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A POLYNOMIAL INVARIANT FOR PLANE CURVE COMPLEMENTS:

KRAMMER POLYNOMIALS

MEHMET AKTAŞ, SERDAR CELLAT, AND HUBEYB GURDOGAN

Abstract. We use the Krammer representation of the braid group in Libgober’s invariant
and construct a new multivariate polynomial invariant for curve complements: Krammer

polynomial. We show that the Krammer polynomial of an essential braid is equal to zero. We

also compute the Krammer polynomials of some certain n-gonal curves.

1. Introduction

The study of the topology of algebraic curves has a long history. The main question which
has been worked on is “If C is an algebraic curve in a complex projective plane P 2, what is the
fundamental group of P 2 −C?”.

The fundamental group of the complement of a projective plane curve (henceforth referred
to as “the fundamental group of the curve”) can be studied in terms of a generic projection of
the complement to P 1 and the braid monodromies around the singular fibers. The Zariski-van
Kampen theorem gives a way to compute a presentation of the fundamental group of a plane
curve from the braid monodromies [10].

In general, computing the fundamental group of a curve complement is not an easy task and
it is also hard to distinguish two fundamental groups by their presentations. In the early 80’s,
A. Libgober defined the Alexander polynomial as an invariant of the fundamental group [7]. He,
for example, showed that in Zariski’s famous example, the sextic with 6 cusps has the Alexander
polynomial t2 − t + 1 if all cusps are one a conic and 1 if they are not.

In 1989, Libgober defined a more general polynomial invariant based on the braid mon-
odromies using the representations of the braid group [8]. He also showed that this invariant
coincides with the Alexander polynomial when the Burau representation of the braid group is
used. He proposed to use other representations to get other polynomial invariants, possibly
multivariate polynomials [9].

1.1. Main Results. In this paper, we use the Krammer representation of the braid group in
Libgober’s invariant and construct a new multivariate polynomial invariant, Krammer polyno-
mials. Our first result is about the Krammer polynomial corresponding to an essential braid:

Theorem 1. The Krammer polynomial of an essential braid b ∈ Bn is equal to zero.

We also study the Krammer polynomials of the n-gonal curves. An n-gonal curve is an
algebraic curve equipped with a pencil of degree n (see Section 2.1 for more information). Using
Theorem 1, we compute the local Krammer polynomials of the n-gonal curves around a special
type singular fiber:
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Theorem 2. Let C be a completely reducible n-gonal curve and F be its singular fiber where
only m components intersect with m < n. Then the local Krammer polynomial for the mon-
odromy around F is equal to zero.

We show that the Krammer polynomial of an n-gonal curve is not always zero:

Theorem 3. The Krammer polynomial k(t, q) of a completely reducible n-gonal curve C that
has one singular fiber only is given by

(t2dq6d − 1)(
n
2
)

where d is maximum degree of the irreducible components of C.

Organization of the paper. The paper is structured as follows: In Section 2, we briefly
define the n-gonal curves and the braid monodromy of the n-gonal curves. In Section 3, we
define the Krammer representation of the braid group and Libgober invariant. We introduce
the Krammer polynomials of curve complements in this section. In Section 4, we present some
results on the Krammer polynomial of essential braids. In Section 5, we study the Krammer
polynomials of the n-gonal curves and prove our last two main results. We conclude our work
in Section 6.

2. Preliminaries

In this chapter, we define the n-gonal curves and the braid monodromy of the n-gonal curves
which is the important tool for computing the invariants of curve complements.

2.1. The n-gonal curves . Let Σ = P 1 × P 1 and let p ∶ Σ → P 1 be a projection of Σ to one of
its components. Let E be a section of p and for each b in P 1, let Fb be the fiber over b.

Definition 1. An n-gonal curve is a curve C ⊂ Σ not containing E or a fiber of Σ as a component
such that the restriction p ∶ C → P 1 is a map of degree n, i.e., each fiber intersects with C in
at most n points. In the affine part, C is defined by F (x, y) = 0 with F (x, y) ∈ C[x, y] where
degyF = n.

As we understand from previous definition, fibers do not have to intersect with C ∪ E at
n + 1 points. A singular fiber of an n-gonal curve C ∈ Σ is a fiber F of Σ intersecting C ∪ E
geometrically fewer than n + 1 points.

In this paper, we sometimes narrow our studies for a special subset of the n-gonal curves.

