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GEOMETRY AND TOPOLOGY OF STRING JUNCTIONS

ANTONELLA GRASSI, JAMES HALVERSON, AND JULIUS L. SHANESON

Abstract. We study elliptic fibrations by analyzing suitable deformations of the fibrations

and vanishing cycles. We introduce geometric string junctions and describe some of their
properties. We show how the geometric string junctions manifest the structure of the Lie

algebra of the Dynkin diagrams associated to the singularities of the elliptic fibration. One
application in physics is in F-theory, where our novel approach connecting deformations and

Lie algebras describes the structure of generalized type IIB seven-branes and string junction

states which end on them.

1. Introduction

An elliptic fibration is a morphism π : X → B such that π−1(p) = Ep for a general point
p ∈ B is a smooth elliptic elliptic curve (a torus T 2); the discriminant locus is

Σ = {q ∈ B such that π−1(q) 6= T 2}.

In this paper we take X and B to be smooth; if π is also assumed to have a section σ, X
is the (smooth) resolution of the Weierstrass model W of the fibration [24] with Gorenstein
singularities. W is defined by the Weierstrass equation: y2z− (x3 + fxz2 + gz3) = 0, where f, g
are sections of appropriate bundles on B. If dimW = 2, the singularities are the rational double
points. It was noted by Du Val and Coxeter [8, 5] that rational double points are classified
by the Dynkin diagrams of the simply laced Lie algebras g of type an, dn, e6, e7, e8: in fact, the
dual diagram of the exceptional divisors in the minimal resolution is one of the above Dynkin
diagrams. In the case of higher dimensional elliptic fibrations also non simply-laced Dynkin
diagram can occur.

We study elliptic fibrations by analyzing suitable deformations of the fibrations; we introduce
“geometric string junctions”. String junctions were defined in the physics literature by DeWolfe,
Gaberdiel and Zwiebach [11, 6] as equivalence relations of closed paths in a punctured disc
C \Σ; the disc is the base of an elliptic fibration with discriminant locus Σ. The authors assign
composition rules and show that the junctions reflect the structure of exceptional gauge algebras
of the elliptic fibration. The gauge algebras which arise in this construction are the simply laced
ones a, d, e. Bonora and Savelli [3] later derived some non-simply laced algebras from junctions;
their construction is algebraic and not expressed in terms of the geometry of higher dimensional
elliptic fibrations. We will do this later in the paper. The techniques presented in this paper
have a number of applications in physics; for example, in describing BPS states of d = 4 N = 2
supersymmetric gauge theories, or in F-theory where they provide a direct approach to the
analysis of generalized type IIB seven-branes and the string junction states which end on them
[29, 22, 23, 7].

In Section 2 we consider a smooth elliptic surface on the open unit disc U with nodal singular
fibers over a collection of points {qj}. We then consider suitable, disjoint, paths in U from
a base point to each qj (a junction, in the physics language) and the corresponding vanishing
cycles and construct thimbles, the prongs in the physics language, in the relative homology. A
general geometric junction J defines then a chain with boundary in the elliptic fiber over the
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base point p. Following the physics literature we define the asymptotic charge a(J) ∈ H1(Ep,Z),
a(J) = ∂[J ]p ∈ H1(Ep). We show that the junctions with asymptotic charge zero are the images
of spherical classes in [J ] ∈ H2(X) (Theorems 2.5, 2.7). We then define a self-intersection product
in the space of junctions, and we show that if a(J) = 0 the topological intersection is equal to
the the self-intersection product (Theorem 2.9). We also define an intersection pairing 〈J,K〉,
which we show it coincides with the topological pairing for junctions of zero asymptotic charge.
We provide an explicit formula in terms of the Ji and the intersection numbers of the vanishing
cycles. If X = W is a Weierstrass model we also provide an explicit alternative descriptions of
the class of junctions, which is implemented in a computer program in [28], [25]. In Section 3
we consider a smooth elliptic surface in Weierstrass equation over a disc, with a unique singular
fiber over the origin, an ADE singularity. Klein showed that resolutions and deformation of
ADE surface singularities (also known as kleinan singularities) are diffeomorphic. We deform
the elliptic fibration to a smooth fibration with nodal fibers, namely we perform a complete
Higgsing of the Weierstrass model. We study the junctions in the deformed model and we prove
that the lattice structure found in the previous Section 2 provides the weight structure of the
a, d, e algebras associated to the Dynkin diagram of the original singularities. As a particular
case, we obtain the roots of the a, d, e central singularity and the associated Cartan matrix from
the junctions with asymptotic charge zero. Our deformation analysis of the surface case show
that the junctions with a fixed non-zero asymptotic charge are associated to weights of other
representations and all the possible weights occur; we show that in higher dimensional variety
these weights can become associated to junctions of non-zero asymptotic charge and assume
geometric meaning, they become massless in the physics language [16, 13]. In contrast analysis
of the resolved surface provides only the root structure.

In addition we show that the deformation analysis distinguish the Kodaira type III (two
tangent rational curves) from I2 (a cycle of two rational curves), which are associated to the
su(2) gauge algebra, and the Kodaira type IV (three rational curves meeting at point) from I3
(a cycle of three rational curves, which are associated to the su(3) gauge algebra. This reflects in
physics the different brane structure of the two singularities. These results were first presented
in our previous papers [13, 16], and were obtained with the aid of a computer package especially
developed [25]. In [13] we show also that the local deformation techniques of the string junction
analysis can be adapted in compact cases, even in cases when global deformation do not exist
and also in higher dimension. In Section 4 we revisit the example of the g2 algebra first presented
in [16], and elliptic fibration of threefolds.

The techniques developed in Section 2 do not assume the existence of a section of the fibration,
and in principle can be applied also in that case. Resolutions to a smooth model with trivial
canonical class and an equidimensional fibration may not be available in higher dimension,
minimal models can have terminal singularities, however the deformation analysis can still be
performed. We will address such situations in a upcoming paper [14]. Our techniques can also
be extended to other type of fibrations between varieties which are not necessarily algebraic, for
example on varieties with G2 holonomy,
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2. Geometric String Junctions

Consider the smooth elliptic fibration π : X −→ U over an open set U ⊂ C with I1 singular
fibers above Σ = {q1 . . . , qN}. Fix a base point p ∈ B \ Σ with Ep the elliptic fiber π−1(p).
Choose a set of continuous embedded paths δ1, ..., δN , assumed disjoint except for the common
starting point δj(0) = p , ending at the points δj(1) = qj . Also assume the order is such that
the points in which the paths meet a small circle around p go around counter clockwise; for

example for a small r, δj(r) = re2πi
(j−1)
N in suitable local coordinates around q as the origin.

