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HOROSPHERICAL AND HYPERBOLIC DUAL SURFACES OF SPACELIKE

CURVES IN DE SITTER SPACE

SHYUICHI IZUMIYA, ANA CLAUDIA NABARRO, AND ANDREA DE JESUS SACRAMENTO

Abstract. We define two surfaces, the horospherical surface and the hyperbolic dual surface
of a spacelike curve in the de Sitter 3-space, in the Lorentzian-Minkowski 4-space. These

surfaces are, respectively, in the lightcone 3-space and in the hyperbolic 3-space (other pseudo-

spheres). We use techniques from singularity theory to obtain the generic shape of these
surfaces and of their singular point sets. Furthermore, we give a relation between these

surfaces from the viewpoint of the theory of Legendrian dualities between pseudo-spheres.

1. Introduction

Submanifolds in Lorentz-Minkowski space are investigated from various mathematical view-
points and are of interest also in relativity theory. In recent years, using singularity theory, very
important progress has been made and many investigations have been conducted to classify and
characterize the singularities of submanifolds in Euclidean spaces or in semi-Euclidean spaces
(see, for example, [1]-[9] and [11]). The first author introduced Legendrian dualities between
three kinds of pseudo-spheres in Lorentz-Minkowski space [5, 6]. Curves in the pseudo-spheres
and duality relations between the curves and some surfaces in pseudo-spheres are studied. For
example, in [3, 4, 8], curves in the hyperbolic space H3(−1) in R4

1, in the de Sitter dual surface
in S3

1 , and in the horospherical surface in the lightcone LC∗, are investigated. The results in this
paper contribute to the study of the extrinsic geometry of curves in the above different ambient
spaces.

We use Legendrian duality to investigate spacelike curves in the de Sitter space S3
1 ⊂ R4

1

and two special surfaces related by duality. For a curve γ : I → S3
1 with nowhere vanishing

curvature, we define its associated horospherical surface in the lightcone LC∗ and its hyperbolic
dual surface in the hyperbolic space H3(−1). For the study of the generic differential geometry of
these surfaces and of their singular sets, we use singularity theory techniques, and in particular,
classical deformation theory.

Our paper is organized as follows: Section 2 reviews basic definitions for the Minkowski 4-
space and introduces a moving frame along γ together with Frenet-Serret type formulae. We
also review the definition of the Ak-singularities and their discriminant sets. We define the hy-
perbolic focal surface and the horospherical surface of γ. In Sections 3 and 5, we define two
families of height functions on γ, horospherical height functions and hyperbolic height func-
tions. These functions measure the contact of γ with special hyperplanes. Differentiating these
functions yields invariants related to each surface. We show that the horospherical surface of γ
is the discriminant set of the family of horospherical height functions (Corollary 3.2) and that
its hyperbolic dual surface is the discriminant set of the family of hyperbolic height functions
(Corollary 5.3).
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Furthermore, using the theory of deformations, we give a classification and a characterization
of the diffeomorphism-type of these surfaces (Theorems 3.4 and 5.5). It is easy to show that
the discriminant sets of these families on timelike curves in S3

1 are empty. For this reason, we
consider only spacelike curves in S3

1 .
In Section 4, we investigate the geometric meaning of the invariants discussed in the previous

sections. We prove results that give conditions (related to these invariants) for the curve γ to be
on a parabolic de Sitter quadric and we give also conditions for γ to be part of a T-horoparabola
or an S-horoparabola (Propositions 4.1 and 4.2). In Section 5, we give information about the
geometry of the hyperbolic dual surface and of its singular set. We separate the cases where γ
has spacelike normal vectors from those where γ has timelike normal vectors. We prove that, if
the normal vector is timelike, then the hyperbolic dual surface of γ has no singular points. For
this reason, in Section 5, we consider only the case when γ has spacelike normal vectors.

In Section 6, we show that γ can be part of an elliptic de Sitter quadric (Proposition 6.1)
by using an invariant of the curve. When γ is not part of an elliptic de Sitter quadric, we
characterize the contact of γ with an elliptic de Sitter quadric using the singularity types of the
hyperbolic dual surface of γ (Proposition 6.2).

Finally, in Section 7, we recall the concepts of Legendrian dualities between pseudo-spheres
in Lorentz-Minkowski space, introduced in [6]. Several duality relationships are presented in
Theorem 7.1. These give a dual relation between the horospherical surface and the hyperbolic
dual surface of γ.

2. Preliminaries

The Minkowski space R4
1 is the vector space R4 endowed with the pseudo-scalar product

〈x, y〉 = −x0y0 + x1y1 + x2y2 + x3y3, for any x = (x0, x1, x2, x3) and y = (y0, y1, y2, y3) in R4
1

(see, e.g., [10]). We say that a non-zero vector x ∈ R4
1 is spacelike if 〈x, x〉 > 0, lightlike if

〈x, x〉 = 0 and timelike if 〈x, x〉 < 0. We call γ : I → R4
1, with I ⊂ R an open interval, a

spacelike (resp. timelike) curve if γ′(t) is a spacelike (resp. timelike) vector for any t ∈ I. We
define, for x ∈ R4

1,

sign (x) =


1 if x is spacelike,

0 if x is lightlike,

−1 if x is timelike.

We call sign (x) the signature of x. The norm of a vector x ∈ R4
1 is defined by ‖ x ‖=

√
| 〈x, x〉 |.

We now consider the pseudo-spheres in R4
1. The hyperbolic 3-space is defined by

H3(−1) = {x ∈ R4
1 | 〈x, x〉 = −1},

the de Sitter 3-space by

S3
1 = {x ∈ R4

1 | 〈x, x〉 = 1},
and the lightcone by

LC∗ = {x ∈ R4
1 \ {0} | 〈x, x〉 = 0}.

