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THE THEORY OF GRAPH-LIKE LEGENDRIAN UNFOLDINGS AND ITS

APPLICATIONS

SHYUICHI IZUMIYA

To the memory of my friend Vladimir M. Zakalyukin.

Abstract. This is mainly a survey article on the recent development of the theory of graph-

like Legendrian unfoldings and its applications. The notion of big Legendrian submanifolds

was introduced by Zakalyukin for describing the wave front propagations. Graph-like Legen-
drian unfoldings belong to a special class of big Legendrian submanifolds. Although this is a

survey article, some new original results and the corrected proofs of some results are given.

1. Introduction

The notion of graph-like Legendrian unfoldings was introduced in [19]. It belongs to a special
class of the big Legendrian submanifolds which Zakalyukin introduced in [35, 36]. There have
been some developments on this theory during past two decades[19, 15, 28, 26, 27]. Most of
the results here are already present, implicitly or explicitly, in those articles. However, we give
in this survey detailed proofs as an aid to understanding and applying the theory. Moreover
some of the results here are original, especially Theorem 4.14 which explains how the theory of
graph-like Legendrian unfoldings is useful for applying to many situations related to the theory
of Lagrangian singularities (caustics). Moreover, it has been known that caustics equivalence
(i.e., diffeomorphic caustics) does not imply Lagrangian equivalence. This is one of the main
differences from the theory of Legendrian singularities. In the theory of Legendrian singular-
ities, wave fronts equivalence (i.e., diffeomorphic wave fronts) implies Legendrian equivalence
generically.

One of the typical examples of big wave fronts (also, graph-like wave fronts) is given by the
parallels of a plane curve. For a curve in the Euclidean plane, its parallels consist of those curves
a fixed distance r down the normals in a fixed direction. They usually have singularities for
sufficiently large r. Their singularities are always Legendrian singularities. It is well-known that
the singularities of the parallels lie on the evolute of the curve. We draw the picture of the
parallels of an ellipse and the locus of those singularities in Fig.1. Moreover, there is another
interpretation of the evolute of a curve. If we consider the family of normal lines to the curve,
the evolute is the envelope of this family of normal lines. We also draw the envelope of the
family of normal lines to an ellipse in Fig.2. The picture of the corresponding big wave front is
depicted in Fig.3. The evolute is one of the examples of caustics and the family of parallels is a
wave front propagation.
The caustic is described as the set of critical values of the projection of a Lagrangian submanifold
from the phase space onto the configuration space. In the real world, the caustics given by
reflected rays are visible. However, the wave front propagations are not visible (cf. Fig. 4).
Therefore, we can say that there are hidden structures (i.e., wave front propagations) on the
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Fig.1: The parallels and the evolute Fig.2: The normal lines and the evolute
of an ellipse of an ellipse

Fig.3: The big wave front of the parallels of an ellipse

Fig.4: The caustic reflected by a mirror

picture of caustics. In fact, caustics are a subject of classical physics (i.e., optics). However, the
corresponding Lagrangian submanifold is deeply related to the semi-classical approximation of
quantum mechanics (cf., [13, 30]).

On the other hand, it was believed around 1989 that the correct framework to describe the
parallels of a curve is the theory of big wave fronts [1]. But it was pointed out that A1 and A2

bifurcations do not occur as the parallels of curves [2, 7]. Therefore, the framework of the theory
of big wave fronts is too wide for describing the parallels of curves. The theory of the graph-like
Legendrian unfoldings was introduced to construct the correct framework for the parallels of
a curve in [19]. One of the main results in the theory of graph-like Legendrian unfoldings is
Theorem 4.14 which reveals the relation between caustics and wave front propagations. We give
some examples of applications of the theory of wave front propagations in §5.
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2. Lagrangian singularities

We give a brief review of the local theory of Lagrangian singularities due to [3]. We consider
the cotangent bundle π : T ∗Rn → Rn over Rn. Let (x, p) = (x1, . . . , xn, p1, . . . , pn) be the
canonical coordinates on T ∗Rn. Then the canonical symplectic structure on T ∗Rn is given by
the canonical two form ω =

∑n
i=1 dpi∧dxi. Let i : L ⊂ T ∗Rn be a submanifold. We say that i is

a Lagrangian submanifold if dimL = n and i∗ω = 0. In this case, the set of critical values of π ◦ i
is called the caustic of i : L ⊂ T ∗Rn, which is denoted by CL. We can interpret the evolute of a
plane curve as the caustic of a certain Lagrangian submanifold (cf., §5). One of the main results
in the theory of Lagrangian singularities is the description of Lagrangian submanifold germs by
using families of function germs. Let F : (Rk × Rn, 0)→ (R, 0) be an n-parameter unfolding of
a function germ f = F |Rk×{0} : (Rk, 0) −→ (R, 0). We say that F is a Morse family of functions
if the map germ

∆F =

(
∂F

∂q1
, . . . ,

∂F

∂qk

)
: (Rk × Rn, 0)→ (Rk, 0)

is non-singular, where (q, x) = (q1, . . . , qk, x1, . . . , xn) ∈ (Rk × Rn, 0). In this case, we have a
smooth n-dimensional submanifold germ C(F ) = (∆F )−1(0) ⊂ (Rk × Rn, 0) and a map germ
L(F ) : (C(F ), 0)→ T ∗Rn defined by

L(F )(q, x) =

(
x,
∂F

∂x1
(q, x), . . . ,

∂F

∂xn
(q, x)

)
.

We can show that L(F )(C(F )) is a Lagrangian submanifold germ. Then it is known ([3], page
300) that all Lagrangian submanifold germs in T ∗Rn are constructed by the above method.
A Morse family of functions F : (Rk × Rn, 0) → (R, 0) is said to be a generating family of
L(F )(C(F )).

We now define a natural equivalence relation among Lagrangian submanifold germs. Let

i : (L, p) ⊂ (T ∗Rn, p) and i′ : (L′, p′) ⊂ (T ∗Rn, p′)

be Lagrangian submanifold germs. Then we say that i and i′ are Lagrangian equivalent if
there exist a diffeomorphism germ σ : (L, p) → (L′, p′), a symplectic diffeomorphism germ
τ̂ : (T ∗Rn, p) → (T ∗Rn, p′) and a diffeomorphism germ τ : (Rn, π(p)) → (Rn, π(p′)) such that
τ̂ ◦ i = i′ ◦ σ and π ◦ τ̂ = τ ◦ π, where π : (T ∗Rn, p) → (Rn, π(p)) is the canonical projection.
Here τ̂ is said to be a symplectic diffeomorphism germ if it is a diffeomorphism germ such that
τ̂∗ω = ω. Then the caustic CL is diffeomorphic to the caustic CL′ by the diffeomorphism germ
τ.

We can interpret Lagrangian equivalence by using the notion of generating families. Let
F,G : (Rk × Rn, 0) → (R, 0) be function germs. We say that F and G are P -R+-equivalent if
there exist a diffeomorphism germ

Φ : (Rk × Rn, 0)→ (Rk × Rn, 0)

of the form Φ(q, x) = (φ1(q, x), φ2(x)) and a function germ h : (Rn, 0) → (R, 0) such that

G(q, x) = F (Φ(q, x)) + h(x). For any F1 : (Rk ×Rn, 0)→ (R, 0) and F2 : (Rk′ ×Rn, 0)→ (R, 0),
F1 and F2 are said to be stably P -R+-equivalent if they become P -R+-equivalent after the
addition to the arguments qi of new arguments q′i and to the functions Fi of non-degenerate
quadratic forms Qi in the new arguments, i.e., F1 +Q1 and F2 +Q2 are P -R+-equivalent. Then
we have the following theorem:

Theorem 2.1. Let F : (Rk × Rn, 0)→ (R, 0) and G : (Rk′ × Rn, 0)→ (R, 0) be Morse families
of functions. Then L(F )(C(F )) and L(G)(C(G)) are Lagrangian equivalent if and only if F and
G are stably P -R+-equivalent.
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Let F : (Rk×Rn, 0)→ (R, 0) be a Morse family of functions and Ek the ring of function germs
of q = (q1, . . . , qk) variables at the origin. We say that L(F )(C(F )) is Lagrangian stable if

Ek = Jf +

〈
∂F

∂x1
|Rk×{0}, . . . ,

∂F

∂xn
|Rk×{0}

〉
R

+ 〈1〉R,

where f = F |Rk×{0} and

Jf =

〈
∂f

∂q1
(q), . . . ,

∂f

∂qk
(q)

〉
Ek
.

Remark 2.2. In the theory of unfoldings[6], F is said to be an infinitesimally P -R+-versal
unfolding of f = F |Rk×{0} if the above condition is satisfied. There is a definition of Lagrangian
stability (cf., [3, §21.1]). It is known that L(F )(C(F )) is Lagrangian stable if and only if F is
an infinitesimally P -R+-versal unfolding of f = F |Rk×{0} [3]. In this paper we do not need the
original definition of the Lagrangian stability, so that we adopt the above definition.

3. Theory of the wave front propagations

In this section we give a brief survey of the theory of wave front propagations (for details, see
[3, 19, 36, 33], etc). We consider one parameter families of wave fronts and their bifurcations.
The principal idea is that a one parameter family of wave fronts is considered to be a wave front
whose dimension is one dimension higher than each member of the family. This is called a big
wave front. Since the big wave front is a wave front, we start to consider the general theory of
Legendrian singularities. Let π : PT ∗(Rm) −→ Rm be the projective cotangent bundle over Rm.
This fibration can be considered as a Legendrian fibration with the canonical contact structure
K on PT ∗(Rm). We now review geometric properties of this space. Consider the tangent bundle
τ : TPT ∗(Rm) → PT ∗(Rm) and the differential map dπ : TPT ∗(Rm) → TRm of π. For any
X ∈ TPT ∗(Rm), there exists an element α ∈ T ∗(Rm) such that τ(X) = [α]. For an element
V ∈ Tx(Rm), the property α(V ) = 0 does not depend on the choice of representative of the class
[α]. Thus we can define the canonical contact structure on PT ∗(Rm) by

K = {X ∈ TPT ∗(Rm)|τ(X)(dπ(X)) = 0}.

We have the trivialization PT ∗(Rm) ∼= Rm × P (Rm∗) and we call (x, [ξ]) homogeneous co-
ordinates, where x = (x1, . . . , xm) ∈ Rm and [ξ] = [ξ1 : · · · : ξm] are homogeneous coordi-
nates of the dual projective space P (Rm∗). It is easy to show that X ∈ K(x,[ξ]) if and only if∑m
i=1 µiξi = 0, where dπ(X) =

∑n
i=1 µi

∂
∂xi

. Let Φ : (Rm, 0) −→ (Rm, 0) be a diffeomorphism

germ. Then we have a unique contact diffeomorphism germ Φ̂ : PT ∗Rm −→ PT ∗Rm defined by

Φ̂(x, [ξ]) = (Φ(x), [ξ ◦ dΦ(x)(Φ
−1)]). We call Φ̂ the contact lift of Φ.

A submanifold i : L ⊂ PT ∗(Rm) is said to be a Legendrian submanifold if dimL = m − 1
and dip(TpL) ⊂ Ki(p) for any p ∈ L. We also call π ◦ i = π|L : L −→ Rm a Legendrian map
and W (L) = π(L) a wave front of i : L ⊂ PT ∗(Rm). We say that a point p ∈ L is a Legendrian
singular point if rank d(π|L)p < m− 1. In this case π(p) is the singular point of W (L).