We also assume that for ε a small real number, there is also the formula δj(1− ε) = ε e2πiθj , θj
an ”angle” in suitable local coordinates around qj as the origin. (The local co-ordinates around
qj could of course be chosen so θj = 0 , but below we will use other paths coming in to qj at
different angles.)

q1
δ1

q2

δ2

qN

δN

qj
δ1δj

P

Any smooth fiber bundle Y → S1 over a circle is given by a monodromy of the fiber F .
This means there is a diffeomorphism [27]. In our case, over the circle of radius ε around qj , ,
the corresponding diffeomorphism ψj,1−ε : Eδj(1−ε) → Eδj(1−ε) will be referred to as the local
monodromy around qj .

The assumption that the singular fibers are of type I1 means that there is a real curve Cj,1−ε
on the fiber Eδj(1−ε) , ε small, which the local monodromy ψj,1−ε fixes, where:

ψj,1−ε : Eδj(1−ε) → Eδj(1−ε).

This curve collapses to a point q̂j as ε → 0 ; q̂j is the (nodal) singular point in the singular
fiber π−1(qj) . With any choice of orientation for this curve, the map induced on first homology,
(ψj,1−ε)∗ : H1(Eδj(1−ε))→ H1(Eδj(1−ε)) , satisfies [1], [2].

(1) (ψj,1−ε)∗(x) = x− (x · [Cj,1−ε]) [Cj,1−ε] , x ∈ H1(Eδj(1−ε)) .

The equation is a special case of the Picard-Lefshetz formula for this situation. Here x · [Cj,1−ε]
is the intersection number of x with the homology class [Cj,1−ε] of the curve Cj,1−ε .

Fix a small ε0 . The fibration π is trivial over the contractible set δj([0, 1− ε0]) ; let

(2) Ψj : [0, 1− ε0]× Eδj(1−ε0) → π−1(δj([0, 1− ε0]))

be a trivialization with Ψj(1− ε0, z) = z . Then we define the vanishing cycle γj ∈ H1(Ep) as

(3) γj = (Ψj |{0} × Eδj(1−ε0))∗[Cj,1−ε0 ] .
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This is the same as the homology class [Cj ] of the curve Cj = Ψj |{0} ×Eδj(1−ε0)(Cj,1−ε0) ⊂ Ep
that is is the image of the curve Cj,1−ε0 ⊂ Eδj(1−ε0) , and we also set

(4) Cj,t = Ψj |{t} × Eδj(1−ε0)(Cj,1−ε0) ,

so Cj = Cj,0 . The class γj is only defined up to sign, but we will systematically suppress this
ambiguity (however see Corollary 2.2 below).

Finally, we can use the diffeomorphism Ψj |{0} × Eδj(1−ε0) of Eδj(1−ε0) to Ep to tranfer the
local monodromy at qj to a global monodromy ψi : Ep → Ep that fixes Cj and also satisfies the
Picard-Lefshetz formula 1. The topological type of the fibration is determined by the isotopy
classes of the global monodromies [15].

We define the “prong” (physics terminology) or “thimble” (symplectic geometry terminology)

(5) Γj = Ψj([0, 1− ε0]× Cj,1−ε0) ∪
⋃

0<ε≤ε0

Cj,1−ε ∪ {q̂j} ,

and more generally we will need to use

(6) Γj,t = Ψj([t, 1− ε0]× Cj,1−ε0) ∪
⋃

0<ε≤ε0

Cj,1−ε ∪ {q̂j} .

The prong is a disk and represents a class [Γj ] ∈ H2(X,Ep) with ∂[Γj ] = γj .

Ep = Eδj(0)

Cj

Cj,t

Eδj(t)

Pj

Eqj = Eδj(1)

We have the following alternate description when there is a Weierstrass equation:

Proposition 2.1. [15] Let X = W have the Weierstrass equation

(7) zy2 = x3 + f xz2 + g z3

with section σ. Then Eq − σ(q) is the two-fold branched cover of C branched at the roots of
x3 + f(q)x + g(q) = 0 . For 0 ≤ t ≤ 1 , let ρj,1(t) and ρj,2(t) be continuous paths of two of
the roots at δj(t) , with the property ρj,1(1) = ρj,2(1) at the singular point qj Let ρj,3(t) be
the path of the remaining root, and assume that for all 0 ≤ s, t ≤ 1 , ρj,3(s) 6= ρj,1(t) and
ρj,3(s) 6= ρj,2(t) . Let C̄j,t be the closed loop (not necessarily embedded) in Eδj(t) that lies over
the path ρj,t = {ρj,1(s), ρj,2(s)|t ≤ s ≤ 1} . Then these loops have a consistent orientations so
that if Γ̄j =

⋃
0≤t≤1 C̄j,t , then [Γ̄j ] = [Γj ] ; in particular ∂[Γ̄j ] = γj .

The proof of the above proposition, presented in [15], also provides the following algorithm
for determining vanishing cycles:

Corollary 2.2. Assume, in addition to the hypotheses of Proposition 2.1 (for simplicity) the
roots ρ1, ρ2, ρ3 of x3 +f(p)x+g(p) = 0 , the first two being the ones that merge at qj , are not on
a common (real) line. Let m1 be the number of times ρ̄j,0 crosses from one side of the interior
of the straight line joining ρ1 = ρj,1(0) and ρ2 = ρj,1(0) to the other. Let m2 be one half the
sum of the intersection numbers of the path ρj,0 (with either orientation) and this straight line
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at the endpoints. (If an intersection at an endpoint is not transverse, make it so by a small
perturbation and count any additional crossings of the line that this produces in m1 as well.)
Let Z1, Z2, Z3 ∈ H1(Ep) be represented by loops that are inverse images in Ep of straight lines
joining ρ1 and ρ2 , ρ2 and ρ3 , and ρ3 and ρ1 . If m1 + m2 is even then γj = ±Z1 . If m1 + m2

is odd, then γj = ±Z2 ± Z3 , with any choice of signs so that γj · Z1 6= 0 .