For any x = (x0, x1, x2, x3), y = (y0, y1, y2, y3), z = (z0, z1, z2, z3) ∈ R4
1, the pseudo-product

of x, y and z is defined by:

x ∧ y ∧ z =

∣∣∣∣∣∣∣∣
−e0 e1 e2 e3

x0 x1 x2 x3

y0 y1 y2 y3

z0 z1 z2 z3

∣∣∣∣∣∣∣∣ ,
where {e0, e1, e2, e3} is the canonical basis of R4.
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For a non-zero vector v ∈ R4
1 and a real number c, a hyperplane with pseudo-normal vector v

is defined by

HP (v, c) = {x ∈ R4
1 | 〈x, v〉 = c}.

We call HP (v, c) a spacelike, a timelike, or a lightlike hyperplane if v is spacelike, timelike, or
lightlike, respectively.

We have three types of models of quadric surfaces in S3
1 , which are given by intersections of

S3
1 with hyperplanes in R4

1, determined by the type of the hyperplane. A surface S3
1 ∩HP (v, c) is

called an elliptic de Sitter quadric, a hyperbolic de Sitter quadric or a parabolic de Sitter quadric
if HP (v, c) is spacelike, timelike, or lightlike, respectively. We denote the parabolic de Sitter
quadric by QDP (v, c) and the elliptic de Sitter quadric by QDE(v, c).

Let γ : I → S3
1 be a smooth and regular spacelike curve in S3

1 . We can parametrise it by
arc length s, and write t(s) = γ′(s) for the unit tangent vector. In this case, we call γ a unit
speed spacelike curve. If 〈t′(s), t′(s)〉 6= 1, then ‖ t′(s) + γ(s) ‖6= 0, and we define the unit vector

n(s) =
t′(s) + γ(s)

‖ t′(s) + γ(s) ‖
. We also define another unit vector by e(s) = γ(s) ∧ t(s) ∧ n(s). Then

we obtain a pseudo-orthonormal frame {γ(s), t(s), n(s), e(s)} of R4
1 along γ. The Frenet-Serret

type formulae for that frame are given by
γ′(s) = t(s),

t′(s) = −γ(s) + kg(s)n(s),

n′(s) = −δ(γ(s)) kg(s) t(s) + τg(s) e(s),

e′(s) = τg(s)n(s),

where δ(γ(s)) = sign (n(s)) (which we shall write as simply δ), kg(s) =‖ t′(s) + γ(s) ‖ and

τg(s) =
δ(γ(s))

k2
g(s)

det(γ(s), γ′(s), γ′′(s), γ′′′(s)).

The invariant kg is called the geodesic curvature and τg the geodesic torsion of γ (see [7]).
Since 〈t′(s)+γ(s), t′(s)+γ(s)〉 = 〈t′(s), t′(s)〉−1, it follows that 〈t′(s), t′(s)〉 6= 1 is equivalent

to kg(s) 6= 0.

We define the following maps

HS±γ : I × J → LC∗ and HD±γ : I × J → H3(−1)

by

HS±γ (s, µ) = γ(s) + µn(s) + λe(s) and HD±γ (s, µ) = µn(s) + λe(s),

respectively, where λ2 − µ2 = δ(γ(s)).
In other words,

HS±γ (s, µ) = γ(s) + µn(s)±
√
µ2 + δ(γ(s))e(s) and HD±γ (s, µ) = µn(s)±

√
µ2 + δ(γ(s))e(s),

with µ2 + δ(γ(s)) ≥ 0, i.e., µ ∈ J = R for n(s) spacelike and µ ∈ J = (−∞,−1]∪ [1,∞) for n(s)
timelike. We call HS±γ the horospherical surface of γ and HD±γ the hyperbolic dual surface of
γ. We can suppose that λ and µ are one of cosh and sinh, depending on δ(γ(s)).

Definition 2.1. Let F : R4
1 → R be a submersion and γ : I → S3

1 be a regular curve. We
say that γ and F−1(0) (respectively F−1(0) ∩ S3

1) have contact of order k at s0, if the function
g(s) = F ◦ γ(s) satisfies g(s0) = g′(s0) = · · · = g(k)(s0) = 0 and g(k+1)(s0) 6= 0, i.e., g has an
Ak-singularity at s0.
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Let G : R × Rr, (s0, x̄) → R be a family of germs of functions. We call G an r-parameter
deformation of f if f(s) = Gx̄(s). Suppose that f has an Ak-singularity (k ≥ 1) at s0. If we
write

j(k−1)

(
∂G

∂xi
(s, x̄)

)
(s0) =

k−1∑
j=0

αji(s− s0)j ,

for i = 1, . . . , r, then G is a versal deformation if the k × r matrix of coefficients (αji) has rank
k (k ≤ r) (see [2]).

The discriminant set of G is the set

DG =

{
x ∈ (Rr, x̄)

∣∣ G =
∂G

∂s
= 0 at (s, x) for some s ∈ (R, s0)

}
.

Theorem 2.2. [2] Let G : R × Rr, (s0, x̄) → R be an r-parameter deformation of f , with f
having an Ak-singularity at s0. Suppose that G is a versal deformation. Then DG is locally
diffeomorphic to

(1) C × Rr−2, if k = 2, and
(2) SW × Rr−3, if k = 3,

where C = {(x1, x2) | x2
1 = x3

2} is the ordinary cusp and

SW = {(x1, x2, x3) | x1 = 3u4 + u2v, x2 = 4u3 + 2uv, x3 = v}

is the swallowtail surface.