The main tool of the theory of Legendrian singularities is the notion of generating families.
Let F : (Rk × Rm, 0) −→ (R, 0) be a function germ. We say that F is a Morse family of
hypersurfaces if the map germ

∆∗F =

(
F,
∂F

∂q1
, . . . ,

∂F

∂qk

)
: (Rk × Rm, 0) −→ (R× Rk, 0)
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is non-singular, where (q, x) = (q1, . . . , qk, x1, . . . , xm) ∈ (Rk × Rm, 0). In this case we have a
smooth (m− 1)-dimensional submanifold germ

Σ∗(F ) =

{
(q, x) ∈ (Rk × Rn, 0) | F (q, x) =

∂F

∂q1
(q, x) = · · · = ∂F

∂qk
(q, x) = 0

}
and we have a map germ LF : (Σ∗(F ), 0) −→ PT ∗Rm defined by

LF (q, x) =

(
x,

[
∂F

∂x1
(q, x) : · · · : ∂F

∂xm
(q, x)

])
.

We can show that LF (Σ∗(F )) ⊂ PT ∗(Rm) is a Legendrian submanifold germ. Then it is known
([3, page 320]) that all Legendrian submanifold germs in PT ∗(Rm) are constructed by the above
method. We call F a generating family of LF (Σ∗(F )). Therefore the wave front is given by

W (LF (Σ∗(F ))=

{
x ∈ Rm |∃q ∈ Rk s.t F (q, x) =

∂F

∂q1
(q, x) = · · · = ∂F

∂qk
(q, x) = 0

}
.

Since the Legendrian submanifold germ i : (L, p) ⊂ (PT ∗Rn, p) is uniquely determined on the
regular part of the wave front W (L), we have the following simple but significant property of
Legendrian immersion germs [36].

Proposition 3.1 (Zakalyukin). Let i : (L, p) ⊂ (PT ∗Rm, p) and i′ : (L′, p′) ⊂ (PT ∗Rm, p′) be
Legendrian immersion germs such that regular sets of π ◦ i, π ◦ i′ are dense respectively. Then
(L, p) = (L′, p′) if and only if (W (L), π(p)) = (W (L′), π(p′)).

In order to understand the ambiguity of generating families for a fixed Legendrian submanifold
germ we introduce the following equivalence relation among Morse families of hypersurfaces. Let
Ek be the local ring of function germs (Rk, 0) −→ R with the unique maximal ideal

Mk = {h ∈ Ek | h(0) = 0 }.

For function germs F,G : (Rk×Rm, 0) −→ (R, 0), we say that F and G are strictly parametrized
K-equivalent (briefly, S.P -K-equivalent) if there exists a diffeomorphism germ

Ψ : (Rk × Rm, 0) −→ (Rk × Rm, 0)

of the form Ψ(q, x) = (ψ1(q, x), x) for (q, x) ∈ (Rk × Rm, 0) such that

Ψ∗(〈F 〉Ek+m) = 〈G〉Ek+m .

Here Ψ∗ : Ek+m −→ Ek+m is the pull back R-algebra isomorphism defined by Ψ∗(h) = h ◦ Ψ.
The definition of stably S.P -K-equivalence among Morse families of hypersurfaces is similar to
the definition of stably P -R+-equivalence among Morse families of functions. The following is
the key lemma of the theory of Legendrian singularities (cf. [3, 11, 34]).

Lemma 3.2 (Zakalyukin). Let F : (Rk × Rm, 0) → (R, 0) and G : (Rk′ × Rm, 0) → (R, 0) be
Morse families of hypersurfaces. Then (LF (Σ∗(F )), p) = (LG(Σ∗(G)), p) if and only if F and
G are stably S.P -K-equivalent.

Let F : (Rk×Rm, 0)→ (R, 0) be a Morse family of hypersurfaces and Φ : (Rm, 0) −→ (Rm, 0)
a diffeomorphism germ. We define Φ∗F : (Rk × Rm, 0) → (R, 0) by Φ∗F (q, x) = F (q,Φ(x)).
Then we have (1Rq × Φ)(Σ∗(Φ

∗F )) = Σ∗(F ) and

LΦ∗F (Σ∗(Φ
∗F )) =

{(
x,

[(
∂F

∂x
(q,Φ(x))

)
◦ dΦx

]) ∣∣∣ (q,Φ(x)) ∈ Σ∗(F )

}
,

so that Φ̂(LΦ∗F (Σ∗(Φ
∗F ))) = LF (Σ∗(F )) as set germs.
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Proposition 3.3. Let

F : (Rk × Rm, 0)→ (R, 0) and G : (Rk
′
× Rm, 0)→ (R, 0)

be Morse families of hypersurfaces. For a diffeomorphism germ Φ : (Rm, 0) −→ (Rm, 0),

Φ̂(LG(Σ∗(G))) = LF (Σ∗(F )) if and only if Φ∗F and G are stably S.P -K-equivalent.

Proof. Since Φ̂(LΦ∗F (Σ∗(Φ
∗F ))) = LF (Σ∗(F )), we have LΦ∗F (Σ∗(Φ

∗F )) = LG(Σ∗(G)). By
Lemma 3.2, the assertion holds. 2

We say that LF (Σ∗(F )) and LG(Σ∗(G)) are Legendrian equivalent if there exists a diffeo-
morphism germ Φ : (Rm, 0) −→ (Rm, 0) such that the condition in the above proposition holds.
By Lemma 3.1, under the generic condition on F and G, Φ(W (LG(Σ∗(G)))) = W (LF (Σ∗(F )))

if and only if Φ̂(LG(Σ∗(G))) = LF (Σ∗(F )) for a diffeomorphism germ Φ : (Rm, 0) −→ (Rm, 0).
We now consider the case when m = n+1 and distinguish space and time coordinates, so that

we denote that Rn+1 = Rn×R and coordinates are denoted by (x, t) = (x1, . . . , xn, t) ∈ Rn×R.
Then we consider the projective cotangent bundle π : PT ∗(Rn × R) → Rn × R. Because of
the trivialization PT ∗(Rn × R) ∼= (Rn × R)× P ((Rn × R)∗), we have homogeneous coordinates
((x1, . . . , xn, t), [ξ1 : · · · : ξn : τ ]). We remark that PT ∗(Rn × R) is a fiber-wise compactification
of the 1-jet space as follows: We consider an affine open subset Uτ = {((x, t), [ξ : τ ])|τ 6= 0} of
PT ∗(Rn × R). For any ((x, t), [ξ : τ ]) ∈ Uτ , we have

((x1, . . . , xn, t), [ξ1 : · · · : ξn : τ ]) = ((x1, . . . , xn, t), [−(ξ1/τ) : · · · : −(ξn/τ) : −1]),

so that we may adopt the corresponding affine coordinates ((x1, . . . , xn, t), (p1, . . . , pn)), where
pi = −ξi/τ. On Uτ we can easily show that θ−1(0) = K|Uτ , where θ = dt −

∑n
i=1 pidxi. This

means that Uτ can be identified with the 1-jet space which is denoted by

J1
GA(Rn,R) ⊂ PT ∗(Rn × R).

We call the above coordinates a system of graph-like affine coordinates. Throughout this paper,
we use this identification.

For a Legendrian submanifold i : L ⊂ PT ∗(Rn × R), the corresponding wave front

π ◦ i(L) = W (L)

is called a big wave front. We call Wt(L) = π1(π−1
2 (t) ∩W (L)) (t ∈ R) a momentary front

(or, a small front) for each t ∈ (R, 0), where π1 : Rn × R → Rn and π2 : Rn × R → R are
the canonical projections defined by π1(x, t) = x and π2(x, t) = t respectively. In this sense,
we call L a big Legendrian submanifold. We say that a point p ∈ L is a space-singular point
if rank d(π1 ◦ π|L)p < n and a time-singular point if rank d(π2 ◦ π|L)p = 0, respectively. By
definition, if p ∈ L is a Legendrian singular point, then it is a space-singular point of L. Even if
we have no Legendrian singular points, we have space-singular points. In this case we have the
following lemma.

Lemma 3.4. Let i : L ⊂ PT ∗(Rn × R) be a big Legendrian submanifold without Legendrian
singular points. If p ∈ L is a space-singular point of L, then p is not a time-singular point of L.

Proof. By the assumption, π|L is an immersion. For any v ∈ TpL, there exists

Xv ∈ Tπ(p)(Rn × {0})
and Yv ∈ Tπ(p)({0} × R) such that d(π|L)p(v) = Xv + Yv. If rank d(π2 ◦ π|L)p = 0, then
d(π|L)p(v) = Xv for any v ∈ TpL. Since p is a space-singular point of L, there exits v ∈ TpL
such that Xv = 0, so that d(π|L)p(v) = 0. This contradicts to the fact that π|L is an immersion.
2
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The discriminant of the family {Wt(L)}t∈(R,0) is defined as the image of singular points
of π1|W (L). In the general case, the discriminant consists of three components: the caustic
CL = π1(Σ(W (L)), where Σ(W (L)) is the set of singular points of W (L) (i.e, the critical value
set of the Legendrian mapping π|L), the Maxwell stratified set ML, the projection of the closure
of the self intersection set of W (L); and also of the critical value set ∆L of π1|W (L)\Σ(W (L)).
In [28, 33], it has been stated that ∆L is the envelope of the family of momentary fronts.
However, we remark that ∆L is not necessarily the envelope of the family of the projection
of smooth momentary fronts π(Wt(L)). It can happen that π−1

2 (t) ∩W (L) is non-singular but
π1|π−1

2 (t)∩W (L) has singularities, so that ∆L is the set of critical values of the family of mappings

π1|π−1
2 (t)∩W (L) for smooth π−1

2 (t) ∩W (L) (cf., §5.2).

For any Legendrian submanifold germ i : (L, p0) ⊂ (PT ∗(Rn × R), p0), there exists a gen-
erating family. Let F : (Rk × (Rn × R), 0) → (R, 0) be a Morse family of hypersurfaces. In
this case, we call F a big Morse family of hypersurfaces. Then Σ∗(F) = ∆∗(F)−1(0) is a
smooth n-dimensional submanifold germ. By the previous arguments, we have a big Legendrian
submanifold LF (Σ∗(F)) where

LF (q, x, t) =

(
x, t,

[
∂F
∂x

(q, x, t) :
∂F
∂t

(q, x, t)

])
,

and [
∂F
∂x

(q, x, t) :
∂F
∂t

(q, x, t)

]
=

[
∂F
∂x1

(q, x, t) : · · · : ∂F
∂xn

(q, x, t) :
∂F
∂t

(q, x, t)

]
.