In [13, 16] and in the examples in this paper we apply Proposition 2.1 and the algorithm in
simple special cases.

For the rest of this section we do not assume the existence of a Weierstrass model. Neverthe-
less, it can be shown [15] that there exists a topological section σ : U → X . We will not give a
proof here, but the reason is that the global monodromy maps, which determine the topological
type of the fibration, are isotopic to maps with a common fixed point.

Definition 2.3. As above, consider the smooth elliptic fibration π : X −→ U over an open
set U ⊂ C with I1 singular fibers above Σ = {q1 . . . , qN} and corresponding vanishing cycles
{γ1, . . . , γN}. Fix a base point p ∈ B \ Σ with Ep = π−1(p).

J = (J1, . . . , JN ) ∈ ZN is a junction and the cycle ap(J) = a(J) =
∑N

1 Jiγi ∈ H1(Ep,Z) is its
asymptotic charge.

Remark 2.4. A junction defines a chain (actually the image of a union of 2-disks)
∑N

1 JjΓj or∑N
1 JjΓ̄j in X , and hence a homology class

(8) [J ]p =

N∑
1

Jj [Γj ] ∈ H2(X,Ep) ,

(This homology class actually depends on the order of singular points, up to a cylcic permutation
of order N ..)

Clearly a(J) = ∂[J ]p ∈ H1(Ep) ; hence if a(J) = 0 , [J ]p will be the image of a class in
[J ] ∈ H2(X) ; it is only well defined up to a multiple of the image of orientation class [Ep] of Ep
in H2(X) . It will be unique subject to the extra condition that [J ] · σ(U) = 0 ; this intersection
number is well defined because the image of the section is a proper submanifold. If a(J) = 0 ,
then from the explicit construction one can see that [J ] is spherical, i.e. represented by a map
S2 → X . The class [J ] also depends on the basepoint p and the choice of paths.

Theorem 2.5. Let J denote the abelian group of junctions. Assume U is the interior of a region

bounded by a closed embedded smooth curve. Then J 7→ [J ]p =
∑N

1 Jj [Γj ] ∈ H2(X,Ep) induces
an isomorphism

(9) J ∼= H2(X,Ep)

and J 7→ [J ] induces an isomorphism

(10) {J ∈ J|a(J) = 0} ∼= H2(X)/Z[Ep] ∼= {x ∈ H2(X) |x · σ(U) = 0} .

Remark 2.6. The hypothesis on U can be weakened considerably at the cost of added complica-
tions in the proof below.

Proof. Recall from above that there exists a topological section σ : U → X, which gives a
splitting of the first map of the long exact homology sequence of a pair [9] :

(11) ....→ H2(Ep)→ H2(X)→ H2(X,Ep)→ H1(Ep)→ ...

since [Ep] · σ(U) = 1 . The statement in (9) follows then from (10) and the long exact sequence
above.
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The hypothesis on U implies that there is a topological extension of π to π : X → U ⊂ C ,
also a fiber bundle outside the points {q1, ..., qN} . There is a well defined topological intersection
pairing [26][4][18]

(12) H2(X,Ep)×H2(X − Ep, X −X)→ Z .

(Here is an intuitive geometric definition: Let (A, ∂A) and (B, ∂B) be oriented relative chains
representing α and β in these groups. Since ∂A∩∂B = ∅ , after an arbitrarily small deformation
fixing the boundaries, it can be assumed A and B are in ”general position”, meaning that they
intersect transversely in points in the interior of simplices. The intersection number α · β will
then be the number of these points, counted sign determined by the orientations. )

Possibly choosing ε0 above smaller, let δ̂j : [1 − ε0] → U be a small path, disjoint from δj
except at the endpoint δj(1) = qj = δ̂j(1) , where the two paths meet in one point. For example,

in local coordinates as above around qj , take δ̂j(1− ε) = εe2πiθ̂j for some angle θ̂j 6= θj .

Let Ĉj,1−ε , 0 < ε ≤ 1 , be the corresponding vanishing cycle. Let

(13) Γ̂j,ε0 =
⋃

0<ε≤ε0

Ĉj,1−ε ∪ {q̂j} .

be the corresponding local prong or thimble. Let δj,∞ be a path from δ̂j(1− ε0) = δj,∞(1− ε0)

to a point δj,∞(0) ∈ X −X , disjoint from the paths δk .

δ1

δ2,∞

δ2

δN

δ1δj

P

δ1,∞

δN,∞

δj,∞

Let

(14) Γj,∞ = Ψj,∞([0, 1− ε]× Ĉj,1−ε0)∪
⋃

0<ε≤ε0

Ĉj,1−ε ∪{q̂j} = Ψj,∞([0, 1− ε]× Ĉj,1−ε0)∪ Γ̂j,ε0 ,

be the corresponding prong, Ψj,∞ a trivialization of π|π −1δj,∞([0, 1− ε0]) .
Then
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(15) Γj,∞ ∩ Γj = {qj}

transversely and

(16) Γj,∞ ∩ Γk = ∅

for k 6= j . Therefore the classes [Γj,∞] ∈ H2(X − Ep, X −X) and [Γk] ∈ H2(X,Ep) satisfy

(17) [Γj ] · [Γj,∞] = ±1 ; [Γk] · [Γj,∞] = 0 k 6= j .

(The non-zero intersection number is actually −1; this will be discussed in more detail in the
proof of Theorem 2.9.) Therefore the map J 7→ [J ]p induces an isomorphism of J onto a
summand of H2(X,Ep) of rank N .

If Z → S1 is a smooth fiber bundle over a circle with fiber F , then there is a monodromy
φ : F → F such that Z is diffeomorphic to the mapping cylinder F × [0, 1]/(x, 0) ∼ (φ(x), 1) via
a diffeomorphism that carries the bundle projection to the map to map (f, t) 7→ e2πit . It follows
from the Mayer Vietoris sequence [9](or a spectral sequence argument [19]) that there is long
exact sequence

(18) ...→ Hk(F )
φ∗−1
→ Hk(F )→ Hk(E)→ Hk−1(F )→ ...