We use families of height functions on curves in S3
1 to study the horospherical surface and the

hyperbolic dual surface. In fact, these surfaces are the discriminant sets of these families.
It is easy to show that the discriminant sets of the family of horospherical height functions

and family of hyperbolic height functions on timelike curves in S3
1 are empty. For this reason,

we only consider spacelike curves in S3
1 .

3. Horospherical height functions

In this section, we introduce a family of height functions on a curve that is useful for the
study of the horospherical surface. We prove that the horospherical surface is the discriminant
set of this family.

For a spacelike curve γ : I → S3
1 , we define a function H : I × LC∗ → R by

H(s, v) = 〈γ(s), v〉 − 1.

We call H a family of horospherical height functions on γ. We denote hv(s) = H(s, v) for any
fixed v ∈ LC∗. The family of horospherical height functions measures the contact of γ with
lightlike hyperplanes in R4

1. Generically, this contact can be of order k, where k = 1, 2, 3.
We obtain equivalent conditions for each Ak-singularity, k = 1, 2, 3 of hv by the following

result. For example, hv has an A2-singularity at s if and only if

v = γ(s) + µn(s)±
√
µ2 + δ(γ(s))e(s), µ =

1

kg(s)δ(γ(s))
, and σ(s) 6= 0.

Proposition 3.1. Let γ : I → S3
1 be a unit speed spacelike curve such that kg(s) 6= 0. Then

(1) hv(s) = 0 if and only if there exist real numbers µ, λ, η with

η2 + δ(γ(s))µ2 − δ(γ(s))λ2 = −1

such that v = γ(s) + ηt(s) + µn(s) + λe(s).
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(2) hv(s) = h′v(s) = 0 if and only if there exist real numbers µ, λ such that

v = γ(s) + µn(s) + λe(s)

with λ2 − µ2 = δ(γ(s)).

(3) hv(s) = h′v(s) = h′′v(s) = 0 if and only if v = γ(s) + µn(s) ±
√
µ2 + δ(γ(s))e(s) with

µ =
1

kg(s)δ(γ(s))
.

(4) hv(s) = h′v(s) = h′′v(s) = h
(3)
v (s) = 0 if and only if v = γ(s)+µn(s)±

√
µ2 + δ(γ(s))e(s),

µ =
1

kg(s)δ(γ(s))
and σ(s) = 0, where

σ(s) = (k′g ± kgτg(−δ)
√

1 + k2
gδ)(s).

(5)

(i) If n(s) is timelike with kg(s) = 1 then hv(s) = h′v(s) = · · · = h
(4)
v (s) = 0 if and only if

v = γ(s)+µn(s)±
√
µ2 + δ(γ(s))e(s), µ =

1

kg(s)δ(γ(s))
, σ(s) = 0 and k′′g (s)+τ2

g (s) = 0.

(ii) If n(s) is timelike with kg(s) 6= 1 or if n(s) is spacelike, then

hv(s) = h′v(s) = · · · = h(4)
v (s) = 0

if and only if

v = γ(s) + µn(s)±
√
µ2 + δ(γ(s))e(s), mu =

1

kg(s)δ(γ(s))
, and σ(s) = σ′(s) = 0.

Proof. Since hv(s) = 〈γ(s), v〉 − 1, by using the Frenet-Serret type formulae, we have

(a) h′v(s) = 〈t(s), v〉,
(b) h′′v(s) = 〈−γ(s) + kg(s)n(s), v〉,
(c) h

(3)
v (s) = 〈(−1− k2

g(s)δ(γ(s)))t(s) + k′g(s)n(s) + kg(s)τg(s)e(s), v〉, and

(d) h(4)(s) = 〈(1+k2
g(s)δ(γ(s)))γ(s)−3δ(γ(s))k′g(s)kg(s)t(s)+(−kg(s)+k′′g (s)+kg(s)τ

2
g (s)−

k3
g(s)δ(γ(s)))n(s) + (2k′g(s)τg(s) + kg(s)τ

′
g(s))e(s), v〉.

The proof follows by simple calculations using (a)-(d). �

Corollary 3.2. The horospherical surface of γ is the discriminant set DH of the family of
horospherical height functions H.

Proof. The proof follows from the definition of the discriminant set given in Section 2 and by
Proposition 3.1 (2). �

Following Proposition 3.1, we define the invariant

σ(s) =
(
k′g ± kgτg(−δ)

√
1 + k2

gδ
)

(s)

of the curve γ. We will study the geometric meaning of this invariant in Section 4.
In the next result, we show that the family of horospherical height functions on a curve in S3

1

is a versal deformation of an Ak-singularity, k = 2, 3, of its members.

Proposition 3.3. With the same assumptions as in Proposition 3.1, let H : I × LC∗ → R be
the family of horospherical height functions on γ. If hv has an A2-singularity at s0, then H is a
versal deformation of hv. If hv has an A3-singularity at s0 and n(s0) is timelike with kg(s0) 6= 1
(which is a generic condition) or if n(s0) is spacelike, then H is a versal deformation of hv.
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Proof. The family of horospherical height functions is given by

H(s, v) = −v0x0(s) + v1x1(s) + v2x2(s) + v3x3(s)− 1,

where v = (v0, v1, v2, v3), γ(s) = (x0(s), x1(s), x2(s), x3(s)) is the curve parametrised by arc

length, v0 =
√
v2

1 + v2
2 + v2

3 and x0(s) =
√
x2

1(s) + x2
2(s) + x2

3(s)− 1.
Writing H(s, v) = H(s, v1, v2, v3), we have

∂H

∂vi
= xi(s)−

vi
v0
x0(s),

for i = 1, 2, 3. Therefore, the 2-jet of
∂H

∂vi
at s0, is given by

xi(s0)− vi
v0
x0(s0) +

(
x′i(s0)− vi

v0
x′0(s0)

)
(s− s0) +

1

2

(
x′′i (s0)− vi

v0
x′′0(s0)

)
(s− s0)2.