We now consider an equivalence relation among big Legendrian submanifolds which preserves
the discriminant of families of momentary fronts. The following equivalence relation among
big Legendrian submanifold germs has been independently introduced in [15, 33] for different
purposes: Let i : (L, p0) ⊂ (PT ∗(Rn × R), p0) and i′ : (L′, p′0) ⊂ (PT ∗(Rn × R), p′0) be big
Legendrian submanifold germs. We say that i and i′ are strictly parametrized+ Legendrian
equivalent (or, briefly S.P+-Legendrian equivalent) if there exists a diffeomorphism germs

Φ : (Rn × R, π(p0))→ (Rn × R, π(p′0))

of the form Φ(x, t) = (φ1(x), t+ α(x)) such that Φ̂(L) = L′ as set germs, where

Φ̂ : (PT ∗(Rn × R), p0)→ (PT ∗(Rn × R), p′0)

is the unique contact lift of Φ. We can also define the notion of stability of Legendrian subman-
ifold germs with respect to S.P+-Legendrian equivalence which is analogous to the stability of
Lagrangian submanifold germs with respect to Lagrangian equivalence (cf. [1, Part III]). We in-
vestigate S.P+-Legendrian equivalence by using the notion of generating families of Legendrian
submanifold germs. Let f, g : (Rk × R, 0)→ (R, 0) be function germs. Remember that f and g
are S.P-K-equivalent if there exists a diffeomorphism germ Φ : (Rk × R, 0)→ (Rk × R, 0) of the
form Φ(q, t) = (φ(q, t), t) such that 〈f ◦Φ〉Ek+1

= 〈g〉Ek+1
. Let F ,G : (Rk × (Rn ×R), 0)→ (R, 0)

be function germs. We say that F and G are space-S.P+-K-equivalent (or, briefly, s-S.P+-K-
equivalent) if there exists a diffeomorphism germ Ψ : (Rk × (Rn×R), 0)→ (Rk × (Rn×R), 0) of
the form Ψ(q, x, t) = (φ(q, x, t), φ1(x), t+α(x)) such that 〈F ◦Ψ〉Ek+n+1

= 〈G〉Ek+n+1
. The notion

of S.P+-K-versal deformation plays an important role for our purpose. We define the extended
tangent space of f : (Rk × R, 0)→ (R, 0) relative to S.P+-K by

Te(S.P
+-K)(f) =

〈
∂f

∂q1
, . . . ,

∂f

∂qk
, f

〉
Ek+1

+

〈
∂f

∂t

〉
R
.
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Then we say that F is an infinitesimally S.P+-K-versal deformation of f = F |Rk×{0}×R if it
satisfies

Ek+1 = Te(S.P
+-K)(f) +

〈
∂F
∂x1
|Rk×{0}×R, . . . ,

∂F
∂xn
|Rk×{0}×R

〉
R
.

Theorem 3.5. [15, 33] Let F : (Rk× (Rn×R), 0)→ (R, 0) and G : (Rk′ × (Rn×R), 0)→ (R, 0)
be big Morse families of hypersurfaces. Then
(1) LF (Σ∗(F)) and LG(Σ∗(G)) are S.P+-Legendrian equivalent if and only if F and G are stably
s-S.P+-K-equivalent.
(2) LF (Σ∗(F)) is S.P+-Legendre stable if and only if F is an infinitesimally S.P+-K-versal
deformation of f = F|Rk×{0}×R.

Proof. By definition, F and G are stably s-S.P+-K-equivalent if there exists a diffeomorphism
germ Φ : (Rn×R, 0)→ (Rn×R, 0) of the form Φ(x, t) = (φ1(x), t+α(x)) such that Φ∗F and G
are stably S.P -K-equivalent. By Proposition 3.3, we have the assertion (1). For the proof of the
assertion (2), we need some more preparations, so that we omit it. We only remark here that
the proof is analogous to the proof of [3, Theorem in §21.4]. 2

The assumption in Proposition 3.1 is a generic condition for i, i′. Especially, if i and i′ are
S.P+-Legendre stable, then these big Legendrian submanifold germs satisfy the assumption.
Concerning the discriminant and the bifurcation of momentary fronts, we define the following
equivalence relation among big wave front germs. Let i : (L, p0) ⊂ (PT ∗(Rn × R), p0) and
i′ : (L′, p′0) ⊂ (PT ∗(Rn × R), p′0) be big Legendrian submanifold germs. We say that W (L) and
W (L′) are S.P+-diffeomorphic if there exists a diffeomorphism germ

Φ : (Rn × R, π(p0))→ (Rn × R, π(p′0))

of the form Φ(x, t) = (φ1(x), t + α(x)) such that Φ(W (L)) = W (L′) as set germs. We remark
that S.P+-diffeomorphism among big wave front germs preserves the diffeomorphism types of
the discriminants [33]. By Proposition 3.1, we have the following proposition.

Proposition 3.6. Let i : (L, p0) ⊂ (PT ∗(Rn × R), p0) and i′ : (L′, p′0) ⊂ (PT ∗(Rn × R), p′0)
be big Legendrian submanifold germs such that regular sets of π ◦ i, π ◦ i′ are dense respectively.
Then i and i′ are S.P+-Legendrian equivalent if and only if (W (L), π(p0)) and (W (L′), π(p′0))
are S.P+-diffeomorphic.

Remark 3.7. If we consider a diffeomorphism germ Φ : (Rn × R, 0) → (Rn × R, 0) of the
form Φ(x, t) = (φ1(x, t), φ2(t)), we can define a time-Legendrian equivalence among big Legen-
drian submanifold germs. We can also define a time-P -K-equivalence among big Morse families
of hypersurfaces. By the similar arguments to the above paragraphs, we can show that these
equivalence relations describe the bifurcations of momentary fronts of big Legendrian submani-
folds.

In [36] Zakalyukin classified generic big Legendrian submanifold germs by time-Legendrian
equivalence. The natural equivalence relation among big Legendrian submanifold germs is in-
duced by diffeomorphism germs Φ : (Rn×R, 0)→ (Rn×R, 0) of the form Φ(x, t) = (φ1(x), φ2(t)).
This equivalence relation classifies both the discriminants and the bifurcations of momentary
fronts of big Legendrian submanifold germs. However, it induces an equivalence relation among
divergent diagrams (Rn, 0)← (Rn+1, 0)→ (R, 0), so that it is almost impossible to have a clas-
sification by this equivalence relation. Here, we remark that the corresponding group of the
diffeomorphisms is not a geometric subgroup of A and K in the sense of Damon[8]. Moreover, if
we consider a diffeomorphism germ Φ : (Rn×R, 0)→ (Rn×R, 0) of the form Φ(x, t) = (φ1(x), t),
we have a stronger equivalence relation among big Legendrian submanifolds, which is called an
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S.P -Legendrian equivalence. Although this equivalence relation gets rid of the difficulty for the
above equivalence relation, there appear function moduli for generic classifications in very low
dimensions (cf., §5). In order to avoid the function moduli, we introduced the S.P+-Legendrian
equivalence. If we have a generic classification of big Legendrian submanifold germs by S.P+-
Legendrian equivalence, we have a classification by the S.P -Legendrian equivalence modulo
function moduli. See [15, 33] for details.

On the other hand, we can also define a space-Legendrian equivalence among big Legendrian
submanifold germs. According to the above paragraphs, we use a diffeomorphism germ

Φ : (Rn × R, 0) −→ (Rn × R, 0)

of the form Φ(x, t) = (φ1(x), φ2(x, t)). The corresponding equivalence among big Morse families
of hypersurfaces is the space-P -K-equivalence which is analogous to the above definitions (cf.,
[17]). Recently, we discovered an application of this equivalence relation to the geometry of
world sheets in Lorentz-Minkowski space. See [18] for details.

4. Graph-like Legendrian unfoldings

In this section we explain the theory of graph-like Legendrian unfoldings. Graph-like Legen-
drian unfoldings belong to a special class of big Legendrian submanifolds. A big Legendrian sub-
manifold i : L ⊂ PT ∗(Rn×R) is said to be a graph-like Legendrian unfolding if L ⊂ J1

GA(Rn,R).
We call W (L) = π(L) a graph-like wave front of L, where π : J1

GA(Rn,R) −→ Rn×R is the canon-
ical projection. We define a mapping Π : J1

GA(Rn,R) −→ T ∗Rn by Π(x, t, p) = (x, p), where
(x, t, p) = (x1, . . . , xn, t, p1, . . . , pn) and the canonical contact form on J1

GA(Rn,R) is given by
θ = dt−

∑n
i=1 pidxi. Here, T ∗Rn is a symplectic manifold with the canonical symplectic structure

ω =
∑n
i=1 dpi ∧ dxi (cf. [3]). Then we have the following proposition.

Proposition 4.1 ([28]). For a graph-like Legendrian unfolding L ⊂ J1
GA(Rn,R), z ∈ L is a

singular point of π|L : L −→ Rn × R if and only if it is a singular point of π1 ◦ π|L : L −→ Rn.
Moreover, Π|L : L −→ T ∗Rn is immersive, so that Π(L) is a Lagrangian submanifold in T ∗Rn.

Proof. Let z ∈ L be a singular point of π1 ◦ π|L. Then there exists a non-zero tangent vector
v ∈ TzL such that d(π1 ◦ π|L)z(v) = 0. For the canonical coordinate (x, t, p) of J1

GA(Rn,R), we
have

v =

n∑
i=1

αi
∂

∂xi
+ β

∂

∂t
+

n∑
j=1

γj
∂

∂pj

for some real numbers αi, β, γj ∈ R. By the assumption, we have αi = 0 (i = 1, . . . , n). Since L
is a Legendrian submanifold in J1

GA(Rn,R), we have 0 = θ(v) = β −
∑n
i=1 γiαi = β. Therefore,

we have

dπ(v) =

n∑
i=1

αi
∂

∂xi
+ β

∂

∂t
= 0.

This means that z ∈ L is a singular point of π|L. The converse assertion holds by definition.
We consider a vector v ∈ TzL such that dΠz(v) = 0. For similar reasons to the above case,

we have v = 0. This means that Π|L is immersive. Since L is a Legendrian submanifold in
J1
GA(Rn,R), we have

ω|Π(L) = (Π|L)∗ω = Π∗ω|L = dθ|L = d(θ|L) = 0.

This completes the proof. 2

We have the following corollary of Proposition 4.1.
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Corollary 4.2. For a graph-like Legendrian unfolding L ⊂ J1
GA(Rn,R), ∆L is the empty set,

so that the discriminant of the family of momentary fronts is CL ∪ML.

Since L is a big Legendrian submanifold in PT ∗(Rn × R), it has a generating family

F : (Rk × (Rn × R), 0)→ (R, 0)

at least locally. Since L ⊂ J1
GA(Rn,R) = Uτ ⊂ PT ∗(Rn × R), it satisfies the condition

(∂F/∂t)(0) 6= 0. Let F : (Rk× (Rn×R), 0)→ (R, 0) be a big Morse family of hypersurfaces. We
say that F is a graph-like Morse family of hypersurfaces if (∂F/∂t)(0) 6= 0. It is easy to show
that the corresponding big Legendrian submanifold germ is a graph-like Legendrian unfolding.
Of course, all graph-like Legendrian unfolding germs can be constructed by the above way. We
say that F is a graph-like generating family of LF (Σ∗(F)). We remark that the notion of graph-
like Legendrian unfoldings and corresponding generating families have been introduced in [19]
to describe the perestroikas of wave fronts given as the solutions for general eikonal equations.
In this case, there is an additional condition. We say that F : (Rk × (Rn × R), 0) → (R, 0) is
non-degenerate if F satisfies the conditions (∂F/∂t)(0) 6= 0 and ∆∗F|Rk×Rn×{0} is a submer-
sion germ. In this case we call F a non-degenerate graph-like generating family. We have the
following proposition.

Proposition 4.3. Let F : (Rk × (Rn × R), 0) → (R, 0) be a graph-like Morse family of hyper-
surfaces. Then F is non-degenerate if and only if π2 ◦ π|LF (Σ∗(F)) is submersive.