Further, the fiber bundle has a section σ : S1 → Z if and only if φ has a fixed point.
We apply this to π−1Bj(ε0) , the ball of radius ε0 in the local coordinates around qj . The

boundary of this manifold is a bundle over the circle ∂Bj(ε0) , with torus fiber. The monodromy
is the the map ψi,1−ε . It follows that H1(π−1∂Bj(ε0)) ∼= Z⊕Z generated by the orientation class
of a fiber and [Cj,1−ε0×σ(∂Bj(ε0))] , and H2(π−1∂Bj(ε0)) ∼= Z⊕Z generated by any class τ with
τ ·γj = 1 . and the class [σ(∂Bj(ε0)) . However π−1Bj(ε0) collapses homotopically equivalently to
the singular fiber over Eqj , whose second homology is generated by the image of the orientation
class under the collapse, and whose first homology by the image of τ , i.e. the collapse of a
class represented by a curve D1 that meets Cj,1−ε in one point. Also, σ(∂Bj(ε0)) = ∂σ(Bj(ε0)) .
Hence H2(π−1Bj(ε0), π−1∂Bj(ε0)) ∼= Z , generated by the homology class of σ(Bj(ε0), ∂Bj(ε0)) .

Let X0 = π−1U0 , U0 = U −
⋃N

1 Bj(ε0)◦ . We now claim the map

(19) H2(X,Ep)→ H2(X,X0) ∼=
N⊕
1

H2(π−1Bj(ε0), π−1∂Bj(ε0))

is trivial. In fact, the image of the connecting homomorphism in the long exact homology
sequence of the triple (X,X0, Ep) is generated by the classes

[σ(∂Bj(ε0))] ∈ H1(X0, Ep), π∗[σ(∂Bj(ε0))] = [∂Bj(ε0))] ∈ H1(U0, p) ,

and for j = 1, ..., N these classes form a basis of this group. Therefore the connecting homomor-
phism is one-to-one.

More precisely, the inclusion

(20)

N⋃
1

δj([0, 1− ε0]) ∪Bj(ε0)) ↪→ U0

is a homotopy equivalence, and hence so is
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(21) π−1
N⋃
1

δj([0, 1− ε0]) ∪Bj(ε0)) ↪→ X0

It follows by excision that

(22) H2(X0, Ep) ∼= H2(X0, π
−1

N⋃
1

δj([0, 1− ε0]) ∼=
N⊕
1

H2(π−1∂Bj(ε0)), Eδj(1−ε0)) .

Also by excision, for any bundle Z → S1 as discussed above, the quotient map induces and
isomorphsim Hi(F × [0, 1], F × {0, 1}) → Hi(Z,F ) . (This is part of one proof of the above
long exact sequence.) Therefore, in our case H2(π−1∂Bj(ε0)), Eδj(1−ε0))

∼= Z ⊕ Z and one of
the generators is represented by the closed class (i.e. in the image of the absolute homology)
represented by the torus [Cj,1−ε0×σ(∂Bj(ε0))] . This class obviously maps to zero in H2(X,Ep) ;
therefore this group is a quotient of a free abelian group of rank N . Therefore, J 7→ [J ]p , already
shown to be a one-to-one map onto a summand, is an isomorphism. �

We now outline how our construction also provides some topological information about the
representation of homology classes in H2(X) by embedded spheres:

Theorem 2.7. (See also [16]) Let J = (J1, ..., JN ) ∈ J with a(J) = 0 and |Ji| ≤ 2 . Then
[J ] ∈ H2(X) is represented by a smoothly embedded 2-sphere S2 ⊂ X .

Proof. (Outline) As mentioned above, the construction of prongs and the proof of 2.5 can be
used to provide an explicit geometric cycle representing [J ] , J a junction with a(J) = 0 . Suppose
first |Ji| ≤ 1 , 1 ≤ i ≤ N . The cycle representing [J ] can be then described as a union of some
of the (oriented) prongs ±Γj,t for a small value of t , together with a punctured sphere (a sphere
with some disks removed), in a product neighborhood E0×D2 of the smooth fiber, that bounds
the union of the bounding curves ±Cj,t . The construction of the punctured disk is indicated [16],
and, as explained there, the union of the prongs and the punctured disk is a smoothly embedded
S2 . This proves the case with |Ji| ≤ 1. For |Jj | = ±2 we need to consider Γj,t and a parallel

copy Γ̂j,t of the corresponding prong, using a slight deformation of the path δj in the base. This
construction is described in more detail below in the proof of the next theorem. The prong and
the deformed prong can then be added to one another in a way that eliminates the intersection
point at the singularity of Ej and provides an annulus bounding ±Cj,t ∪ ±Ĉj,t . These annuli,
the oriented prongs with coefficients ±1 , and the punctured sphere bounding the union of the
vanishing cycles in the different nearby smooth fibers again provide a smoothly embedded S2

representing [J ] ∈ H2(X) . �

This result is similar in spirit to the (simpler) topological fact that in H2(P2) a generator
or twice a generator can be represented by a smoothly embedded S2 [17]; however, in X these
representatives are not algebraic. As is the case with P2 [10], it appears that every element
of H2(X) can be represented by an topologically embedded S2 with a non-locally smoothable
point. It would be interesting the determine the minimal genus of a smoothly embedded closed
(oriented) real 2-manifold representing a given general element of H2(X) .

Definition 2.8. Consider a junction J . Define a self-intersection

(23) 〈J, J〉 = −
∑
k>j≥2

JkJj γk · γj −
N∑
j=1

J2
j
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Theorem 2.9. Let Jbe a junction with a(J) = 0 . Then the topological intersection number
satisfies

(24) [J ] · [J ] = 〈J, J〉 .