We assume first that hv has an A3-singularity at s = s0, and we show that the determinant
of the 3× 3 matrix

A =


x1(s0)− v1

v0
x0(s0) x2(s0)− v2

v0
x0(s0) x3(s0)− v3

v0
x0(s0)

x′1(s0)− v1

v0
x′0(s0) x′2(s0)− v2

v0
x′0(s0) x′3(s0)− v3

v0
x′0(s0)

x′′1(s0)− v1

v0
x′′0(s0) x′′2(s0)− v2

v0
x′′0(s0) x′′3(s0)− v3

v0
x′′0(s0)


is nonzero. Denote

a =

 x0(s0)
x′0(s0)
x′′0(s0)

 , bi =

 xi(s0)
x′i(s0)
x′′i (s0)

 ,

for i = 1, 2, 3. Then

detA =
v0

v0
det(b1 b2 b3)− v1

v0
det(a b2 b3)− v2

v0
det(b1 a b3)− v3

v0
det(b1 b2 a).

On the other hand,

(γ ∧ γ′ ∧ γ′′)(s0) = (−det(b1 b2 b3),−det(a b2 b3),−det(b1 a b3),− det(b1 b2 a)).

Therefore,

detA =

〈(
v0

v0
,
v1

v0
,
v2

v0
,
v3

v0

)
, (γ ∧ γ′ ∧ γ′′)(s0)

〉
=

1

v0
〈γ(s0) + µn(s0)±

√
µ2 + δe(s0), kg(s0)e(s0)〉

= ± 1

v0
(−δ)

√
k2
g(s0)δ + 1.

In the case where n(s0) is a spacelike vector, we have detA = ∓ 1

v0

√
k2
g(s0) + 1 6= 0 and therefore

H is a versal deformation of hv at s = s0. If n(s0) is a timelike vector, then we have

detA = ± 1

v0

√
1− k2

g(s0)

and therefore detA 6= 0 under the condition that kg(s0) 6= 1 , so H is a versal deformation of hv
at s = s0.
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When k = 2, we require the rank of B to equal 2, where B is the matrix

B =

 x1(s0)− v1

v0
x0(s0) x2(s0)− v2

v0
x0(s0) x3(s0)− v3

v0
x0(s0)

x′1(s0)− v1

v0
x′0(s0) x′2(s0)− v2

v0
x′0(s0) x′3(s0)− v3

v0
x′0(s0)

 .

Since B consists of the first and second lines of A, we have that if n(s0) is a spacelike vector, then
rank of B is 2 because detA 6= 0. If n(s0) is a timelike vector, the rank of B is 2 if kg(s0) 6= 1.

For the case kg(s0) = 1, the rank of B is 2 if
2(x0(s0)− v0)

v0
6= 0. Then it is enough to show that

x0(s0) 6= v0. As kg(s0) = 1, we have by Proposition 3.1 (2) that

v(s0) = γ(s0)− n(s0).

Therefore v0 = x0(s0) − n0(s0), where n(s0) = (n0(s0), n1(s0), n2(s0), n3(s0)). Without loss of
generality, we can suppose n0(s0) 6= 0, so the rank of B is 2. �

Using Theorem 2.2 and Proposition 3.3, we can obtain the diffeomorphism type of the horo-
spherical surface.

Theorem 3.4. With the same assumptions as in Proposition 3.1, let HS±γ be the horospherical
surface of γ. Then we have the following:

(1) The singular values of HS±γ are given by

h±µ Sγ(s) = γ(s) +
1

kg(s)δ(γ(s))
n(s)±

√
1

k2
g(s)

+ δ(γ(s))e(s).

(2) HS±γ is, at (s0, µ0), locally diffeomorphic to a cuspidal edge if and only if

µ0 =
1

kg(s0)δ(γ(s0))
and σ(s0) 6= 0.

(3) HS±γ is, at (s0, µ0), locally diffeomorphic to a swallowtail surface if and only if

µ0 =
1

kg(s0)δ(γ(s0))
, σ(s0) = 0, and σ′(s0) 6= 0,

for n(s0) timelike with kg(s0) 6= 1, or for n(s0) spacelike.

Proof. Consider the horospherical surface given byHS±γ (s, µ) = γ(s)+µn(s)±
√
µ2 + δ(γ(s))e(s).

Then

∂HS±γ
∂s

(s, µ) = (1− µδ(γ(s))kg(s))t(s)±
√
µ2 + δ(γ(s))τg(s)n(s) + µτg(s)e(s) and

∂HS±γ
∂µ

(s, µ) = n(s)± µ√
µ2 + δ(γ(s))

e(s).

The vectors {
∂HS±γ
∂s

(s0, µ0),
∂HS±γ
∂µ

(s0, µ0)

}
are linearly dependent if and only if

µ0 =
1

kg(s0)δ(γ(s0))
.

Then the singular values of HS±γ are given by h±µ0
Sγ(s0) = HS±γ (s0, µ0) and assertion (1) follows.

By Corollary 3.2, the discriminant set DH of the family of horospherical height functions H of
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γ is the horospherical surface of γ. It also follows from assertions (3) and (4) of Proposition 3.1
that hv has an A2-singularity (respectively, an A3-singularity) at s = s0 if and only if

µ0 =
1

kg(s0)δ(γ(s0))
and σ(s0) 6= 0

(respectively,

µ0 =
1

kg(s0)δ(γ(s0))
, σ(s0) = 0, and σ′(s0) 6= 0).