Proof. By the definition of LF , we have

π2 ◦ π|LF (Σ∗(F)) = π2 ◦ πn+1|Σ∗(F),

where πn+1 : Rk × Rn × R −→ Rn × R is the canonical projection. Since

Σ∗(F) = ∆∗(F)−1(0) ⊂ (Rk × (Rn × R), 0),

π2 ◦ πn+1|Σ∗(F) is submersive if and only if

rank

(
∂∆∗(F)

∂q
(0),

∂∆∗(F)

∂x
(0)

)
= k + 1.

The last condition is equivalent to the condition that

∆∗(F|Rk×Rn×{0}) : (Rk × Rn × {0}, 0) −→ (R× Rk, 0)

is non-singular. This completes the proof. 2

We say that a graph-like Legendrian unfolding L ⊂ J1
GA(Rn,R) is non-degenerate if π2 ◦ π|L

is submersive. The notion of graph-like Legendrian unfolding was introduced in [19]. Non-
degeneracy was then assumed for general graph-like Legendrian unfoldings. However, during the
last two decades, we have clarified the situation and non-degeneracy is now defined as above.

We can consider the following more restrictive class of graph-like generating families: Let F
be a graph-like Morse family of hypersurfaces. By the implicit function theorem, there exists a
function F : (Rk × Rn, 0) → (R, 0) such that 〈F(q, x, t)〉Ek+n+1

= 〈F (q, x) − t〉Ek+n+1
. Then we

have the following proposition.

Proposition 4.4. Let F : (Rk× (Rn×R), 0)→ (R, 0) and F : (Rk×Rn, 0)→ (R, 0) be function
germs such that 〈F(q, x, t)〉Ek+n+1

= 〈F (q, x)− t〉Ek+n+1
. Then F is a graph-like Morse family of

hypersurfaces if and only if F is a Morse family of functions.
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Proof. By the assumption, there exists λ(q, x, t) ∈ Ek+n+1 such that λ(0) 6= 0 and

F(q, x, t) = λ(q, x, t)(F (q, x)− t).
Since ∂F/∂qi = ∂λ/∂qi(F − t) + λ∂F/∂qi, we have

∆∗(F) = (F , d1F) =

(
λ(F − t), ∂λ

∂q
(F − t) + λ

∂F

∂q

)
,

where
∂λ

∂q
(F − t) + λ

∂F

∂q
=

(
∂λ

∂q1
(F − t) + λ

∂F

∂q1
, . . . ,

∂λ

∂qk
(F − t) + λ

∂F

∂qk

)
.

By straightforward calculations, the Jacobian matrix of ∆∗(F)(0) is

J∆∗(F)(0) =

(
0 λ(0)∂F∂x (0) −λ(0)

λ(0)∂
2F
∂q2 (0) λ(0) ∂

2F
∂x∂q (0) 0

)
We remark that the Jacobi matrix of ∆F is given by J∆F = (∂2F/∂q2 ∂2F/∂x∂q). Therefore,
rank J∆∗(F)(0) = k + 1 if and only if rankJ∆F (0) = k. This completes the proof. 2

We now consider the case F(q, x, t) = λ(q, x, t)(F (q, x)− t). In this case,

Σ∗(F) = {(q, x, F (q, x)) ∈ (Rk × (Rn × R), 0) | (q, x) ∈ C(F )},
where C(F ) = ∆F−1(0). Moreover, we have the Lagrangian submanifold germ

L(F )(C(F )) ⊂ T ∗Rn,
where

L(F )(q, x) =

(
x,
∂F

∂x1
(q, x), . . . ,

∂F

∂xn
(q, x)

)
.

Since F is a graph-like Morse family of hypersurfaces, we have a big Legendrian submanifold
germ LF (Σ∗(F)) ⊂ J1

GA(Rn,R), where LF : (Σ∗(F), 0)→ J1
GA(Rn,R) is defined by

LF (q, x, t) =

x, t,−
∂F
∂x1

(q, x, t)

∂F
∂t

(q, x, t)
, . . . ,−

∂F
∂xn

(q, x, t)

∂F
∂t

(q, x, t)
,

 ∈ J1
GA(Rn,R) ∼= T ∗Rn × R.

We also define a map LF : (C(F ), 0)→ J1
GA(Rn,R) by

LF (q, x) =

(
x, F (q, x),

∂F

∂x1
(q, x), . . . ,

∂F

∂xn
(q, x)

)
.

Since ∂F/∂xi = ∂λ/∂xi(F − t) + λ∂F/∂xi and ∂F/∂t = ∂λ/∂t(F − t)− λ, we have

∂F/∂xi(q, x, t) = λ(q, x, t)∂F/∂xi(q, x, t)

and ∂F/∂t(q, x, t) = −λ(q, x, t) for (q, x, t) ∈ Σ∗(F). It follows that LF (C(F )) = LF (Σ∗(F)). By
definition, we have Π(LF (Σ∗(F))) = Π(LF (C(F ))) = L(F )(C(F )). The graph-like wave front
of the graph-like Legendrian unfolding LF (C(F )) = LF (Σ∗(F)) is the graph of F |C(F ). This is
the reason why we call it a graph-like Legendrian unfolding. For a non-degenerate graph-like
Morse family of hypersurfaces, we have the following proposition.

Proposition 4.5. With the same notations as Proposition 4.4, F is a non-degenerate graph-like
Morse family of hypersurfaces if and only if F is a Morse family of hypersurfaces. In this case,
F is also a Morse family of functions such that(

∂F

∂x1
(0), . . . ,

∂F

∂xn
(0)

)
6= 0.
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Proof. By exactly the same calculations as those in the proof of Proposition 4.4, the Jacobi
matrix of ∆∗(F|Rk×Rn×{0}) is

J∆∗(F|Rk×Rn×{0})
(0) =

(
0 λ(0)∂F∂x (0))

λ(0)∂
2F
∂q2 (0) λ(0) ∂

2F
∂x∂q (0)

)
.

On the other hand, the Jacobi matrix of ∆∗(F ) is

J∆∗(F )(0) =

(
0 ∂F

∂x (0))
∂2F
∂q2 (0) ∂2F

∂x∂q (0)

)
,

so that the first assertion holds. Moreover,

rank J∆∗(F|Rk×Rn×{0})
(0) = k + 1

implies rank J∆F (0) = k and ∂F/∂x(0) 6= 0. This completes the proof. 2

The momentary front for a fixed t ∈ (R, 0) is Wt(L) = π1(π−1
2 (t) ∩W (L)). We define

Lt = L ∩ (π2 ◦ π)−1(t) = L ∩ (T ∗Rn × {t})

under the canonical identification

J1
GA(Rn,R) ∼= T ∗Rn × R.

Then Π(L) ⊂ T ∗Rn and π̃ ◦ Π(Lt) ⊂ PT ∗Rn, where π̃ : T ∗Rn −→ PT ∗(Rn) is the canonical
projection. We also have the canonical projections $ : T ∗Rn −→ Rn and $ : PT ∗Rn −→ Rn
such that π1 ◦ π = $ ◦Π and $ ◦ π̃ = $. Then we have the following proposition.

Proposition 4.6. Let L ⊂ J1
GA(Rn,R) be a non-degenerate graph-like Legendrian unfolding.

Then Π(L) is a Lagrangian submanifold and π̃ ◦Π(Lt) is a Legendrian submanifold in PT ∗(Rn).

Proof. By Proposition 4.1, Π(L) is a Lagrangian submanifold in T ∗Rn. Since L is a non-
degenerate Legendrian unfolding in J1

GA(Rn,R), we have a non-degenerate graph-like generating
family F of L at least locally. This means that L = LF (Σ∗(F)) as set germs. Since F is
a graph-like Morse family of hypersurface, it is written as F(q, x, t) = λ(q, x, t)(F (q, x) − t).
Therefore, we have LF (Σ∗(F)) = LF (C(F )). By definition, Π ◦ LF (C(F )) = L(F )(C(F )), so
that F is a generating family of Π(L), locally. By Proposition 4.5, F is also a Morse family of
hypersurface, so that LF (Σ∗(F )) is a Legendrian submanifold germ in PT ∗(Rn). Without loss
of generality, we can assume that t = 0. Since Σ∗(F ) = C(F ) ∩ F−1(0),

LF (Σ∗(F )) = π̃ ◦Π(LF (C(F )) ∩ (π2 ◦ π)−1(0)) = π̃ ◦Π(L0).

This completes the proof. 2

In general, the momentary front Wt(L) of a big Legendrian submanifold L ⊂ PT ∗(Rn × R)
is not necessarily a wave front of a Legendrian submanifold in the ordinary sense. However, for
a non-degenerate Legendrian unfolding in J1

GA(Rn,R), we have the following corollary.

Corollary 4.7. Let L ⊂ J1
GA(Rn,R) be a non-degenerate graph-like Legendrian unfolding. Then

the momentary front Wt(L) is the wave front set of the Legendrian submanifold

π̃ ◦Π(Lt) ⊂ PT ∗(Rn).

Moreover, the caustic CL is the caustic of the Lagrangian submanifold Π(L) ⊂ T ∗Rn. In other
words, Wt(L) = $(π̃ ◦Π(Lt)) and CL is the singular value set of $|Π(L).
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Proof. By definition, we have

π(Lt) = π(L ∩ (π2 ◦ π)−1(t)) = W (L) ∩ π−1
2 (t),

so that

Wt(L) = π1(W (L) ∩ π−1
2 (t)) = π1 ◦ π(Lt) = $ ◦Π(Lt) = $(π̃ ◦Π(Lt)).

We remark that π1 ◦ π = $ ◦Π. By Proposition 4.1, z ∈ L is a singular point of

π|L : L −→ Rn × R

if and only if it is a singular point of $|Π(L) : Π(L) −→ Rn. Therefore, the caustic CL is the
singular value set of $|Π(L). 2

For a graph-like Morse family of hypersurfaces F(q, x, t) = λ(q, x, t)(F (q, x) − t), F(q, x, t)
and F (q, x, t) = F (q, x)− t are s-S.P+-K-equivalent, so that we consider F (q, x, t) = F (q, x)− t
as a graph-like Morse family. Moreover, if F is non-degenerate, then F (q, x) is a Morse family of
functions. We now suppose that F (q, x) is a Morse family of functions. Consider the graph-like
Morse family of hypersurfaces F (q, x, t) = F (q, x) − t which is not necessarily non-degenerate.
Then we have LF (Σ∗(F )) = LF (C(F )). We also denote that f(q, t) = f(q)− t for any f ∈Mk.

We can represent the extended tangent space of f : (Rk×R, 0) −→ (R, 0) relative to S.P+-K by

Te(S.P
+-K)(f) =

〈
∂f

∂q1
(q), . . . ,

∂f

∂qk
(q), f(q)− t

〉
E(q,t)

+ 〈1〉R.

For a deformation F : (Rk × Rn × R, 0) −→ (R, 0) of f, F is infinitesimally S.P+-K-versal
deformation of f if and only if

E(q,t) = Te(S.P
+-K)(f) +

〈
∂F

∂x1
|Rk×{0}, . . . ,

∂F

∂xn
|Rk×{0}

〉
R
.

We compare the equivalence relations between Lagrangian submanifold germs and induced
graph-like Legendrian unfoldings, that is, between Morse families of functions and graph-like
Morse families of hypersurfaces. As a consequence, we give a relationship between caustics and
graph-like wave fronts.

Proposition 4.8 ([28]). If Lagrangian submanifold germs L(F )(C(F )), L(G)(C(G)) are La-
grangian equivalent, then the graph-like Legendrian unfoldings LF (C(F )), LG(C(G)) are S.P+-
Legendrian equivalent.

