂ D1(f) (the other case, ϕ(R) ⊂ D2(f), is analogous). Since f and
g are finitely determined, their diagonal double points are isolated and thus, since R ⊂ D3(g)
and ϕ(R) ⊂ D1(f), we have ϕ(i3(R)) = i1(ϕ(R)). Let (u, v) be the tangent vector to the curve
germ R, we have the equality dϕ(i3(u, v)) = i1(dϕ(u, v)), that is (−au,−bv) = (−au, bv). The
last equality implies (u, v) is a horizontal vector. Since g is homogeneous, the equation which
defines R is also homogeneous and, thus, it is independent of x. This is implies that y divides
xq1 + yq2, which in turn implies that y divides q1. Then y2 divides q1q2(xq1 + yq2). This is a
contradiction, because g is finitely determined and, thus, D(g) = V (q1q2(xq1 + yq2)) must be
reduced.

Now we have the isomorphism of complex spaces ϕ|D3(g) : D3(g) → D3(f), that is, we have
the equality 〈g3〉 = ϕ∗〈f3〉. This implies the existence of a function h, with h(0, 0) 6= 0, such
that g3 = h · f3 ◦ ϕ. Since g3 y f3 are homogeneous, we can take the diffeomorphism ϕ̃ = dϕ
and the constant κ = h(0, 0) 6= 0 and get g3 = κ · f3 ◦ ϕ. Moreover, as we have seen before, ϕ̃ is
a diagonal linear change and thus it belongs to Rα. �

Notice that the Kα-equivalence of f3 and g3 splits into two simultaneous equivalences between
P1, P2 and Q1, Q2. In the diagonal case we get an expression

xQ1(x2, y2) + yQ2(x2, y2) = κaxP1(a2x2, b2y2) + κbyP2(a2x2, b2y2).
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This is equivalent to Q1(x, y) = κaP1(a2x, b2y) and Q2(x, y) = κbP2(a2x, b2y). In the antidiag-
onal case we obtain the expression

xQ1(x2, y2) + yQ2(x2, y2) = κayP1(a2y2, b2x2) + κbxP2(a2y2, b2x2),

which is equivalent to Q1(x, y) = κbP2(a2y, b2x) and Q2(x, y) = κaP1(a2y, b2x). Now the next
corollary follows immediately.

Corollary 5.6. Let f and g be two A-equivalent quasihomogeneous finitely determined special
double folds, then:

STi(f) = STj(g),
Ci(f) = Ci(g),
QD(f) = QD(g),
µ(Di(f)) = µ(Dj(g)),

where j = i in the diagonal case, and in the antidiagonal the pairs (i, j) are (1, 2), (2, 1), (3, 3).
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