By Theorem 2.2 and Proposition 3.3, we have assertions (2) and (3). We observe that, in (3),
if n(s0) is timelike, it is necessary to suppose that kg(s0) 6= 1 in order to obtain Proposition
3.3. �

4. Invariants and special geometry of the horosphe-rical surface

We study the geometric meaning of the invariant σ(s) defined in the previous section. Let
v be a lightlike vector, w be a spacelike vector, and z be a timelike vector. We call the de
Sitter space curve, given by the intersections of the parabolic de Sitter quadric QDP (v, 1) with
HP (w, 0) (resp. HP (z, 0)), T-horoparabolas (resp. S-horoparabolas).

Given a unit speed spacelike curve γ in S3
1 , the unit normal vector n can be a timelike vector

or a spacelike vector. We prove the following results that give conditions depending on the
invariants, for the curve γ to be in a parabolic de Sitter quadric. In addition, we also give
conditions for γ to be part of a T-horoparabola or a S-horoparabola. These facts are related to
the invariants σ(s) and τg(s). It is convenient to divide the discussion into two cases: n(s) is
timelike (Proposition 4.1) and n(s) is spacelike (Proposition 4.2).

We observe that for a curve in hyperbolic 3-space (see [8]), there is only one case because n(s)
is always spacelike.

Proposition 4.1. Let γ : I → S3
1 be a unit speed spacelike curve such that n(s) is a timelike

vector field along γ, kg(s) ≤ 1, and kg(s) 6= 0. Consider the singular values h±µ Sγ(s) of the
horospherical surface.

(1) Suppose that kg(s) ≡ 1. Then the following conditions are equivalent:
(a) h±µ Sγ(s) is a constant vector,
(b) τg(s) ≡ 0,
(c) γ is a part of a T-horoparabola.

(2) Suppose that the set {s ∈ I | kg(s) = 1} consists of isolated points. The following
conditions are equivalent:
(a) h±µ Sγ(s) is a constant vector v0 ∈ LC∗,
(b) σ(s) ≡ 0,
(c) γ is located on a parabolic de Sitter quadric QDP (v0, 1).

Proof. The proof is similar to that for a curve in hyperbolic space in [8]. Consider the singular
values h±µ Sγ(s) of the surface that we denote by

v(s) = γ(s) + µn(s)±
√
µ2 − 1e(s) with µ = − 1

kg(s)
.

Suppose that kg(s) ≡ 1. Then v(s) = γ(s) − n(s), and v′(s) = −τg(s)e(s). Therefore, v(s)
is constant if and only if τg(s) ≡ 0, so statements (a) and (b) of (1) are equivalent. If v(s)
is constant, then τg(s) ≡ 0 and, as e′(s) = τg(s)n(s), this means that e(s) is constant. Thus,
the hyperplane HP (e(s), 0) generated by γ(s), t(s) and n(s), is constant. In this case, the
parabolic de Sitter quadric QDP (v(s), 1) is also constant. Thus, the image of γ is a part of a
horoparabola given by QDP (v(s), 1)∩HP (e(s), 0). Therefore, (a) implies (c). If γ is a part of a



188 SHYUICHI IZUMIYA, ANA CLAUDIA NABARRO, AND ANDREA DE JESUS SACRAMENTO

T-horoparabola, then it is a de Sitter plane curve and, hence, τg(s) ≡ 0; so (c) implies (b). This
completes the proof of (1).

Suppose now that kg(s) 6= 1. Since µ(s) = − 1

kg(s)
, we have

v(s) = γ(s)− 1

kg(s)
n(s)±

√
1− k2

g(s)

kg(s)
e(s).

Thus

v′(s) =

k′g ± kgτg
√

1− k2
g

k2
g

 (s)n(s)−


√

1− k2
gkgτg ± k′g

k2
g

√
1− k2

g

 (s)e(s).

Therefore, v′(s) ≡ 0 if and only if σ(s) ≡ 0, so the statements (a) and (b) of (2) are equivalent
at any point s ∈ I.

We now consider the family of horospherical height functions H(s, v) on γ. If γ is located
on the parabolic de Sitter quadric QDP (v0, 1), then H(s, v0) ≡ 0. By Proposition 3.1 (4), we

have (k′g ± kgτg
√

1− k2
g)(s) ≡ 0. Therefore, (c) implies (b). If v is a constant vector v0, then

〈γ(s), v0〉 = 1 for all s ∈ I and thus γ(s) ∈ QDP (v0, 1) for all s ∈ I. Therefore, γ is located on
a parabolic de Sitter quadric. �

Proposition 4.2. Let γ : I → S3
1 be a unit speed spacelike curve such that n(s) is a spacelike

vector field along γ and kg(s) 6= 0. Consider the singular values h±µ Sγ(s) of the horospherical
surface. The following conditions are equivalent:

(a) h±µ Sγ(s) is a constant vector v0 ∈ LC∗,
(b) σ(s) ≡ 0,
(c) γ is located on a parabolic de Sitter quadric QDP (v0, 1) for some v0.

Furthermore, if γ ⊂ QDP (v0, 1) and τg(s) ≡ 0, then γ is part of a S-horoparabola.

Proof. The proof is analogous to that of Proposition 4.1 (2). �

5. Hyperbolic height functions

We introduce here a family of functions on a curve which is useful to study the singularities
of the hyperbolic dual surface of a spacelike unit speed curve γ. First, we explain why we
consider only spacelike curves with spacelike normal vector fields. Let γ : I → S3

1 be a unit
speed spacelike curve. We suppose, as we did previously, 〈t′(s), t′(s)〉 6= 1 (generic condition),

equivalently kg(s) 6= 0, in order to define n(s) =
t′(s) + γ(s)

‖ t′(s) + γ(s) ‖
. Then n(s) is a spacelike

normal vector field or a timelike normal vector field along γ.