Proof. By Proposition 2.1, two Lagrangian submanifold germs L(F )(C(F )), L(G)(C(G)) are
Lagrangian equivalent if and only if F and G are stably P -R+-equivalent. By definition, if F and
G are stably P -R+-equivalent, then F and G are stably s-S.P+-K-equivalent. By the assertion
(1) of Theorem 3.5, LF (C(F )) and LG(C(G)) are S.P+-Legendrian equivalent. 2

Remark 4.9. The above proposition asserts that Lagrangian equivalence is a stronger equiv-
alence relation than S.P+-Legendrian equivalence. The S.P+-Legendrian equivalence relation
among graph-like Legendrian unfoldings preserves both the diffeomorphism types of caustics and
Maxwell stratified sets. On the other hand, if we observe the real caustics of rays, we cannot
observe the structure of wave front propagations and the Maxwell stratified sets. In this sense,
there are hidden structures behind the picture of real caustics. By the above proposition, La-
grangian equivalence preserves not only the diffeomorphism type of caustics, but also the hidden
geometric structure of wave front propagations.

It seems that the converse assertion does not hold. However, we have the following proposition.
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Proposition 4.10 ([26]). Suppose that L(F )(C(F )) and L(G)(C(G)) are Lagrange stable. If
the graph-like Legendrian unfoldings LF (C(F )) and LG(C(G)) are S.P+-Legendrian equivalent,
then the Lagrangian submanifold germs L(F )(C(F )) and L(G)(C(G)) are Lagrangian equivalent.

In order to prove the proposition, we need the following lemma:

Lemma 4.11. If f and g : (Rk × R, 0) −→ (R, 0) are S.P -K-equivalent, then

f and g : (Rk, 0) −→ (R, 0)

are R-equivalent, where f(q, t) = f(q)− t and g(q, t) = g(q)− t.

Proof. By the definition of S.P -K-equivalence, there exist a diffeomorphism germ of

Φ : (Rk × R, 0) −→ (Rk × R, 0)

of the form Φ(q, t) = (φ(q, t), t) and a non-zero function germ λ : (Rk × R, 0) −→ R such that
f = λ · g ◦ Φ. Then the diffeomorphism Φ preserves the zero-level set of f and g, that is,

Φ(f
−1

(0)) = g−1(0). Since the zero-level set of f is the graph of f and the form of Φ, we
have f = g ◦ ψ, where ψ(q) = φ(q, f(q)). It is easy to show that ψ : (Rk, 0) −→ (Rk, 0) is a
diffeomorphism germ. Hence f and g are R-equivalent. 2

Proof of Proposition 4.10. By the assertion (1) of Theorem 3.5, F and G are stably s-S.P+-
K-equivalent. It follows that f and g are stably S.P -K-equivalent. By Lemma 4.11, f and g are
stably R-equivalent. By the uniqueness of the infinitesimally R+-versal unfolding (cf., [6]), F
and G are stably P -R+-equivalent. 2

By definition, the set of Legendrian singular points of a graph-like Legendrian unfolding
LF (C(F )) coincides with the set of singular points of π ◦ L(F ). Therefore the singularities
of graph-like wave fronts of LF (C(F )) lie on the caustic of L(F ). Moreover, if Lagrangian
submanifold germ L(F )(C(F )) is Lagrangian stable, then the regular set of π ◦ LF (C(F )) is
dense. Hence we can apply Proposition 3.1 to our situation and obtain the following theorem as
a corollary of Propositions 4.8 and 4.10.

Theorem 4.12 ([26]). Suppose that L(F )(C(F )) and L(G)(C(G)) are Lagrangian stable. Then
Lagrangian submanifold germs L(F )(C(F )) and L(G)(C(G)) are Lagrangian equivalent if and
only if graph-like wave fronts W (LF ) and W (LG) are S.P+-diffeomorphic.

Moreover, we have the following theorem.

Theorem 4.13 ([27]). Suppose that F(q, x, t) = λ(q, x, t)〈F (q, x) − t〉 is a graph-like Morse
family of hypersurfaces. Then LF (Σ∗(F)) is S.P+-Legendrian stable if and only if L(F )(C(F ))
is Lagrangian stable.

Proof. By Proposition 4.8, if L(F )(C(F )) is Lagrangian stable, then LF (Σ∗(F)) is S.P+-
Legendrian stable. For the converse, suppose that LF (C(F )) is a S.P+-Legendre stable. By the
assertion (2) of Theorem 3.5, we have

dimR
Ek+1

〈 ∂f∂q1 (q), . . . , ∂f∂qk (q), f(q)− t〉Ek+1
+ 〈1〉R

<∞.

It follows that dimREk/〈 ∂f∂q1 (q), . . . , ∂f∂qk (q), f(q)〉Ek < ∞, namely, f is a K-finitely determined

(see the definition [9, 29]). It is a well-known that f is K-finitely determined if and only if f is
R+-finitely determined, see [9]. Under the condition that f is R+-finitely determined, F is an
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infinitesimally R+-versal deformation of f if and only if F is an R+-transversal deformation of
f , namely, there exists a number ` ∈ N such that

Ek = Jf +

〈
∂F

∂x1
|Rk×{0}, . . . ,

∂F

∂xn
|Rk×{0}

〉
R

+ 〈1〉R +M`+1
k .(1)

Hence, it is enough to show the equality (1). Let g(q) ∈ Ek. Since g(q) ∈ Ek+1, there exist
λi(q, t), µ(q, t) ∈ Ek+1 (i = 1, . . . , k) and c, cj ∈ R (j = 1, . . . , n) such that

g(q) =

k∑
i=1

λi(q, t)
∂f

∂qi
(q) + µ(q, t)(f(q)− t) + c+

n∑
j=1

cj
∂F

∂xj
(q, 0).(2)

Differentiating the equality (2) with respect to t, we have

0 =

k∑
i=1

∂λi
∂t

(q, t)
∂f

∂qi
(q) +

∂µ

∂t
(q, t)(f(q)− t)− µ(q, t).(3)

We put t = 0 in (3), 0 =
∑k
i=1(∂λi/∂t)(q, 0)(∂f/∂qi)(q) + (∂µ/∂t)(q, 0)f(q) − µ(q, 0). Also we

put t = 0 in (2), then

g(q) =

k∑
i=1

λi(q, 0)
∂f

∂qi
(q) + µ(q, 0)f(q) + c+

n∑
j=1

cj
∂F

∂xj
(q, 0)

=

k∑
i=1

αi(q)
∂f

∂qi
(q) +

∂µ

∂t
(q, 0)f2(q) + c+

n∑
j=1

cj
∂F

∂xj
(q, 0),(4)

for some αi ∈ Ek, i = 1 . . . , k. Again differentiating (3) with respect to t and put t = 0, then

0 =

k∑
i=1

∂2λi
∂t2

(q, 0)
∂f

∂qi
(q) +

∂2µ

∂t2
(q, 0)f(q)− 2

∂µ

∂t
(q, 0).

Hence (4) is equal to

k∑
i=1

βi(q)
∂f

∂qi
(q) +

1

2

∂2µ

∂t2
(q, 0)f3(q) + c+

n∑
j=1

cj
∂F

∂xj
(q, 0),

for some βi ∈ Ek, i = 1, . . . , k. Inductively, we take `-times differentiate (3) with respect to t and
put t = 0, then we have

g(q) =

k∑
i=1

γi(q)
∂f

∂qi
(q) +

1

`!

∂`µ

∂t`
(q, 0)f `+1(q) + c+

n∑
j=1

cj
∂F

∂xj
(q, 0),

for some γi ∈ Ek, i = 1, . . . , k. It follows that g(q) is contained in the right hand of (1). This
completes the proof. 2

One of the consequences of the above arguments is the following theorem on the relation
among graph-like Legendrian unfoldings and Lagrangian singularities.

Theorem 4.14. Let F : (Rk × Rn × R, 0) −→ (R, 0) and G : (Rk′ × Rn × R, 0) −→ (R, 0) be
graph-like Morse families of hypersurfaces of the forms F(q, x, t) = λ(q, x, t)(F (q, x) − t) and
G(q′, x, t) = µ(q′, x, t)(G(q′, x) − t) such that LF (Σ∗(F)) and LG(Σ∗(G)) are S.P+-Legendrian
stable. Then the following conditions are equivalent:
(1) LF (Σ∗(F)) and LG(Σ∗(G)) are S.P+-Legendrian equivalent,
(2) F and G are stably s-S.P+-K-equivalent,
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(3) f(q, t) = F (q, 0)− t and g(q′, t) = G(q′, 0)− t are stably S.P -K-equivalent,
(4) f(q) = F (q, 0) and g(q′) = G(q′, 0) are stably R-equivalent,
(5) F (q, x) and G(q′, x) are stably P -R+-equivalent,
(6) L(F )(C(F )) and L(G)(C(G)) are Lagrangian equivalent,
(7) W (LF (Σ∗(F))) and W (LG(Σ∗(G))) are S.P+-diffeomorphic.

Proof. By the assertion (1) of Theorem 3.5, the conditions (1) and (2) are equivalent. By
definition, the condition (2) implies the condition (3), the condition (4) implies (3) and the con-
dition (5) implies (4), respectively. By Lemma 4.11, the condition (3) implies the condition (4).
By Theorem 2.1, the conditions (5) and (6) are equivalent. It also follows from the definition
that the condition (1) implies (7). We remark that all these assertions hold without the as-
sumptions of the S.P+-Legendrian stability. Generically, the condition (7) implies the condition
(1) by Proposition 3.1. Of course, the assertion of Theorem 4.12 holds under the assumption
of S.P+-Legendrian stability. By the assumption of S.P+-Legendrian stability, the graph-like
Morse families of hypersurface F and G are infinitesimally S.P+-K-versal deformations of f and
g, respectively (cf., Theorem 3.5, (2)). By the uniqueness result for infinitesimally S.P+-K-
versal deformations, the condition (3) implies the condition (2). Moreover, by Theorem 4.13,
L(F )(C(F )) and L(G)(C(G)) are Lagrangian stable. This means that F and G are infinitesi-
mally R+-versal deformations of f and g, respectively. Therefore by the uniqueness results for
infinitesimally R+-versal deformations, the condition (4) implies the condition (5). This com-
pletes the proof. 2

Remark 4.15. (1) By Theorem 4.13, the assumption of the above theorem is equivalent to the
condition that L(F )(C(F )) and L(G)(C(G)) are Lagrangian stable.
(2) If k = k′ and q = q′ in the above theorem, we can remove the word “stably” in the conditions
(2),(3),(4) and (5).
(3) The S.P+-Legendrian stability of LF (Σ∗(F)) is a generic condition for n ≤ 5.
(4) By the remark in the proof of the above theorem, the conditions (1) and (7) are equiva-
lent generically for an arbitrary dimension n without the assumption on the S.P+-Legendrian
stability. Therefore, the conditions (1),(2) and (7) are all equivalent to each other as before.
Lagrangian equivalence (i.e., the conditions (5) and (6)) is a stronger condition than others as
before.

5. Applications

In this section we explain some applications of the theory of wave front propagations.