Remark 2.10. Different formulae are obtained by cyclically permuting the indices, i.e. rotating
the small circle around p . All these satisfy the conclusion of the Theorem. In fact, let p̂ be a point
near p that lies between the paths δ1 and δ2 . Then there will be defined a small “deformation”

of the paths δj , j = 1, ..., N , to paths δ̂j from p̂ to the points qj , which will be described in
the proof. The corresponding prongs will actually represent classes [J ]p ∈ H2(X − Ep̂, Ep) and
[J ]p̂ ∈ H2(X − Ep, Ep̂) . There is also a well defined topological intersection pairing on these
groups, and it will be shown that

(25) [J ]p · [J ]p̂ = 〈J, J〉 .

Thus the above formula for classes which do not have asymptotic charge zero has a topological
interpretation in terms of a deformation of the prongs, and all the possible formulas correspond
to the different possible small deformations, up to a suitable notion of homotopy.

Remark 2.11. The missing index j = 1 in the first term on the right side of 23 corresponds to
the fact that in the deformation used below (see the figure in the proof), since the deformed
basepoint p̂ lies between between δ1 and δ2 , we can reach q1 with a path near δ1 that does not
intersect δ1 except at q1 . We could also reach q2 without crossing δ2 but on the opposite side
of δ2 from that indicated in the figure, leading to a change in the formula in the corresponding
place in the second term.

Remark 2.12. An intersection pairing is defined by

(26) 〈J,K〉 =
1

2
(〈J +K,J +K〉 − 〈J, J〉 − 〈K,K〉) .

It follows that

(27) [J ] · [K] = 〈J,K〉 .

if a(J) = a(K) = 0 .

Proof. (of Theorem 2.9) We start by determining the sign in equation (17). We keep the same
notation. It was shown in the proof of Theorem 2.5 that H2(π−1Bj(ε0), Eδj(1−ε0)) is infinite
cyclic and the connecting homomorphism to H1(Eδj(1−ε0) is injective (with image generated by

the class of the local vanishing cycle.) In the general fiber bundle Z → S1 with monodromy φ
as in the previous proof, let w be a k − 1 cycle of F . Then the image of the relative F × {0, 1}
cycle w × [0, 1] in the quotient Z represents an element S(w) ∈ Hk(Z,F ) with

∂S(w) = (φ∗[w]− [w]) ∈ H1(F ) .

In our case, take for w a curve with
[w] · [Cj,1−ε0 ] = −1 . Then by 1, ∂S(w) = [Cj,1−ε0 ] ∈ H1(Eδj(1−ε0)) . Let

(28) i∗ : H2(π−1∂Bj(ε0), Eδj(1−ε0))→ H2(π−1Bj(ε0), Eδj(1−ε0))

be the map induced by inclusion. Then ∂i∗S(w) = [Cj,1−ε0 ] also, by naturality. Therefore
i∗S(w) = [Γj,ε0 ] , the class of the local “prong” corresponding to the restriction of δj to [1−ε0, 1] .
The intersection pairing is also defined between elements of H2(X,Eδj(1−ε0)) , to which the target
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of i∗ maps by another inclusion induced map, and elements of H1(X − Eδj(1−ε0), X − X) , in
which Γj,∞ represents an element. Therefore

(29) [Γj,ε0 ] · [Γj,∞] = S(w) · [Γ̂j,∞] = [w × {θ̂j}] · [Ĉj,1−ε0 ] = [w] · [Cj,1−ε0 ] = −1

It follows from the local nature of intersection numbers that the local prongs Γj,ε0 and Γ̂j,ε0 meet
with intersection number -1.

Let p̂ be near p , lying between the paths δ1 and δ2 , ; for example, take p̂ = r̂e2πη1 in local
the local coordinates near p , r̂ < r0 and 0 < η1 < N−1 both small; we assume for 0 ≤ r ≤ r0 ,

δj(r) = re
2πi
N in the local coordinates around p , as above. Define paths δ̂j from p̂ to qj in four

parts as follows: First take a straight line from q̂ to rj e
2πiη , r̂ < r1 < r2 < .... < rj < r0 . Follow

this with a circular arc rje
2πit , η ≤ t ≤ j−1

N + η . Parameterize what has been done so far so

that δ̂j(0) = p̂ and δ̂j(rj) = rje
2πi( j−1

N +ηj) . Then follow with paths parallel to δj , until we reach

Bj(ε0) at a point ε0e
2πiθ̂j in local coordinates around qj , and then follow the straight line to qj .

q1

q2q3

qj

qN

δ1

δ̂1

δ2
δ̂2δ3

δ̂3

δj

δ̂j

δN
δ̂N

Let Γ̂j be the corresponding prongs. For r ≤ r0 ,

(30) ir : H2(X,Eδj(r))→ H2(X,π−1Br(p)) îr : H2(X,Eδ̂j(r))→ H2(X,π−1Br(p))

be the maps induced by inclusion; these are isomorphisms (as the fiber bundle is trivial over
Br(p) . Then it follows by letting η, r̂ → 0 that

(31) îr[Γ̂j,r] = ir[Γj,r]

and that under the inclusion induced isomorphisms,

H1(Eδj(r))
∼= H1(π−1Br(p)) and H1(Eδ̂j(r))

∼= H1(π−1Br(p)) ,

the vanishing cycles [Cj,r] and [Ĉj,r] have the same image. The orientation classes of the fibers

also have the same image in H2 . In particular if δ̂k(s) = δj(t) , then

(32) [Ĉk,s] · [Cj,t] = [Ck] · [Cj ] = [Ĉk] · [Ĉj ] .

Now we compute the intersection numbers of the two sets of prongs. If k < j , then Γ̂k∩Γj = ∅ ;

hence [Γ̂k] · [Γj ] = 0 .

(33) Γ̂1 ∩ Γ1 = {q1} .
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It follows from the first paragraph that [Γ̂1] · [Γ1] = −1 . For 2 ≤ j ≤ N ,

(34) Γ̂j ∩ Γj = {qj} ∪
[
Ĉj,δ̂j(sj) ∩ Cj,δ̂j(rj)

]
,

sj the unique value with δ̂j(sj) = δj(rj) = rje
2πi(j−1)

N . At the point of intersection the path δ̂
meets δ with sign −1 ; hence

(35) [Γ̂j ] · [Γj ] = −1− [Ĉj,sj ] · [Cj,rj ] = −1− [Cj ] · [Cj ] = −1 .