Proposition 5.1. Let γ : I → S3
1 be a unit speed spacelike curve such that kg(s) 6= 0 for all

s ∈ I.

(1) Suppose that n(s) is a spacelike normal vector field along γ. Then the hyperbolic dual
surface HD±γ of γ is singular at (s0, µ0) if and only if µ0 = 0. That is, the singular

values of the hyperbolic dual surface are given by h±µ0
Dγ(s) = HD±γ (s, 0) with s ∈ I and

µ0 = 0.
(2) If n(s) is a timelike normal vector field along γ, then the hyperbolic dual surface HD±γ

of γ does not have singular points.
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Proof. Consider the hyperbolic dual surface of γ,

HD±γ (s, µ) = µn(s)±
√
µ2 + δ(γ(s))e(s).

Then, we have

∂HD±γ
∂s

(s, µ) = −δ(γ(s))µkg(s)t(s)±
√
µ2 + δ(γ(s))τg(s)n(s) + µτg(s)e(s) and

∂HD±γ
∂µ

(s, µ) = n(s)± µ√
µ2 + δ(γ(s))

e(s).

If n(s) is a spacelike normal vector field, the proof of (1) is similar to that of Theorem 3.4
(1). However, if n(s) is a timelike normal vector field, the hyperbolic dual surface is not defined
for µ0 = 0. Therefore assertion (2) holds. �

Since we are interested in studying the singularities of the hyperbolic dual surface of a spacelike
curve, then it follows from Proposition 5.1 (2) that we need only to consider spacelike curves
with spacelike normal vector fields n(s).

We define a family of functions H : I ×H3(−1) → R on γ given by H(s, v) = 〈γ(s), v〉. We
call H the family of hyperbolic height functions on γ and denote hv(s) = H(s, v) for any fixed
v ∈ H3(−1). By Definition 2.1, the hyperbolic height function measures the contact of γ with
spacelike hyperplanes. Generically, the order of this contact can be k, k = 1, 2, 3.

We have the following result about the singularities of hv.

Proposition 5.2. Let γ : I → S3
1 be a unit speed spacelike curve such that n(s) is a spacelike

vector field along γ and kg(s) 6= 0 for all s ∈ I. Then we have the following:

(1) hv(s) = 0 if and only if there exist real numbers µ, λ, η with η2 + µ2 − λ2 = −1 such
that v = ηt(s) + µn(s) + λe(s).

(2) hv(s) = h′v(s) = 0 if and only if there exist real numbers µ, λ such that v = µn(s)+λe(s)
with λ2 − µ2 = 1.

(3) hv(s) = h′v(s) = h′′v(s) = 0 if and only if v = ±e(s).

(4) hv(s) = h′v(s) = h′′v(s) = h
(3)
v (s) = 0 if and only if v = ±e(s) and τg(s) = 0.

(5) hv(s) = h′v(s) = · · · = h
(4)
v (s) = 0 if and only if v = ±e(s) and τg(s) = τ ′g(s) = 0.

Proof. Since hv(s) = 〈γ(s), v〉, we have

(a) h′v(s) = 〈t(s), v〉,
(b) h′′v(s) = 〈−γ(s) + kg(s)n(s), v〉,
(c) h

(3)
v (s) = 〈(−1− k2

g(s))t(s) + k′g(s)n(s) + kg(s)τg(s)e(s), v〉,
(d) h(4)(s) = 〈(1+k2

g(s))γ(s)−3k′g(s)kg(s)t(s)+(−kg(s)+k′′g (s)+kg(s)τ
2
g (s)−k3

g(s))n(s)+
(2k′g(s)τg(s) + kg(s)τ

′
g(s))e(s), v〉.

The proof follows by simple calculations using (a)-(d). �

Corollary 5.3. The hyperbolic dual surface of γ is the discriminant set DH of the family of
hyperbolic height functions H.

Proof. The proof follows from the definition of the discriminant set given in Section 2 and
Proposition 5.2 (2). �

Proposition 5.4. Let γ : I → S3
1 be a unit speed spacelike curve such that n(s) is a spacelike

vector field along γ, kg 6= 0. Then the family H of hyperbolic height functions on γ is a versal
deformation of the A2 and A3-singularities of hv.

Proof. The method of the proof is similar to that of Proposition 3.3. �
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We can now obtain the diffeomorphism-type of the hyperbolic dual surface.

Theorem 5.5. Let γ : I → S3
1 be a unit speed spacelike curve such that n(s) is a spacelike vector

field along γ and kg(s) 6= 0 for all s ∈ I. Consider the hyperbolic dual surface HD±γ of γ.

(1) The singular values of HD±γ are given by h±µDγ(s) = ±e(s).
(2) HD±γ is, at (s0, µ0), locally diffeomorphic to a cuspidal edge if and only if µ0 = 0 and

τg(s0) 6= 0.
(3) HD±γ is, at (s0, µ0), locally diffeomorphic to a swallowtail surface if and only if µ0 = 0,

τg(s0) = 0 and τ ′g(s0) 6= 0.

Proof. By Corollary 5.3, the discriminant set DH of the family of hyperbolic height functions
H on γ is the hyperbolic dual surface of γ. It follows from Proposition 5.2 (3) and (4) that hv
has an A2-singularity (respectively, an A3-singularity) at s0 if and only if µ0 = 0 and τg(s0) 6= 0
(respectively, µ0 = 0, τg(s0) = 0 and τ ′g(s0) 6= 0). By Theorem 2.2 and Proposition 5.4, this
completes the proof. �

6. Invariant and special geometry of the hyperbolic dual surface

In this section, we investigate the geometric properties of a hyperbolic dual surface HD±γ at
its singularities by using the invariant τg of γ. The de Sitter focal surfaces of hyperbolic space
curves are studied in [3].