5.1. Completely integrable first order ordinary differential equations. In this subsec-
tion we consider implicit first order ordinary differential equations. There are classically written
as F (x, y, dy/dx) = 0. However, if we set p = dy/dx, then we have a surface in the 1-jet space
J1(R,R) defined by F (x, y, p) = 0, where we have the canonical contact form θ = dy − pdx.
Generically, we may assume that the surface is regular, then it has a local parametrization, so
that it is the image of an immersion at least locally. An ordinary differential equation germ
(briefly, an ODE) is defined to be an immersion germ f : (R2, 0) −→ J1(R,R). We say that
an ODE f : (R2, 0) −→ J1(R,R) is completely integrable if there exists a submersion germ
µ : (R2, 0) −→ (R, 0) such that f∗θ ∈ 〈dµ〉E2 . It follows that there exists a unique h ∈ E2 such
that f∗θ = hdµ. In this case we call µ a complete integral of f. In [12] a generic classification
has been considered of completely integrable first order ODEs by point transformations. Let
f, g : (R2, 0) −→ J1(R,R) ⊂ PT ∗(R × R) be ODEs. We say that f, g are equivalent as ODEs
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if there exist diffeomorphism germs ψ : (R2, 0) −→ (R2, 0) and Φ : (R × R, 0) −→ (R × R, 0)

such that Φ̂ ◦ f = g ◦ ψ. Here Φ̂ is the unique contact lift of Φ. The diffeomorphism germ
Φ : (R × R, 0) −→ (R × R, 0) is traditionally called a point transformation. We represent f by
the canonical coordinates of J1(R,R) by f(u1, u2) = (x(u1, u2), y(u1, u2), p(u1, u2)). If we have
a complete integral µ : (R2, 0) −→ R of f , we define an immersion germ

`(µ,f) : (R2, 0) −→ J1(R× R,R)

by

`(µ,f)(u1, u2) = (µ(u1, u2), x(u1, u2), y(u1, u2), h(u1, u2), p(u1, u2)).

Then we have `∗(µ,f)Θ = 0, for Θ = dy−pdx− qdt, where (t, x, y, q, p) is the canonical coordinate

of J1(R× R,R).
Therefore, the image of `(µ,f) is a big Legendrian submanifold germ of J1(R×R,R). Here, we

consider the parameter t as the time-parameter. Since the contact structure is defined by the
contact form Θ = dy − pdx− qdt, J1(R×R,R) is of course an affine coordinate neighbourhood
of PT ∗(R×R×R) but it is not equal to J1

AG(R×R,R) ⊂ PT ∗(R×R×R). The above notation
induces a divergent diagram of map germs as follows:

R
π1◦π◦`(µ,f)←− (R2, 0)

π2◦π◦`(µ,f)−→ (R× R, 0),

where π : J1(R × R,R) −→ R × R × R is π(t, x, y, q, p) = (t, x, y), π1 : (R × R × R, 0) −→ R
is π1(t, x, y) = t and π2 : (R × R × R, 0) −→ R × R is π2(t, x, y) = (x, y). Actually, we have
π1◦π◦`(µ,f) = µ and π2◦π◦`(µ,f) = π̂◦f , where π̂ : J1(R,R) −→ R×R is the canonical projection
π̂(x, y, p) = (x, y). The space of completely integrable ODEs is identified with the space of big
Legendrian submanifold such that the restrictions of the π1 ◦ π-projection are non-singular. For
a divergent diagram

R µ←− (R2, 0)
g−→ (R× R, 0),

we say that (µ, g) is an integral diagram if there exist an immersion germ f : (R2, 0) −→ J1(R,R)
and a submersion germ µ : (R2, 0) −→ R such that g = π̂ ◦ f. Therefore we can apply the theory
of big wave fronts. In [12] the following proposition was shown.

Proposition 5.1 ([12]). Let fi (i = 1, 2) be completely integrable first order ODEs with the
integrals µi and the corresponding integral diagrams are (µi, gi). Suppose that sets of Legen-
drian singular points of `(µi,fi) (i = 1, 2) are nowhere dense. Then the following conditions are
equivalent:
(1) f1, f2 are equivalent as ODEs.
(2) There exists a diffeomorphism germ Φ : (R × R × R, 0) −→ (R × R × R, 0) of the form

Φ(t, x, y) = (φ1(t), φ2(x, y), φ3(x, y)) such that Φ̂(Image `(µ1,f1)) = Image `(µ2,f2).

(3) There exist diffeomorphism germs φ : (R, 0) −→ (R, 0), Φ : (R2, 0) −→ (R2, 0), and

Ψ : (R× R, 0) −→ (R× R, 0)

such that φ ◦ µ1 = µ2 ◦ Φ and Ψ ◦ g1 = g2 ◦ Φ.

We say that two integral diagrams (µ1, g1) and (µ2, g2) are equivalent as integral diagrams if
the condition (3) of the above theorem holds. By Remark 3.7, the classification by the above
equivalence is almost impossible. We also say that integral diagrams (µ1, g1) and (µ2, g2) are
strictly equivalent if the condition (3) of the above theorem holds for φ = 1R. The strict equiv-
alence corresponds to the S.P -Legendrian equivalence among the big Legendrian submanifold
germs `(µ,f). Instead of the above equivalence relation, S.P -Legendrian equivalence was used for
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classification in [12]. The technique used there was very hard. In [15], S.P+-Legendrian equiv-
alence was used. If we have a classification of `(µ,f) under the S.P+-Legendrian equivalence, we
can automatically obtain the classification of integral diagrams by strict equivalence.

Theorem 5.2 ([12, 15]). For a “generic”first order ODE f : (R2, 0) −→ J1(R,R) with a
complete integral µ : (R2, 0) −→ R, the corresponding integral diagram (µ, g) is strictly equivalent
to one of the germs in the following list:

(1) µ = u2, g = (u1, u2),

(2) µ =
2

3
u3

1 + u2, g = (u2
1, u2),

(3) µ = u2 −
1

2
u1, g = (u1, u

2
2),

(4) µ =
3

4
u4

1 +
1

2
u2

1u2 + u2 + α ◦ g, g = (u3
1 + u2u1, u2),

(5) µ = u2 + α ◦ g, g = (u1, u
3
2 + u1u2),

(6) µ = −3u2
2 + 4u1u2 + u1 + α ◦ g, g = (u1, u

3
2 + u1u

2
2).

Here, α(v1, v2) are C∞-function germs, which are called functional modulus.

Remark 5.3. The results has been generalized into the case for completely integrable holonomic
systems of first order partial differential equations [15, 21].

In the list of the above theorem, the normal forms (3), (5) are said to be of Clairaut type.
The complete solutions for those equations are non-singular and the singular solutions are the
envelopes of the graph of complete solutions. We say that a complete integrable first order
ODE f : (R2, 0) −→ J1(R,R) with an integral µ : (R2, 0) −→ R is Clairaut type if π̂ ◦ f |µ−1(t)

is non-singular for any t ∈ R. Then π ◦ `(µ,f) is also non-singular. In this case the discrim-

inant of the family {Wt(`(µ,f)(R2))}t∈(R,0) is equal to the envelope of the family of momen-
tary fronts ∆`(µ,f)(R2). Here, the momentary front is a special solution of the complete solution

{π̂ ◦ f(µ−1(t))}t∈R. This means that `(µ,f)(R2) ∩ J1
GA(R× R,R) = ∅.

On the other hand, the normal forms (2), (4) are said to be of regular type. In those cases
f∗θ 6= 0 and we have `(µ,f)(R2) ⊂ J1

GA(R×R,R). Therefore, `(µ,f)(R2) is a graph-like Legendrian

unfolding, so that the discriminant of the family {Wt(`(µ,f)(R2))}t∈(R,0) is C`(µ,f)(R2)∪M`(µ,f)(R2).

Finally the normal form (6) is as before a mixed hold type. In this case, `(µ,f)(R2) ⊂ J1(R×R,R)

but `(µ,f)(R2) 6⊂ J1
GA(R × R,R). Actually, `(µ,f)(0) ∈ J1

GA(R× R,R), where X is the closure
of X. The pictures of the families of momentary fronts of (4), (5), (6) are drawn in Figures
5, 6 and 7. We can observe that the discriminants of the families {Wt(`(µ,f)(R2))}t∈(R,0) are
C`(µ,f)(R2) ∪M`(µ,f)(R2) for (4), ∆`(µ,f)(R2) for (5) and C`(µ,f)(R2) ∪∆`(µ,f)(R2) for (6), respectively.

Moreover, the C`(µ,f)(R2) of the germ (4) and ∆`(µ,f)(R2) of the germ (5) are semi-cubical parabo-

las. Therefore, these are diffeomorphic but their discriminants are not S.P+-diffeomorphic.

5.2. Quasi-linear first order partial differential equations. We consider a time-dependent
quasi-linear first order partial differential equation

∂y

∂t
+

n∑
i=1

ai(x, y, t)
∂y

∂xi
− b(x, y, t) = 0,

where ai(x, y, t) and b(x, y, t) are C∞-function of (x, y, t) = (x1, . . . , xn, y, t). In order to clarify
the situation in which there appeared a blow-up of the derivatives of solutions, we constructed
a geometric framework of the equation in [20]. A time-dependent quasi-linear first order partial
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Fig.5: (4) Regular cusp Fig.6: (5) Clairaut cusp Fig.7: (6) Mixed fold

differential equation is defined by a hypersurface in PT ∗((Rn × R)× R):

E(1, a1, . . . , an, b) = {(x, y, t), [ξ : η : σ]) | σ +

n∑
i=1

ai(x, y, t)ξi + b(x, y, t)η = 0 }.

A geometric solution of E(1, a1, . . . , an, b) is a Legendrian submanifold L of PT ∗((Rn×R)×R)
lying in E(1, a1, . . . , an, b) such that π|L is an embedding, where

π : PT ∗((Rn × R)× R) −→ (Rn × R)× R
is the canonical projection. Let S be a smooth hypersurface in (Rn × R) × R . Then we have

a unique Legendrian submanifold Ŝ in PT ∗((Rn × R) × R) such that π(Ŝ) = S. It follows that

if L is a geometric solution of E(1, a1, . . . , an, b), then L = π̂(L ). For any (x0, y0, t0) ∈ S,
there exists a smooth submersion germ f : ((Rn × R) × R, (x0, y0, t0)) −→ (R, 0) such that
(f−1(0), (x0, y0, t0)) = (S, (x0, y0, t0)) as set germs. A vector τ∂/∂t+

∑n
i=1 µi∂/∂xi + λ∂/∂y is

tangent to S at (x, y, t) ∈ (S, (x0, y0, t0)) if and only if τ∂f/∂t+
∑n
i=1 µi∂f/∂xi + λ∂f/∂y = 0

at (x, y, t). Then we have the following representation of Ŝ :

(Ŝ, ((x0, y0, t0), [σ0 : ξ0 : η0])) =

{(
(x, y, t),

[
∂f

∂x
:
∂f

∂y
:
∂f

∂t

])∣∣∣(x, y, t) ∈ (S, (x0, y0, t0))

}
.

Under this representation, Ŝ ⊂ E(1, a1, . . . , an, b) if and only if

∂f

∂t
+

n∑
i=1

ai(x, y, t)
∂f

∂xi
+ b(x, y, t)

∂f

∂y
= 0.

Here, the characteristic vector field of E(1, a1, . . . , an, b) is defined to be

X(1, a1, . . . , an, b) =
∂

∂t
+

n∑
i=1

ai(x, y, t)
∂

∂xi
+ b(x, y, t)

∂

∂y
.

In [20] a characterization theorem of geometric solutions was proved.

Theorem 5.4 ([20]). Let S be a smooth hypersurface in (Rn × R)× R. Then Ŝ is a geometric
solution of E(1, a1, . . . , an, b) if and only if the characteristic vector field X(1, a1, . . . , an, b) is
tangent to S.