Finally, if k > j ,

(36) Γ̂k ∩ Γj = Ĉk,δ̂j(sk,j) ∩ Cj,δ̂j(rj) ,

sk,j the unique value with δ̂j(sk,j) = δj(rj) = rje
2πi(j−1)

N . Therefore

(37) [Γ̂k] · [Γj ] = [Ĉk,sk,j ] · [Cj,rj ] = [Ck] · [Cj ]
Hence by bilinearity,

(38)
( N∑

1

Jj [Γ̂j ]
)
·
( N∑

1

Jj [Γj ]
)

= −
∑
k>j≥2

JkJj γk · γj −
N∑
j=1

J2
j .

In other words, in the junction notation, if J = (J1, ..., JN )

(39) [J ]p̂ · [J ]p = 〈J, J〉 .
Clearly, from the preceding paragraph, ∂[J ]p = 0 if and only if ∂[J ]p̂ = 0 . In this case it is clear
that any two closed classes A,B ∈ H2(X) with images [J ]p and [J ]p̂ satisfy B · A = 〈J, J〉 and
have the same image in H2(X,π−1Br(p)) ∼= H2(X,Ep) . Therefore A and B are equal up to a
multiple of the orientation class of Ep ; imposing the condition A · σ(U) = B · σ(U) = 0 then
implies A = B = [J ] , so [J ] · [J ] = 〈J, J〉 . �

3. Deformations, String Junctions, Lie Algebras and more

In this section we consider deformations of elliptic surfaces and the appearance of string
junctions in the deformed geometry. Let π : X −→ U be an elliptic fibration over an open
set U ⊂ C with section σ, with πW : W −→ U its associated Weierstrass model; suppose that
the ramification divisor Σ consists of the origin, namely Σ = {0} ⊂ U . W has local equation
y2 = x3 + fx+ g, then the possible singular fibers are described in the following table (see [20]):

Kodaira Fiber Type ord(f) ord (g) ord(∆) Singularity Type

smooth ≥ 0 ≥ 0 0 −
In 0 0 n an−1
II ≥ 1 1 2 −
III 1 ≥ 2 3 a1
IV ≥ 2 2 4 a2
I∗n 2 ≥ 3 n+ 6 dn+4

I∗n ≥ 2 3 n+ 6 dn+4

IV ∗ ≥ 3 4 8 e6
III∗ 3 ≥ 5 9 e7
II∗ ≥ 4 5 10 e8

Theorem 3.1. (i) There exists a deformation W0 of the Weierstrass equation, such that
π0 : W0 → U is an elliptic fibration with π−10 (q) an I1 singular fiber ∀q ∈ Σ.
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(ii) Let J (−2) be the set of junctions J of W0 such that a(J) = 0 and 〈J, J〉 = −2. Equiva-
lently, let J (−2) ⊂ H2(W0) consists of those elements x with x·x = −2 and x·σ(U) = 0 .
Then ] J (−2) is the number of roots of the Lie algebra associated to the singularity of π.

(iii) If J = (J1, ..., JN ) ∈ J (−2) , then |Ji| ≤ 1 . In particular, all elements of J (−2) are
represented by smoothly embedded S2’s.

(iv) There exist subsets {α1, ..., αr} ⊂ J (−2) with r elements such that 〈αi, αj〉 is the negative
Cartan matrix associated to the singularity of π.

Proof. We will illustrate the proof in three of the cases from the table. All the singularities on
the table can be handled in the same way, see [13, 16]. For the first case, assume that π−1(0)
is of type Ir+1 , in other words, an ar singularity. Then by [20] the defining equation in the
complement of the image of the section σ can be written near π−1(0) as

(40) y2 = x3 − 3a2x+ 2a3 + sr+1

The derivative on the right hand side vanishes for x = ± a . Therefore, assuming U was small
enough to exclude the r + 1-st roots of −2a3 , the singular locus is Σ = {0}.

In this case, take for W0 be the deformation of W defined by

(41) y2 = x3 − 3a2x+ 2a3 + sr+1 + ε

for ε ∈ C. For |ε| small enough, the new discriminant locus of this equation will intersect U in
the singular set of the fibration

(42) Σε = {e
2πij
r+1 ε0 | j = 0, ..., r}

with εr+1
0 = ε a specific r + 1-st root. The fiber π−1(s)− σ(s) is the two fold branched cover of

C branched along the roots of x3 − 3a2x+ 2a3 + sr+1 + ε = 0 ; in particular at each point of Σε
there is a multiple root corresponding to an I1-singularity. Let δj(t) = te

2πij
r+1 ε0 , 0 ≤ t ≤ 1 ,be the

straight line path from the origin to the jth point in Σε . Then the equation of π−1(δj(t))−σ(s) ,

(43) y2 = x3 − 3a2x+ 2a3 + tr+1ε0 + ε ,

is independent of j . For example, if ε is real and positive and we also take ε0 to be real and
positive, then as we move along each path from zero to one, the two imaginary roots converge
to a common real real of multiplicity two at the end point and the real root remains always
real. In any case, whether we set it up this way or not, it follows from the preceding section
that the vanishing cycles γj are all equal; γ1 = .... = γr+1 . From this it then also follows that
{J ∈ J|a(J) = 0} has the basis α1, ..., αr , with α1 = (1,−1, 0, ..., 0) , α2 = (0, 1,−1, 0, ..., 0) , etc.
Since γj · γk = 0 because all these classes are equal, 〈αj , αj〉 = −2 , 〈αj , αk〉 = 1 for |j − k| = 1
and zero for |j − k| ≥ 2 . This clearly implies the result for this case, we get the roots of the
Dynkin diagram and Cartan matrix of su(r) .

Next consider the case of singular fiber π−1(0) of type III , defined by

(44) y2 = x3 + sx+ s2 .