Definition 2. An n-gonal curve C is completely reducible if it is defined by

F (x, y) = (y − y1(x))⋯(y − yn(x)) = 0,

where yi ∈ C[x] for all i ∈ {1, ..., n} in the affine part.

2.2. The Braid Monodromy of the n-gonal Curves. Let C be an n-gonal curve. Let
F1, F2, ..., Fr be the singular fibers of C and E be the distinguished section. Pick a nonsingular
fiber F and let F ♯ = F ∖ (C ∪ E). Clearly, F ♯ is equal to F ∖ E with n punctures, i.e., it is
isomorphic to n-punctured complex disk Dn. Let B♯ = P 1 ∖ {p1, p2, ..., pr} where pi is the image
under the ruling of the corresponding singular fiber Fi.

We know that π1(F ♯) = ⟨α1, ..., αn⟩ where αi is the loop which covers i-th intersection of the
fiber F ♯ and the n-gonal curve C and π1(B♯) = ⟨γ1, ..., γr⟩ where γj is the loop which covers pj .
For each j = 1, ..., r, dragging the fiber F along γj and keeping the base point results in a certain
automorphism mj ∶ π1(F ♯) → π1(F ♯), which is called the local braid monodromy of γj . The set
of all local braid monodromies {m1, ...,mr} is called the global braid monodromy.
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3. The Krammer Polynomial as a topological invariant

In this section, we will first present the matrices for the Krammer representation and then con-
struct the Krammer polynomial. (For more information about the representation, see
Appendix A.)

3.1. Matrices for the Krammer representation. The Krammer representation K(t, q) is a
representation of the braid group Bn in GLm(Z[q±1, t±1]) = Aut(Fm) where m = (n

2
) and Fm is

the free module of rank m over Z[q±1, t±1] [5]. The representation can be formulated as follows:

K(σk)(ei,j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tq2ek,k+1 i = k, j = k + 1;

(1 − q)ei,k + qei,k+1 j = k, i < k;

ei,k + tqk−i+1(q − 1)ek,k+1 j = k + 1, i < k;

tq(q − 1)ek,k+1 + qek+1,j , i = k, k + 1 < j;
ek,j + (1 − q)ek+1,j i = k + 1, k + 1 < j;
ei,j , i < j < k or k + 1 < i < j;
ei,j + tqk−i(q − 1)2ek,k+1 i < k < k + 1 < j

where {ei,j}1≤i<j≤n is the free basis of Fm.

For example, for the braid group B3, here is the matrix representation of its Artin generators:

K(σ1) =
⎛
⎜
⎝

tq2 0 0
tq(q-1) 0 q

0 1 1-q

⎞
⎟
⎠

K(σ2) =
⎛
⎜
⎝

1 − q q 0
1 0 tq2(q − 1)
0 0 tq2

⎞
⎟
⎠

3.2. The Krammer Polynomial. In [8], Libgober defined a polynomial invariant employing
the representations of the braid group as follows: Let C be an algebraic curve and {p1, ..., pr}
be the set of its singularities. Let ρ be a d dimensional linear representation of the braid group
Bn over the ring A of Laurent polynomials Q[t±1

1 , ..., t±1
k ] for k ∈ N .

Definition 3. The Libgober invariant, P (C,ρ), is the greatest common divisor of the order d
minors in the N × d matrix of the map ⊕(ρ(m(γi))−Id), where N = rd, γi is the loop encloses
pi and m(γi) is the braid monodromy of the loop γi. We call this matrix the Libgober matrix.

Now, we can define the Krammer polynomial.

Definition 4. If we take ρ as the Krammer representation K of the braid group in the Libgober’s
invariant, then P (C,K) gives the Krammer polynomial kC(t, q) of C.

Here is an example for a Krammer polynomial of a trigonal curve.

Example 1. Let C ∶ (y − x3)(y + x3)(y − 4x) be a trigonal curve. It has the singular fiber x = 0.
Using the algorithm in [1], we find the corresponding braid monodromy as follows:

σ1σ2σ1(σ2)4σ1σ2σ1

The corresponding Libgober matrix LC is

⎛
⎜⎜
⎝

t6q14 − 1 0 0

t3q8(q − 1)(t3q5 + tq2 − q + 1) t2q9 − t2q8 + t2q7 − 1 −t2q7 q
4
−1

q+1

t3q7(q − 1)(t2q4 − tq3 + tq2 + q2 − q + 1) t2q6(q − 1)(q2 + 1) t2q6 q
5
+1

q+1
− 1

⎞
⎟⎟
⎠
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The Krammer polynomial is given by the greatest common divisor of the order 3 minors in
LC . Since we just compute the local Krammer polynomial around the singular fiber x = 0, it is
equal to the determinant of LC which gives

kC(t, q) = (t6q14 − 1)(t2q10 − 1)(t2q6 − 1).