Remark 5.5. We consider the Cauchy problem here:

∂y

∂t
+

n∑
i=1

ai(x, y, t)
∂y

∂xi
− b(x, y, t) = 0,

y(0, x1, . . . , xn) = φ(x1, . . . , xn),
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where φ is a C∞-function. By Theorem 5.4, applying the classical method of characteristics,
we can solve the above Cauchy problem. Although y is initially smooth, there is, in general, a
critical time beyond which characteristics cross. After the characteristics cross, the geometric
solution becomes multi-valued. Since the characteristic vector field X(1, a1, . . . , an, b) is a vector
field on the space (Rn ×R)×R, the graph of the geometric solution π(L ) ⊂ (Rn ×R)×R is a
smooth hypersurface. In general, however, π̂2|π(L ) is a finite-to-one mapping, where

π̂2 : (Rn × R)× R −→ Rn × R

is π̂2(x, y, t) = (x, t).

The geometric solution L is a big Legendrian submanifold and it is Legendrian non-singular.
Therefore, the discriminant of the family of the momentary fronts {Wt(L )}t∈R is ∆L . We
consider the following example:

∂y

∂t
+ 2y

∂y

∂x
= 0,

y(0, x) = sinx,

This equation is called Burger’s equation and can be solved exactly by the method of charac-
teristics. We can draw the picture of the graph of the geometric solution and the family of
π−1

2 (t) ∩W (L ) in Fig.8. We can observe that the graph is a smooth surface in (R × R) × R
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but it is multi-valued. Moreover, each π−1
2 (t) ∩W (L ) is non-singular but π̂2|π−1

2 (t)∩W (L ) has

singularities. Thus, W (L ) is a big wave front but not a graph-like wave front.

5.3. Parallels and Caustics of hypersurfaces in Euclidean space. In this subsection we
respectively interpret the focal set (i.e., the evolute) of a hypersurface as the caustic and the
parallels of a hypersurface as the graph-like momentary fronts by using the distance-squared
functions (cf. [16, 32]).

LetX : U −→ Rn be an embedding, where U is an open subset in Rn−1. We write M = X(U)
and identify M and U via the embedding X. The Gauss map G : U −→ Sn−1 is defined
by G(u) = n(u), where n(u) is the unit normal vector of M at X(u). For a hypersurface
X : U −→ Rn, we define the focal set (or, evolute) of X(U) = M by

FM =

n⋃
i=1

{
X(u) +

1

κi(u)
n(u) | κi(u) is a principal curvature at p = X(u), u ∈ U

}



THE THEORY OF GRAPH-LIKE LEGENDRIAN UNFOLDINGS AND ITS APPLICATIONS 73

and the set of unfolded parallels of X(U) = M by

PM = {(X(u) + rn(u), r) | r ∈ R \ {0}, u ∈ U} ,

respectively. We also define the smooth mapping Fκi : U −→ Rn and Pr : U −→ Rn by

Fκi(u) = X(u) +
1

κi(u)
n(u), Pr(u) = X(u) + rn(u),

where we fix a principal curvature κi(u) on U with κi(u) 6= 0 and a real number r 6= 0.
We now define families of functions in order to describe the focal set and the parallels of a

hypersurface in Rn. We define

D : U × (Rn \M) −→ R
by D(u,v) = ‖X(u)− v‖2 and

D : U × (Rn \M)× R+ −→ R

by D(u,v, t) = ‖X(u)−v‖2−t, where we denote that R+ is the set of positive real numbers. We
call D a distance-squared function and D an extended distance-squared function on M = X(U).
Denote that the function dv and dv by dv(u) = D(u,v) and dv(u, t) = D(u,v, t) respectively.

By a straightforward calculation (cf., [16]), we have the following proposition:

Proposition 5.6. Let X : U −→ Rn be a hypersurface. Then
(1) (∂dv/∂ui)(u) = 0 (i = 1, . . . , n − 1) if and only if there exists a real number r ∈ R \ {0}

such that v = X(u) + rn(u).
(2) (∂dv/∂ui)(u) = 0 (i = 1, . . . , n− 1) and det(H(dv)(u)) = 0 if and only if

v = X(u) + (1/κ(u))n(u).

(3) dv(u, t) = (∂dv/∂ui)(u, t) = 0 (i = 1, . . . , n− 1) if and only if v = X(u)±
√
tn(u).

Here, H(dv)(u) is the hessian matrix of the function dv at u.

As a consequence of Proposition 5.6, we have the following:

C(D) = {(u,v) ∈ U × (Rn \M) | v = X(u) + rn(u), r ∈ R \ {0}} ,

Σ∗(D) =
{

(u,v, t) ∈ U × (Rn \M)× R+ | v = X(u)±
√
tn(u), u ∈ U

}
.

We can naturally interpret the focal set of a hypersurface as a caustic. Moreover, the parallels
of a hypersurface are given as a graph-like wave front (the momentary fronts).

Proposition 5.7. For a hypersurface X : U −→ Rn, the distance-squared function

D : U × (Rn \M) −→ R

is a Morse family of functions and the extended distance-squared function

D : U × (Rn \M)× R+ −→ R

is a non-degenerate graph-like Morse family of hypersurfaces.

Proof. By Proposition 4.5, it is enough to show that D is a Morse family of hypersurfaces. For
any v = (v1, . . . , vn) ∈ Rn \M , we have D(u,v) =

∑n
i=1(xi(u)− vi)2, where

X(u) = (x1(u), . . . , xn(u)).

We shall prove that the mapping

∆∗D =

(
D,

∂D

∂u1
, . . . ,

∂D

∂un−1

)
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is a non-singular at any point. The Jacobian matrix of ∆∗D is given by
A1(u) · · · An−1(u) −2(x1(u)− v1) · · · −2(xn−1 − vn−1)
A11(u) · · · A1(n−1)(u) −2x1u1(u) · · · −2xnu1(u)

...
. . .

...
...

. . .
...

A(n−1)1(u) · · · A(n−1)(n−1) −2x1un−1(u) · · · −2xnun−1(u)

 ,

where Ai(u) = 〈2Xui(u),X(u)−v〉, Aij(u) = 2(〈Xuiuj (u),X(u)−v〉+ 〈Xui(u),Xuj (u)〉) and
〈, 〉 is the inner product of Rn.

Suppose that (u,v, t0) ∈ Σ∗(D). Then we have v = X(u)±
√
t0n(u). Therefore, we have

J∆∗D(u,v, t0) =

(
0 ∓2

√
t0n(u)

Aij(u) −2Xui(u)

)
.

Since n(u),Xu1
(u), . . . ,Xun−1

(u) are linearly independent, the rank of J∆∗D(u,v, t0) is n. This
means that D is a Morse family of hypersurfaces. 2

By the method for constructing a Lagrangian submanifold germ from a Morse family of
functions (cf. §2), we can define a Lagrangian submanifold germ whose generating family is the
distance-squared function D of M = X(U) as follows: For a hypersurface X : U −→ Rn where
X(u) = (x1(u), . . . , xn(u)), we define

L(D) : C(D) −→ T ∗Rn

by

L(D)(u,v) = (v,−2(x1(u)− v1), . . . ,−2(xn(u)− vn)),

where v = (v1, . . . , vn).
On the other hand, by the method for constructing the graph-like Legendrian unfolding from

a graph-like Morse family of hypersurfaces (cf. §4), we can define a graph-like Legendrian
unfolding whose generating family is the extended distance-squared function D of M = X(U).
For a hypersurface X : U −→ Rn where X(u) = (x1(u), . . . , xn(u)), we define

LD : C(D) −→ J1
GA(Rn,R)

by

LD(u,v) = (v, ‖X(u)− v‖2,−2(x1(u)− v1), . . . ,−2(xn(u)− vn)),

where v = (v1, . . . , vn).

Corollary 5.8. Using the above notation, L(D)(C(D)) is a Lagrangian submanifold such that
the distance-squared function D is the generating family of L(D)(C(D)) and LD(C(D)) is a
non-degenerate graph-like Legendrian unfolding such that the extended distance-squared function
D is the graph-like generating family of LD(C(D)).

By Proposition 5.6, the caustic CL(D)(C(D)) of L(D)(C(D)) is the focal set FM and the graph-
like wave front W (LD(C(D))) is the set of unfolded parallels PM .

We now briefly describe the theory of contact with foliations. Here we consider the relationship
between the contact of submanifolds with foliations and the R+-class of functions.

Let Xi (i = 1, 2) be submanifolds of Rn with dimX1 = dimX2, gi : (Xi, x̄i) −→ (Rn, ȳi)
be immersion germs and fi : (Rn, ȳi) −→ (R, 0) be submersion germs. For a submersion germ
f : (Rn, 0) −→ (R, 0), we have the regular foliation Ff defined by f ; i.e.,

Ff = {f−1(c)|c ∈ (R, 0)}.



THE THEORY OF GRAPH-LIKE LEGENDRIAN UNFOLDINGS AND ITS APPLICATIONS 75

We say that the contact of X1 with the regular foliation Ff1 at ȳ1 is of the same type as the
contact of X2 with the regular foliation Ff2 at ȳ2 if there is a diffeomorphism germ

Φ : (Rn, ȳ1) −→ (Rn, ȳ2)

such that Φ(X1) = X2 and Φ(Y1(c)) = Y2(c), where Yi(c) = f−1
i (c) for each c ∈ (R, 0). In this

case we write K(X1,Ff1 ; ȳ1) = K(X2,Ff2 ; ȳ2). We apply the method of Goryunov[10] to the
case for R+-equivalences among function germs. Then we have the following proposition:

Proposition 5.9. ([10, Appendix]) Let Xi (i = 1, 2) be submanifolds of Rn with

dimX1 = dimX2 = n− 1

(i.e. hypersurfaces), gi : (Xi, x̄i) −→ (Rn, ȳi) be immersion germs and fi : (Rn, ȳi) −→ (R, 0) be
submersion germs. Then K(X1,Ff1 ; ȳ1) = K(X2,Ff2 ; ȳ2) if and only if f1 ◦ g1 and f2 ◦ g2 are
R+-equivalent.

On the other hand, we define a function D : Rn × Rn −→ R by D(x,v) = ‖x− v‖2. For any
v ∈ Rn \M , we write dv(x) = D(x,v) and we have a hypersphere dv

−1(c) = Sn−1(v,
√
c) for

any c > 0. It is easy to show that dv is a submersion.
For any u ∈ U , we consider v± = X(u)±

√
cn(u) ∈ Rn \M . Then we have

dv± ◦X(u) = D ◦ (X × idRn)(u,v±) = c,

and
∂dv± ◦X

∂ui
(u) =

∂D

∂ui
(u,v±) = 0.

for i = 1, . . . , n − 1. This means that the hyperspheres d−1
v±(r) = Sn−1(v±,

√
c) are tangent to

M = X(U) at p = X(u). In this case, we call each one of Sn−1(v±,
√
c) a tangent hypersphere

at p = X(u) with the center v±. However, there are infinitely many tangent hyperspheres at
a general point p = X(u) depending on the real number c. If v is a point of the focal set
(i.e., v = Fκ(u) for some κ), the tangent hypersphere with the center v is called the osculating
hypersphere (or, curvature hypersphere) at p = X(u) which is uniquely determined.