In this case for U small enough the the discriminant locus is only the origin. A deformation can
be defined by

(45) y2 = x3 + (s+ ε)x+ (s2 + ε)

Then it is not hard to see that, for U small enough, Σε = {q1, q2, q3} consists of three points.
We take the basepoint to the origin s = 0 , which is now a smooth fiber E0 = π−1ε (0) of
the deformed fibration πε . The fiber E0 − σ(0) is the double branched cover of C along the
roots of x3 + εx + ε = 0 . The inverse image in the branched over of the three lines joining
these roots determine curves representing elements Zi ∈ H1(E0) ; choose the orientations so that
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Z1+Z2+Z3 = 0 . In this case the algorithm in the previous section yields, for the three vanishing
cycles, γi = Zi . In [13] this is obtained for a specific choice of small ε using a computer program
solving cubics, but the result can also be obtained (tediously) by hand. Therefore there are
exactly two junctions, J = (1, 1, 1) and its negative, with 〈J, J〉 = −2 and a(J) = 0 , and we
obtain the roots and Cartan matrix of su(2) .

The third case, of type IV, is given by the equation

(46) y2 = x3 + s2x+ s2 .

(47) y2 = x3 + (s2 + 2ε)x+ s2 + ε .

provides a deformation of the local model. Near the origin there are now four points in the
deformed discriminant. Using the same notation of the preceding paragraph for the homology
classes determined by the roots, this time we will get the vanishing cycles γ1 = γ3 = Z1 and
γ2 = γ4 = Z3 for the set of ordered vanishing cycles, with the signs chosen so that Z1 · Z3 = 1 .
Again, this is done with a computer program in [13] for a specific choice of ε , but it can also
be worked out by hand. The set of junctions with a(J) = 0 therefore has dimension two with
basis, for example, J1, J2 = {(1, 0,−1, 0), (−, 1, 0,−1)} , 〈Ji, Ji〉 = −2 , 〈J1, J2〉 = 1 , there are
six elements in J (−2) , and we get the roots and negative Cartan matrix of su(3) .

�

The example of the fiber of type IV actually arises from restricting a general Weierstrass
model π : Wg → F3 for an elliptic Calabi-Yau threefold over the Hirzebruch surface F3. This
is an example of a “non-Higgsable cluster” (in physics language) with a type IV fiber; for this
fibration, there there exists no smoothing deformation of the global model to a fibration with
only I1 singularities [21]. Nevertheless

(48) y2 = x3 + (s2 + 2ε)x+ s2 + ε .

provides a deformation of the local model.
In the papers [13, 16] we actually derive the entire representation structure of the Lie algebra

associated to the singularity using geometric string junctions. However, perhaps the main ad-
vantage of this method is its usefulness in considering higher dimensional elliptic fibrations (see
also [12]).

4. Higher Dimension, higher codimension

In physics, matter can appear when there is a codimension two stratum in the discriminant
locus, arising as the intersection of two codimension one strata. Resolutions may be hard to
use or may not even be available in all cases; we will conclude this paper with two illustrative
examples of the deformation technique.

The example will be an elliptic fibration with section over an open set in C2 whose discriminant
locus is the union of two curves meeting transversely in a point. Over each general point in the
complement of the intersection, on one component we have an I∗0 singularity, on the other an
I1 singularity. Then without loss of generality it can be assumed there is a local equation in
Weierstrass form [20]:

(49) y2 = x3 − 3c2s2x+ 2c3s3 + ats3 .
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Here s, t are coordinates in the base. The fibration over the line obtained by fixing a non-zero
value of t has an I∗0 singularity at s = 0 . For fixed s 6= 0 the fibration has an I1 singularity. The
deformation we consider varies with t:

(50) y2 = x3 − 3c2s2x+ 2c3s3 + ats3 + tε.

For a fixed t 6= 0 and fixed s there are two possible singular points, y = 0, x = ±cs . For x = cs ,
the corresponding points on the singular locus are the three cube roots of − ε

a denoted by the

red dots in the picture below; for x = −cs the points are the cube roots of − εt
at+4c3 . denoted by

the blue dots in the picture below.

s

t

t 6= 0, fixed

Each of these is an I1 singularity and we have completely split the I∗0 singularity along s = 0 .
The smooth fiber E0,t for a fixed t and s = 0 , minus the point at infinity i.e. minus σ(0, t) , is
the double cover of C branched along the roots of x3 + tε = 0 .

Consider first the three cube roots of − ε
a and let us assume that ε, a are real, ε > 0 , a < 0 .

Fix t 6= 0 and consider the (real) plane C in the variable s. Let δ(r) , 0 ≤ r ≤ 1 , be the straight

line path from the origin to the real cube root. Let ζ = e
2πi
3 . Then ζδ(r) and ζ2δ(r) will the the

paths to the other two roots. Then, if ρ1(r), ρ2(r), ρ3(r) are the roots of

(51) x3 − 3c2(δ(r))2x+ 2c3(δ(r))3 + at(δ(r))3 + tε = 0 ,

the roots of

(52) x3 − 3c2(ζkδ(r))2x+ 2c3(ζkδ(r))3 + at(ζkδ(r))3 + tε = 0 ,

will be ζkρ1(r), ζkρ2(r), ζkρ3(r) . For example, if t is a real positive number, then all along the
path δ(r) the real root, say it is ρ1(0) , remains real for 0 ≤ r ≤ 1 whereas the complex roots

ρ2(0) and ρ3(0) = ρ2(0) remain complex until r = 1 , at which point they merge into a real root
of multiplicity two. Then, along the path ζδ(r) , the roots ζρ2(0) = ρ3(0) and ζρ3(0) = ρ1(0)
will merge while ρ2(r) remains disjoint from the paths taken by the other roots. Similarly along
ζ2δ(r) , the roots ρ1(0) and ρ2(0) will merge. The paths of the merging roots of equation (52)
will be the path of the merging roots of equation (51) multiplied by ζ or ζ2 . If we assume
2c3 > −at , then it is not hard to see that the real root ρ1(s) decreases with s . Therefore,
since ρ1(s) + ρ2(s) + ρ3(s) = 3c2(δ(r))2 increases with s , so does the real part of the complex
roots. Therefore the path of the merging roots never crosses the line joining the complex roots of
x3 + tε = 0 . It follows from the algorithm above or a simple direct argument that the vanishing
cycle corresponding to the real cube root of − ε

a will be a homology class Z ∈ H1(E0) represented
by the curve lying over this straight line.