Proposition 6.1. Let γ : I → S3
1 be a unit speed spacelike curve such that n(s) is a spacelike

vector field along γ and kg(s) 6= 0 for all s ∈ I. Consider the singular values h±µDγ(s) of the
hyperbolic dual surface. The following conditions are equivalent:

(a) h±µDγ(s) is a constant vector v0 ∈ H3(−1),
(b) τg(s) ≡ 0,
(c) γ is part of the elliptic de Sitter quadric QDE(v0, 0).

Proof. If the hyperbolic dual surface is singular at (s, µ), then µ = 0. Therefore,

h±µDγ(s) = HD±γ (s, µ) = ±e(s) and
∂HD±γ
∂s

(s, µ) = ±τg(s)n(s) ≡ 0

if and only if τg(s) ≡ 0. This means that assertion (a) is equivalent to assertion (b). Suppose
that τg(s) ≡ 0 then h±µDγ(s) = ±e(s) = ±v0 is constant. Since 〈γ(s),±e(s)〉 = 0, then

γ(s) ∈ S3
1 ∩ HP (e(s), 0), where v0 = e(s) that is a timelike vector. Therefore, assertion (b)

implies assertion (c).
On the other hand, suppose that Imγ ⊂ QDE(v, 0) = S3

1 ∩HP (v, 0), where v is a timelike
fixed vector. Then we have hv(s) = 〈γ(s), v〉 = 0 for all s ∈ I. By Proposition 5.2, (4), τg(s) ≡ 0.
This completes the proof. �

Proposition 6.1 characterizes the case when γ is contained in the elliptic de Sitter quadric:
τg(s) ≡ 0. If τg(s) 6≡ 0 the result below shows that the degeneracy of the singularities of HD±γ
characterize the contact of the γ with elliptic de Sitter quadrics.

Theorem 6.2. Let γ : I → S3
1 be a unit speed spacelike curve such that n(s) is a spacelike vector

field along γ, kg 6= 0 and τg 6≡ 0. For v0 = HD±γ (s0, µ0), we have the following:

(1) γ has at least 2-point contact with QDE(v0, 0) at s0 if and only if µ0 = 0, equivalently,
the hyperbolic dual surface of γ is singular at (s0, µ0).

(2) γ has 2-point contact with QDE(v0, 0) at s0 if and only if µ0 = 0 and τg(s0) 6= 0,
equivalently, the hyperbolic dual surface of γ is locally diffeomorphic to a cuspidal edge.
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(3) γ has 3-point contact with QDE(v0, 0) at s0 if and only if µ0 = 0, τg(s0) = 0 and
τ ′g(s0) 6= 0, equivalently, the hyperbolic dual surface of γ is locally diffeomorphic to a
swallowtail surface.

Proof. For v0 = HD±γ (s0, µ0), we define a map h̃v0 : S3
1 → R by h̃v0(x) = 〈x, v0〉. Thus, we have

(h̃v0)
−1

(0) = QDE(v0, 0). In this case, g(s) = h̃v0 ◦ γ(s) = hv0(s) and then the proof follows
from Definition 2.1, Proposition 5.2 and Theorem 5.5.

�

7. Dual relations on horospherical and hyperbolic dual surfaces

We require some properties of contact manifolds and Legendrian submanifolds for the duality
results in this section, and we now review these concepts (for more details see, for example, [1]).

Let N be a (2m + 1)-dimensional smooth manifold and K be a field of tangent hyperplanes
on N . Locally, K is defined as the kernel of a 1-form θ. We say that the tangent hyperplane
field K is non-degenerate if θ∧ (dθ)m 6= 0 at any point on N . The pair (N,K) is called a contact
manifold if K is a non-degenerate hyperplane field. In this case, we call K a contact structure
and θ a contact form. A submanifold i : L ⊂ N of a contact manifold (N,K) is Legendrian if
dimL = m and dix(TxL) ⊂ Ki(x) at any x ∈ L, where i is an immersion. A smooth fibre bundle
π : E → M is a Legendrian fibration if its total space E is furnished with a contact structure
and the fibers of π are Legendrian submanifolds. For a Legendrian submanifold i : L ⊂ E,
π ◦ i : L → M is called a Legendrian map. We call the image of the Legendrian map π ◦ i a
wavefront set of i, which is denoted by W (i).

The duality concepts we use here are those introduced in [6] and [5] (the Legendrian dualities
between pseudo-spheres in Lorentz-Minkowski space), where five Legendrian double fibrations
are considered on the subsets ∆i, i = 1, . . . , 5 of the product of two of the pseudo-spheresHn(−1),
Sn1 and LC∗. Here we use only i = 1, 2, 3. We define one-forms 〈dv, w〉 = w0dv0 +

∑n
i=1 widvi,

〈v, dw〉 = v0dw0 +
∑n
i=1 vidwi on Rn+1

1 × Rn+1
1 , and consider the following three Legendrian

double fibrations.

(1) (a) Hn(−1)× Sn1 ⊃ ∆1 = {(v, w) | 〈v, w〉 = 0},
(b) π11 : ∆1 → Hn(−1), π12 : ∆1 → Sn1 ,

(c) θ11 = 〈dv, w〉 |∆1
, θ12 = 〈v, dw〉 |∆1

.

(2) (a) Hn(−1)× LC∗ ⊃ ∆2 = {(v, w) | 〈v, w〉 = −1},
(b) π21 : ∆2 → Hn(−1), π22 : ∆2 → LC∗,

(c) θ21 = 〈dv, w〉 |∆2
, θ22 = 〈v, dw〉 |∆2

.