For v± = X(u)±
√
cn(u), we also have regular foliations

Fdv±
=
{
Sn−1(v±,

√
t)
∣∣∣ t ∈ (R, c)

}
whose leaves are hyperspheres with the center v± such that the case t = c corresponds to
the tangent hypersphere with radius |c|. Moreover, if v = Fκ(u), then Sn−1(v, 1/κ(u)) is the
osculating hypersphere. In this case (X−1(Fdv ), u) is a singular foliation germ at u which is
called an osculating hyperspherical foliation of M = X(U) at p = X(u) (or, u). We denote it
by OF(M,u). Moreover, if v ∈ MLD(C(D)), then there exists r0 ∈ R \ {0} such that (v, r0) is a
self-intersection point of PM , so that there exist different u, v ∈ U such that

v = X(u) + r0n(u) = X(v) + r0n(v).

Therefore, the hypersphere Sn−1(v, |r0|) is tangent to M = X(U) at both the points p = X(u)
and q = X(v). Then we have an interpretation of the geometric meanings of the Maxwell
stratified set in this case:

MLD(C(D)) = {v | ∃r0 ∈ R \ {0}, Sn−1(v, |r0|) is tangent to M at least two different points}.
Therefore, we call the Maxwell stratified set MLD(C(D)) the set of the centers of multiple tangent
spheres of M.

We consider the contact of hypersurfaces with families of hyperspheres. Let

Xi : (U, ūi) −→ (Rn, pi), (i = 1, 2)
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be hypersurface germs. We consider distance-squared functions Di : (U × Rn, (ūi,vi)) −→ R of
Mi = Xi(U), where vi = Evκi(ūi). We write di,vi(u) = Di(u,vi), then we have

di,vi(u) = dvi ◦Xi(u).

Then we have the following theorem:

Theorem 5.10. Let Xi : (U, ūi) −→ Rn, pi) (i = 1, 2) be hypersurface germs such that the
corresponding graph-like Legendrian unfolding germs LDi(C(Di)) are S.P+-Legendrian stable
(i.e., the corresponding Lagrangian submanifold germs L(Di)(C(Di)) are Lagrangian stable),
where vi = Evκi(ūi) are centers of the osculating hyperspheres of Mi = Xi(U) respectively.
Then the following conditions are equivalent:
(1) LD1

(C(Di)) and LDi(C(D2)) are S.P+-Legendrian equivalent,
(2) D1 and D2 are s-S.P+-K-equivalent,
(3) d1,v1

and d1,v2
are S.P -K-equivalent,

(4) d1,v1
and d2,v2

are R-equivalent,
(5) K(M1,Fdv1

; p1) = K(M2,Fdv2
; p2),

(6) D1 and D2 are P -R+-equivalent,
(7) L(D1)(C(D1)) and L(D2)(C(D2)) are Lagrangian equivalent,
(8) PM1 and PM2 are S.P+-diffeomorphic.

Proof. By Theorem 5.9, the conditions (4) and (5) are equivalent. By the assertion (3) of
Proposition 5.6, we have W (LDi(C(Di)) = PMi

. Thus, the other conditions are equivalent to
each other by Theorem 4.4. 2

We remark that if L(D1) and L(D2) are Lagrangian equivalent, then the corresponding caus-
tics are diffeomorphic. Since the caustic of L(D) is the focal set of a hypersurface M = X(U),
the above theorem gives a symplectic interpretation for the contact of hypersurfaces with family
of hyperspheres. Moreover, the S.P+-diffeomorphism between the graph-like wave front sets
sends the Maxwell stratified sets to each other. Therefore, we have the following corollary.

Corollary 5.11. Under the same assumptions as those of the above theorem for hypersurface
germs Xi : (U, ūi) −→ (Rn, pi) (i = 1, 2), we have the following: If one of the conditions of the
above theorem is satisfied, then

(1) The focal sets FM1
and FM2

are diffeomorphic as set germs.
(2) The osculating hyperspherical foliation germs OF(M1, ū1), OF(M2, ū2) are diffeomorphic.
(3) The sets of the centers of multiple tangent spheres of M1 and M2 are diffeomorphic as set

germs.

5.4. Caustics of world sheets. Recently the author has discovered an application of the theory
of graph-like Legendrian unfoldings to the caustics of world sheets in Lorentz space forms. In
the theory of relativity, we do not have the notion of time constant, so that everything that is
moving depends on the time. Therefore, we have to consider world sheets instead of spacelike
submanifolds. Let Ln+1

1 be an n + 1-dimensional Lorentz space form (i.e., Lorentz-Minkowski
space, de Sitter space or anti-de Sitter space). For basic concepts and properties of Lorentz
space forms, see [31]. We say that a non-zero vector x ∈ Ln+1

1 is spacelike, lightlike or timelike
if 〈x,x〉 > 0, 〈x,x〉 = 0 or 〈x,x〉 < 0, respectively. Here, 〈x,y〉 is the induced pseudo-scalar
product of Ln+1

1 . We only consider the local situation here. Let X : U × I −→ Ln+1
1 be a

timelike embedding of codimension k − 1, where U ⊂ Rs (s+ k = n+ 1) is an open subset and
I an open interval. We write W = X(U × I) and identify W and U × I via the embedding X.
Here, the embedding X is said to be timelike if the tangent space TpW of W at p = X(u, t)

is a timelike subspace (i.e., Lorentz subspace of TpLn+1
1 ) for any point p ∈ W . We write
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St = X(U × {t}) for each t ∈ I. We call FS = {St |t ∈ I} a spacelike foliation on W if St
is a spacelike submanifold for any t ∈ I. Here, we say that St is spacelike if the tangent space
TpSt consists only spacelike vectors (i.e., spacelike subspace) for any point p ∈ St. We call St a
momentary space of FS = {St |t ∈ I}. We say that W = X(U × I) (or, X itself) is a world
sheet if W is time-orientable. It follows that there exists a unique timelike future directed unit
normal vector field nT (u, t) along St on W (cf., [31]). This means that nT (u, t) ∈ TpW and

is pseudo-orthogonal to TpSt for p = X(u, t). Since TpW is a timelike subspace of TpLn+1
1 , the

pseudo-normal space Np(W ) of W is a k−1-dimensional spacelike subspace of TpLn+1
1 (cf.,[31]).

On the pseudo-normal space Np(W ), we have a (k − 2)-unit sphere

N1(W )p = {ξ ∈ Np(W ) | 〈ξ, ξ〉 = 1 }.

Therefore, we have a unit spherical normal bundle over W :

N1(W ) =
⋃
p∈W

N1(W )p.

For an each momentary space St, we have a unit spherical normal bundle N1[St] = N1(W )|St
over St. Then we define a hypersurface LHSt : N1[St]× R −→ Ln+1

1 by

LHSt(((u, t), ξ), µ) = X(u, t) + µ(nT (u, t) + ξ),

where p = X(u, t), which is called the lightlike hypersurface in the Lorentz space form Ln+1
1

along St. The lightlike hypersurface of a spacelike submanifold in a Lorentz space form has been
defined and investigated in [25, 23, 24]. The set of singular values of the lightlike hypersurface
is called a focal set of St. We remark that the situation is different from the Riemannian case.
The lightlike hypersurface is a wave front in Ln+1

1 , so that the focal set is the set of Legendrian
singular values. In the Riemannian case, the focal set is the set of Lagrangian singular values.
In the Lorentzian case, we consider world sheets instead of a single spacelike submanifold. Since
a world sheet is a one-parameter family of spacelike submanifolds, we can naturally apply the
theory of wave front propagations. We define

L̃H(W ) =
⋃
t∈I

LHSt(N1[St]× R)× {t} ⊂ Ln+1
1 × I,

which is called a unfolded lightlike hypersurface. In [14] we show that the unfolded lightlike
hypersurface is a graph-like wave front and each lightlike hypersurface is a momentary front for
the case that Ln+1

1 is the anti-de Sitter space. One of the motivations for investigating this case
is given in the brane world scenario (cf., [5, 4]). There, lightlike hypersurfaces and caustics along
world sheets have been considered in the simplest case. Since the unfolded lightlike hypersurface
is a graph-like Legendrian unfolding, we can investigate not only the caustic but also the Maxwell
stratified set as an application of the theory of Legendrian unfoldings. We can apply Theorem
4.1 to this case and get some geometric information on world sheets. We can also consider the
lightcone pedal of world sheets and investigate the geometric properties as an application of the
theory of graph-like unfoldings [22, 18].

5.5. Control theory. In [33, 37] Zakalyukin applied S.P+-Legendrian equivalence to the study
of problems which occur in the control theory. In [33] he has given the following simple example:
Consider a plane R2. For each point q = (q1, q2) ∈ R2, we consider an admissible curve on the
tangent plane R2 = TqR2 defined by p1 = 1 + u, p2 = u2 (u ∈ R), where (p1, p2) ∈ R2 is the
coordinates of R2 = TqR2. So this admissible curve is independent of the base point q ∈ R2. The
initial front is given by W0 = {(q1, f(q1)) | q1 ∈ R} for some function f(q1). According to the
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Pontryagin maximum principle, externals of the corresponding time optimal control problem are
defined by a canonical system of equations with the Hamiltonian

H(p, q) = max
u

(p1(1 + u) + p2u
2).

This system can be solved exactly and the corresponding family of fronts Wt are given paramet-
rically in the form Wt = Φt(W0):

Φt(q1, t) =

(
q1 + t

(
1 +

1

2

df

dq1

)
, f(q1) +

t

4

(
df

dq1

)2
)
.

Under the condition f ′(0) = 0 and f ′′(0) > 0, he has shown that the picture of the discriminant
set of the family {Wt}t∈I is the same as that of the discriminant set of the germ (6) of Theorem
5.2. He also applies S.P+-Legendrian equivalence to translation-invariant control problems in
[37].

The author is not a control theory specialist, so that he cannot explain the results in detail
here. However, it seems that there might be a lot of applications of the theory of wave front
propagations to this area. For the detailed arguments, see the original articles.
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Birkhäuser, 1986.
[4] R. Bousso, The holographic principle, REVIEWS OF MODERN PHYSICS 74 (2002), 825–874.

[5] R. Bousso and L Randall, Holographic domains of ant-de Sitter space, Journal of High Energy Physics,04

(2002), 057
[6] TH. Bröcker, Differentiable Germs and Catastrophes. London Mathematical Society Lecture Note Series

17, Cambridge University Press, 1975. DOI: 10.1103/RevModPhys.74.825
[7] J. W. Bruce, Wavefronts and parallels in Euclidean space. Math. Proc. Cambridge Philos. Soc. 93 (1983)

323–333 DOI: 10.1017/S030500410006062X

[8] J. Damon, The unfolding and determinacy theorems for subgroups of A and K. Memoirs of A.M.S. 50
No. 306, (1984)

[9] A. Dimca, Topics on real and complex singularities. Advanced Lectures in Mathematics (1987)

DOI: 10.1007/978-3-663-13903-4
[10] V. V. Goryunov, Projections of Generic Surfaces with Boundaries, Adv. Soviet Math., 1 (1990), 157–200

[11] V. Goryunov and V. M. Zakalyukin, Lagrangian and Legendrian Singularities. Real and Complex Singu-

larities, Trends in Mathematics, 169–185, Birkhäuger, 2006
[12] A. Hayakawa, G. Ishikawa, S.Izumiya and K. Yamaguchi, Classification of generic integral diagrams

and first order ordinary differential equations. International Journal of Mathematics, 5 (1994), 447–489.

DOI: 10.1142/S0129167X94000255
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