4. Krammer Polynomial of essential braids

In this section, we present some results on the Krammer polynomials of essential braids. Our
main result here is that the Krammer polynomial of an essential braid is zero.

We first define what an essential braid is.

Definition 5. A braid element b in the braid group Bn is an essential braid if it does not have
at least one of the generators in it. For example, b = σ1σ2σ4 ∈ B5 is essential since σ3 is not in b.

Now, we introduce some useful observations about the Krammer representations of essential
braids. Here σni denotes the Artin generator σi of the braid group Bn for 1 ≤ i ≤ n − 1.

Observation 1. For 2 ≤ i ≤ n − 1,

K(σni ) = ( βn−1
i γn−1

i

0 K(σn−1
i−1 ) )

where γn−1
i is an (n − 1) × (n−1

2
) matrix with all zero entries but last n − i entries of the k̂th

column, with k̂ = 1 +∑ij=3(n − j + 1), are

⎛
⎜⎜⎜
⎝

tqi(q − 1)
tqi−1(q − 1)2

⋮
tqi−1(q − 1)2

⎞
⎟⎟⎟
⎠

and

βn−1
i =

⎛
⎜⎜⎜
⎝

Ii−2 0 0 0
0 1-q q 0
0 1 0 0
0 0 0 In−i−1

⎞
⎟⎟⎟
⎠
.

Example 2. Krammer representation of σ4
2 ∈ B4 is

K(σ4
2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 − q q 0 0 0 0
1 0 0 tq2(q − 1) 0 0
0 0 1 tq(q − 1)2 0 0
0 0 0 tq2 0 0
0 0 0 tq(q − 1) 0 q
0 0 0 0 1 1 − q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Now we have a proposition about βn−1
i of K(σni ) in Observation 1:

Proposition 1. Let βn−1
i of K(σni ) be defined as in Observation 1 and let β = ∏rk=1 β

n−1
ik

with
ik ∈ {2, ..., n − 1} for all k. Then det(β − In−1) = 0.

Proof. In general, the equation det(β − λI) = 0 is equivalent to the statement that λ is an
eigenvalue of β. In our case λ = 1. To prove λ = 1 is an eigenvalue, we only need to show that
there exists a vector v such that βv = v. Take v be the all ones vectors, i.e., the vector whose
entries are all equal to 1. Then it is clear that βiv = v for all i. Hence, det(β − In−1) = 0. �



62 MEHMET AKTAŞ, SERDAR CELLAT, AND HUBEYB GURDOGAN

Table 1. The non-trivial columns in the Krammer representation of the Artin
generators of B6

σ1 σ2 σ3 σ4 σ5

tq2 0 0 0 0
tq(q − 1) tq2(q − 1) 0 0 0
tq(q − 1) tq(q − 1)2 tq3(q − 1) 0 0
tq(q − 1) tq(q − 1)2 tq2(q − 1)2 tq4(q − 1) 0
tq(q − 1) tq(q − 1)2 tq2(q − 1)2 tq3(q − 1)2 tq5(q − 1)

0 tq2 0 0 0
0 tq(q − 1) tq2(q − 1) 0 0
0 tq(q − 1) tq(q − 1)2 tq3(q − 1) 0
0 tq(q − 1) tq(q − 1)2 tq2(q − 1)2 tq4(q − 1)
0 0 tq2 0 0
0 0 tq(q − 1) tq2(q − 1) 0
0 0 tq(q − 1) tq(q − 1)2 tq3(q − 1)
0 0 0 tq2 0
0 0 0 tq(q − 1) tq2(q − 1)
0 0 0 0 tq2

Observation 2. For 2 ≤ i ≤ n − 1, the non-zero columns of γn−1
i in Observation 1 add up into

the k̂th column of K(σi) with k̂ = 1+∑k−1
j=1 (n− j). This column is called the non-trivial column

of K(σi).

Example 3. In B6, the non-trivial columns in K(σi) for i ∈ {1,2,3,4,5} are given in Table 1.