The resulting determination of the vanishing cycles can be formulated as follows: Multiplica-
tion by ζ , i.e. rotation through 2π

3 , induces a homeomorphism of the smooth fiber E0 , viewed

as the double branched cover of P1 along the roots of x3 + tε = 0 and “infinity”, and hence an
isomorphism ζ∗ : H1(E0) → H1(E0) . The vanishing cycles corresponding the cube roots of − ε

a

will be {Z, ζ∗Z, ζ2∗Z} .
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Now suppose that we choose c real so that at + 4c3 > 0 . The same argument shows that
we get the same vanishing cycles for these points also. When we order all six points by
increasing argument in the complex plane, we therefore obtain as our ordered set of van-
ishing cycles {Z, ζ2∗Z, ζ∗Z,Z, ζ2∗Z, ζ∗Z} . Note that, in the usual counterclockwise orientation,
Z · ζZ = ζZ · ζ2Z = ζ2Z · Z = 1 . From the relation 1 + ζ + ζ2 = 0 , it follows that the set
{J | a(J) = 0} of junctions with vanishing asymptotic charge has dimension four. The elements
(53)
α1 = (0, 0, 0,−1,−1,−1) α2 = (0, 0,−1, 0, 0, 1) α3 = (0,−1, 0, 0, 1, 0) α4 = (−1, 0, 1,−1, 0, 1)

are a basis and satisfy

〈α1, α1〉 = 〈α2, α2〉 = 〈α3, α3〉 = 〈α4, α4〉 = −2

〈α1, α2〉 = 〈α1, α3〉 = 〈α1, α4〉 = 1

〈α2, α3〉 = 〈α2, α4〉 = 〈α3, α4〉 = 0 .(54)

Thus we get the d4 Dynkin diagram, and in fact this set of junctions gives the root lattice and
weight structure of the d4 Lie algebra; see [16] for more on the Lie algebra details given the
geometric junctions.

Finally, we determine the monodromy around the component t = 0 of the singular locus to
exhibit the collapse of the d4 algebra (in physics language the “gauge algebra” d4) to a g2 algebra
(“gauge algebra” in physics language). Instead of only t real, take t(θ) = teiθ . For t small enough,

the cube roots of − εt(θ)
at+4c3 will be closer to the origin than those of − ε

a and will rotate clockwise
in an almost circular motion around as θ goes from zero to 2π . When θ gets to 2π the roots will
have been permuted by multiplication by ζ . For each θ , let E0(θ) be the singular fiber over the
origin, the branched cover of C along the roots of x3+t(θ)ε = 0 and infinity . Then multiplication
by eiθ induces (eiθ)∗ : H1(E0) → H1(E0(θ)) . Since the lines from the origin to these points on
the discriminant will also rotate around with θ , only changing length slightly, it is clear that the

vanishing cycles of the cube roots of − εt(θ)
at+4c3 will be {(e iθ3 )∗Z, (e

iθ
3 )∗ζ∗Z, (e

iθ
3 )∗ζ

2
∗Z} . Therefore

the effect of θ going from 0 to 2π is that the vanishing cycles do not change, but the three points
on the discriminant locus undergo a rotation though 2π

3 i.e. the order of all six vanishing cycles
will have changed as the other three do not move.

In fact, as the three cube roots of − ε
a do not move as θ changes, the ordered sets of pairs of

roots that coalesce as we move out from zero to any of these cube roots will have be permuted
cyclically each time θ goes around through 2π . (For each discriminant point and one value of θ ,
a third root will cross one of these at a value of r less than one.) Thus, when we get to θ = 2π ,
these vanishing cycles will have moved to {ζ∗Z, ζ2∗Z,Z} . In other words, the effect of θ going
from zero to 2π will be, since these vanishing cycles moved and the other discriminant points
rotated,

(55) {Z, ζ2∗Z, ζ∗Z,Z, ζ2∗Z, ζ∗Z} 7→ {ζ∗Z,Z, ζ2∗Z, ζ∗Z,Z, ζ2∗Z} .

In other words, on the junction we have the “outer monodromy” map

λ(a, b, c, a, b, c) = (c, a, b, c, a, b) .

(Note: As θ rotates around, there will be three points where pairs of points on the discriminant
locus are on the same line segments from the origin. This is the reason the ”obvious” continuity
argument gives the wrong result.)

Now we replace α4 with α′4 = (−1, 0, 0, 1, 0, 0). The Dynkin diagram of the intersection form
on the junctions α1, α2, α3, α

′
4 is also that of d4 , and α′4 is also a root. Clearly λ(α1) = α1 ,

λ(α2) = α′4 , and λ(α′4) = α3 and λ(α3) = α1 . Therefore, this monodromy map fixes the root
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corresponding the the central node of the d4 Dynkin diagram and permutes the other three
nodes, and when we divide by this action, we get the g2 Dynkin diagram. However, α′4 is not a
simple root in the d4 algebra. Or, to put it other way, if we take these to be simple roots, we do
not get the simple root lattice of d4 .

The monodromy does not preserve the Weyl chamber spanned by α1, ..., α4 but moves it to
a different one. However, since it is of order three and must fix the central node because of
invariance of intersection numbers, there are only two possibilities for what the monodromy
induces on the Dynkin diagram, either a rotation of the extremal nodes or the identity. The
calculation with the non-simple root eliminates the trivial case, and therefore it can be concluded
from this argument using a non-simple root that the monodromy reduces the d4 root lattice and
weight structure, i.e. the Lie algebra, to that of g2 .

The result can also be establishes by considering the full set J (−2). In [16] we showed that
there are precisely 192 four element subsets of J (−2) which can serve as simple roots; this number
matches the dimension of the Weyl group of d4, as it should. Thus J−2 contains the full data of
the Lie algebra within it. It is straightforward to show that the outer monodromy map preserves
J (−2) and is not trivial. Thus it gives an automorphism of the algebra, and from the junction
description it is of order three; it cannot be trivial on the Dynkin diagram without being so on
all of J (−2) . Therefore it must induces an action on the Dynkin diagram which reduces d4 to g2.

For further details on the root structure and the full representation theory see [16].
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