(3) (a) LC∗ × Sn1 ⊃ ∆3 = {(v, w) | 〈v, w〉 = 1},
(b) π31 : ∆3 → LC∗, π32 : ∆3 → Sn1 ,

(c) θ31 = 〈dv, w〉 |∆3 , θ32 = 〈v, dw〉 |∆3 .

Here, πi1(v, w) = v, πi2(v, w) = w are the canonical projections. We remark that θ−1
i1 (0) and

θ−1
i2 (0) define the same tangent hyperplane field over ∆i which is denoted by Ki, (i = 1, 2, 3).

It has been shown in [6] that each (∆i,Ki) (i = 1, 2, 3) is a contact manifold and πi1 and πi2
(i = 1, 2, 3) are Legendrian fibrations. Moreover, the contact manifolds (∆1,K1), (∆2,K2) and
(∆3,K3) are contact-diffeomorphic to each other.
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For a given Legendrian embedding Li : U → ∆i, i = 1, 2, 3, we say that πi1(Li(U)) is the ∆i-
dual of πi2(Li(U)) and vice-versa (see [4]). In the next result, to show duality, we have to show
that the immersion Li : U → ∆i, i = 1, 2, 3 is a Legendrian immersion , i.e., dimU = m and
(dLi)x(Tx(U)) ⊂ KLi(x) for all x ∈ L (see also [6]). Equivalently, Li is a Legendrian immersion
if dimU = m and Li∗θi1 = 0 (see, e.g., [9]). Therefore, we can show that a submanifold is
Legendrian using the second definition.

We have the following relations on horospherical and hyperbolic dual surfaces. We observe
that here n = 3, m = 2 and dim ∆i = 5, i = 1, 2, 3. (For hyperbolic curves γ, the are duality
results in [4] for hyperbolic focal surface and de Sitter focal surface of γ).

Theorem 7.1. Let γ : I → S3
1 be a unit speed spacelike curve such that kg(s) 6= 0 for all s ∈ I.

Then

(1) γ is ∆1-dual of HD±γ .

(2) γ is ∆3-dual of HS±γ .

(3) HD±γ is ∆2-dual of HS±γ .

Proof. (1) Define the mapping L1 : I × J → ∆1 by L1(s, µ) = (HD±γ (s, µ), γ(s)), where

M = π11(L1(I × J)) = HD±γ (s, µ) = µn(s)±
√
µ2 + δ(γ(s))e(s)

and

M∗ = π12(L1(I × J)) = γ(s).

Then 〈HD±γ (s, µ), γ(s)〉 = 0, so the mapping is well-defined, i.e., L1(s, µ) ∈ ∆1. We have

∂L1

∂s
(s, µ) = (−δ(γ(s))µkg(s)t(s)±

√
µ2 + δ(γ(s))τg(s)n(s) + µτg(s)e(s), t(s))

∂L1

∂µ
(s, µ) = (n(s)± µ√

µ2 + δ(γ(s))
e(s), 0),

and so L1 is an immersion. Since L∗1θ12 = 〈HD±γ (s, µ), t(s)〉ds = 0, then, by definition, L1(I×J)
is a Legendrian submanifold in ∆1.

(2) We also define the mapping L3 : I × J → ∆3 by L3(s, µ) = (HS±γ (s, µ), γ(s)), where

HS±γ (s, µ) = γ(s) +µn(s)±
√
µ2 + δ(γ(s))e(s). Thus, 〈HS±γ (s, µ), γ(s)〉 = 1, i.e., L3(s, µ) ∈ ∆3

and the proof follows as in (1).
(3) We now define the mapping L2 : I × J → ∆2 by L2(s, µ) = (HD±γ (s, µ), HS±γ (s, µ)).

Then we have

〈HD±γ (s, µ), HS±γ (s, µ))〉 = µ2δ(γ(s)) + (µ2 + δ(γ(s)))(−δ(γ(s))) = −1.

Thus, L2(s, µ) ∈ ∆2, so the mapping is well-defined. Since

∂L2

∂s
(s, µ) = (−δ(γ(s))µkg(s)t(s)±

√
µ2 + δ(γ(s))τg(s)n(s) + µτg(s)e(s),

(1− δ(γ(s))µkg(s))t(s)±
√
µ2 + δ(γ(s))τg(s)n(s) + µτg(s)e(s))

∂L2

∂µ
(s, µ) = (n(s)± µ√

µ2 + δ(γ(s))
e(s), n(s)± µ√

µ2 + δ(γ(s))
e(s)),
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L2 is an immersion, because −δ(γ(s))µkg(s) 6= 0 or 1− δ(γ(s))µkg(s) 6= 0. Moreover,

L∗2θ21 =
〈
d(HD±γ (s, µ)), HS±γ (s, µ)

〉
=

〈
∂HD±γ
∂s

(s, µ)ds+
∂HD±γ
µ

(s, µ)dµ,HS±γ (s, µ)

〉
=
〈
−µδ(γ(s))kg(s)t(s)±

√
µ2 + δ(γ(s))τg(s)n(s) + µτg(s)e(s), γ(s)

〉
ds+〈

τg(s)(µe(s)±
√
µ2 + δ(γ(s))n(s))− µδ(γ(s))kg(s)t(s), µn(s)±

√
µ2 + δ(γ(s))e(s)

〉
ds

+

〈
n(s)± µ√

µ2 + δ(γ(s))
e(s), γ(s) + µn(s)±

√
µ2 + δ(γ(s))e(s)

〉
dµ = 0.

Therefore, L2(I × J) is a Legendrian submanifold in ∆2.
�
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