Observation 3. For 1 ≤ i ≤ n − 2,

K(σni ) = E ( αn−1
i ηn−1

i

0 K(σn−1
i ) )E

where ηn−1
i is an (n − 1) × (n−1

2
) matrix, E is a fixed elementary unitary matrix that switches

[∑ki=1(n − i)]′th row and column with kth row and column respectively for all k ∈ {1, ..., n − 1}
and

αn−1
i =

⎛
⎜⎜⎜
⎝

Ii−1 0 0 0
0 0 q 0
0 1 1-q 0
0 0 0 In−i−2

⎞
⎟⎟⎟
⎠
.

Example 4. As in Example 2, we work on Krammer representation of σ4
2 ∈ B4. We first color

the rows and columns to be shifted as

K(σ4
2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 − q q 0 0 0 0
1 0 0 tq2(q − 1) 0 0
0 0 1 tq(q − 1)2 0 0
0 0 0 tq2 0 0
0 0 0 tq(q − 1) 0 q
0 0 0 0 1 1 − q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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In the matrix above, the uncolored parts actually gives K(σ3
2), hence we just transform these

parts to the lower right corner by shifting rows and columns, i.e., we obtain

K(σ4
2) = E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 tq(q − 1)2

0 0 q 0 0 tq(q − 1)
0 1 1 − q 0 0 0
0 0 0 1 − q q 0
0 0 0 1 0 tq2(q − 1)
0 0 0 0 0 tq2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

E.

where E is the corresponding elementary matrix.

Proposition 2. Let αn−1
i of K(σni ) be defined as in Observation 3 and let α =∏rk=1 α

n−1
ik

with
ik ∈ {2, ..., n − 1} for all k. Then det(α − In−1) = 0.

Proof. Similar to the Proposition 1, to prove that det(α−In−1) = 0, it suffices to show that there
exists a vector v such that αv = v or αtv = v. Let v be the all ones vectors. Then it is clear that
αtiv = v for all i. Hence, det(αt − In−1) = det(α − In−1) = 0. �

Observation 4. For 1 ≤ i ≤ n − 2,

K(σni ) =
⎛
⎜⎜⎜
⎝

◇ 0 0 0
* 0 qIn−i−1 0
0 In−i−1 (1 − q)In−i−1 0
0 0 0 In′

⎞
⎟⎟⎟
⎠

where ◇ is an n1 ×n1 matrix with n1 = 1+∑i−1
j=1(n− j), ∗ is an (n− i− 1)×n1 matrix and n′ ≥ 0.

Example 5. Krammer representation of σ4
1 ∈ B4 is

K(σ4
1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

tq2 0 0 0 0 0
tq(q − 1) 0 0 q 0 0
tq(q − 1) 0 0 0 q 0

0 1 0 1 − q 0 0
0 0 1 0 1 − q 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Now, we prove our main result in this section.

Theorem 1. The Krammer polynomial of an essential braid b ∈ Bn is equal to zero.

Proof. We will divide the proof into three cases.

(1) b does not have the generator σ1.
(2) b does not have the generator σn−1.
(3) b does not have the generator σi for 1 < i < n − 1.

We prove each case separately.
Case (1): Assume that b does not have the generator σ1, then b ∈< σn2 , ..., σ

n
n−1 >⊂ Bn.

Let b = σni1⋯σ
n
ir

be an essential braid in Bn where 2 ≤ ik ≤ n − 1 for all k ∈ {1, ..., r}. From
Observation 1,
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K(b) =K(σni1⋯σ
n
ir) =K(σni1)⋯K(σnir)

= ( βn−1
i1

γn−1
i1

0 K(σn−1
i1−1)

)⋯( βn−1
ir

γn−1
ir

0 K(σn−1
ir−1)

)

= ( ∏
r
k=1 β

n−1
ik

γ

0 ∏rk=1K(σn−1
ik−1)

) .

Hence, the Krammer polynomial of b is

k(b) = det(K(b) − I) = det( ∏
r
k=1 β

n−1
ik

− I γ

0 ∏rk=1K(σn−1
ik−1) − I

)

= det(
r

∏
k=1

βn−1
ik

− I)det(
r

∏
k=1

K(σn−1
ik−1) − I)

= 0

since det(∏rk=1 β
n−1
ik

− I) = 0 from Proposition 1.
Case (2): Assume that b does not have the generator σn−1, then b ∈< σn1 , ..., σnn−2 >⊂ Bn. Let

b = σni1⋯σ
n
ir

be an essential braid in Bn where 1 ≤ ik ≤ n−2 for all k ∈ {1, ..., r}. In Observation 3,
since E is an elementary unitary matrix, we have

K(b) =K(σni1⋯σ
n
ir) =K(σni1)⋯K(σnir)

= E ( αn−1
i1

ηn−1
i1

0 K(σn−1
i1

) )E⋯E ( αn−1
ir

ηn−1
ir

0 K(σn−1
ir

) )E

= E ( ∏
r
k=1 α

n−1
ik

η

0 ∏rk=1K(σn−1
ik

) )E.

Hence, the Krammer polynomial of b is

k(b) = det(K(b) − I) = det(E ( ∏
r
k=1 α

n−1
ik

η

0 ∏rk=1K(σn−1
ik

) )E − I)

= det(E)det(( ∏
r
k=1 α

n−1
ik

η

0 ∏rk=1K(σn−1
ik

) ) − I)det(E)

= det(( ∏
r
k=1 α

n−1
ik

η

0 ∏rk=1K(σn−1
ik

) ) − I)

= det (
r

∏
k=1

αn−1
ik

− I)det (
r

∏
k=1

K(σn−1
ik

) − I)

= 0

since det(∏rk=1 α
n−1
ik

− I) = 0 from Proposition 2.
Case (3): Assume that b does not have the generator σi for 1 < i < n − 1, i.e.,

b ∈< σ1, ..., σi−1, σi+1, ..., σn−1 >⊂ Bn.
Again, similar to the proof of Proposition 1 and 2, we only need to show that there exists a

vector v such that vK(b) = v (i.e., v is a left-eigenvector with size m = (n
2
)). Hence, it is enough
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to show that there exist a vector v such that vK(σk) = v for all k ∈ {1, ..., i − 1, i + 1, ..., n − 1}.
Let v = [v1, ..., vm] be an m-dimensional vector with vj ∈ Z[q±1, t±1] for 1 ≤ j ≤m. Let us further
partition v as

v = [v1, ..., vm] = [δ1, ..., δn−1]
where δk is a sub-vector of v with n − k elements for 1 ≤ k ≤ n − 1. This partitioning reveals the
relationship among the elements of v and makes its structure more clear. Moreover, we use the
notation δjk for the jth element in δk.

From the identity block matrix of K(σk) in Observation 4, we notice that some elements of
v are equal to each other. That is,

(1) δjk = δ
j−1
k+1

for k ∈ {1, ..., i−1, i+1, ..., n−1} and j ∈ {2, ..., n−1}. Moreover, from the block matrix ( 1-q q
1 0

)
in Observation 1, we get

(2) δj+1
k = qδjk

for all k ∈ {1, ..., n − 2} and j ≤ n − k.
Combining the relations (1) and (2), we obtain 3 different cases for δk,

(3) δk =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[xqk−1, ..., xqi−2,1, q,⋯, qn−i−1] k < i;
[1, q, q2, q3, ..., qn−i−1] k = i;
[yqk−i−1, ..., yqn−i−2] k > i

where x, y ∈ Z[q±1, t±1]. Although δi−k+1
k = δ1

i for k < i can be any non-zero integer, 1 is chosen
for simplicity.

Example 6. For n = 6 and i = 3 (i.e., the braid is in B6 and does not have the generator σ3),
the vector v is given by

v = [x,xq,1, q, q2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
δ1

, xq,1, q, q2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
δ2

,1, q, q2

´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
δ3

, y, yq
±
δ4

, yq

δ̄5

].

Furthermore, the non-trivial column of K(σk) also provides extra relation, call the relation
as fk, that can be employed to find x and y. Indeed, there exist i − 1 relations with entries in
[δ1, ..., δi−1] that include x and n− i−1 linear relations with entries in [δi+1, ..., δn−1] that include
y. More specifically, fk has entries from the last n − k elements of δk for all

k ∈ {1, ..., i − 1, i + 1, ..., n − 1}.
For example, in B6, f2 has entries {δ2

1 , ..., δ
5
1 , δ

1
2 , ..., δ

4
2} where δjk is the j-th element in δk.

Note that all other rows in K(σk) give redundant relations, i.e., the relations (1), (2) and fk
for k ∈ {1, ..., i − 1, i + 1, ..., n − 1} are all relations that the elements of the eigenvector v need to
satisfy.

Lemma 1. There exist unique solutions for x and y in (3) such that the relations fk for

k ∈ {1, ..., i − 1, i + 1, ..., n − 1}
are satisfied.

Proof. First, it is easy to check that fk with k < i gives the relations for x and with k > i for y.
For k < i, fk gives

xtqi+k−1 − tqk−1(1 − qn−i) = xqk−1.
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This yields to the following solution:

x = tq
k−1(1 − qn−i)
qk−1(tqi − 1) = t(1 − q

n−i)
tqi − 1

which is independent from k, i.e., there exists a unique solution for x for all fk with k < i.
Similarly, for k > i, fk gives

ytqk−1 − tqk−1(1 − qn−i) = yqk−i−1.

Hence, we have the following solution for y:

y = tq
k−1(1 − qn−i)

qk−i−1(tqi − 1) = tq
i+1(1 − qn−i)
tqi − 1

.

which is again independent from k, i.e., there exists a unique solution of y for all fk with k > i. �

Now, we give an example for the construction in the lemma above.

Example 7. Let n = 6 and i = 3 again. The vector v and the non-trivial column for each
generator is given by Table 2.

From the non-trivial column of K(σ1), we get the relation f1 as

xtq2 + xtq2(q − 1) + (1 + q + q2)tq(q − 1) = x⇒ xtq3 − tq(1 − q3) = x⇒ x(tq3 − 1) = tq(1 − q3),

which implies

x = tq(1 − q
3)

tq3 − 1
.

Similarly, the non-trivial column of K(σ2) gives the relation f2 as

xtq3(q − 1) + (1 + q + q2)tq(q − 1)2 + xtq3 + (1 + q + q2)tq(q − 1) = xq,

which is simplified into

xq(tq3 − 1) = tq2(1 − q3).
We get the same relation when we cancel the q’s on both sides of the equation, i.e., f2 gives the
same solution for x.

Similarly, we obtain the unique solution for y using the non-trivial columns of K(σ4) and
K(σ5).

From Lemma 1, we finished the construction of the vector v. To sum up,

v = [δ1, ..., δn−1]

where

δk =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[xqk−1, ..., xqi−2,1, q,⋯, qn−i−1] k < i;
[1, q, q2, q3, ..., qn−i−1] k = i;
[yqk−i−1, ..., yqn−i−2] k > i

with

x = t(1 − q
n−i)

tqi − 1
and y = tq

i+1(1 − qn−i)
tqi − 1

.

This completes the proof. �
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Table 2. The corresponding v vector of b ∈ B6 where b does not include the
Artin generator σ3 and the non-trivial columns in the Krammer representation
of the Artin generators for B6

v σ1 σ2 σ3 σ4 σ5

δ1

x tq2 0 0 0 0
xq tq(q − 1) tq2(q − 1) 0 0 0
1 tq(q − 1) tq(q − 1)2 tq3(q − 1) 0 0
q tq(q − 1) tq(q − 1)2 tq2(q − 1)2 tq4(q − 1) 0
q2 tq(q − 1) tq(q − 1)2 tq2(q − 1)2 tq3(q − 1) tq5(q − 1)

δ2

xq 0 tq2 0 0 0
1 0 tq(q − 1) tq2(q − 1) 0 0
q 0 tq(q − 1) tq(q − 1)2 tq3(q − 1) 0
q2 0 tq(q − 1) tq(q − 1)2 tq2(q − 1)2 tq4(q − 1)

δ3

1 0 0 tq2 0 0
q 0 0 tq(q − 1) tq2(q − 1) 0
q2 0 0 tq(q − 1) tq(q − 1)2 tq3(q − 1)

δ4
y 0 0 0 tq2 0
yq 0 0 0 tq(q − 1) tq2(q − 1)

δ5 yq 0 0 0 0 tq2

5. Krammer polynomial of the n-gonal curves

In this section, we compute the Krammer polynomials of two sets of the n-gonal curves. We
already mentioned these results in the introduction section. Here, we will prove these computa-
tions.

First, we compute the local Krammer polynomial around a special singular fiber.

Theorem 2. The local Krammer polynomial for the monodromy around a singular fiber F of
an n-gonal curve where m < n components intersect is equal to zero.

Proof. Since m < n components intersect over F , n − m strands of the corresponding braid
monodromy is fixed. In other words, the braid monodromy gives an essential braid. Hence, from
Theorem 1, we can deduce that the Krammer polynomial around the fiber F is equal to zero �

As the second result, we compute the global Krammer polynomials of the completely reducible
n-gonal curves that have one singular fiber only.

Theorem 3. The global Krammer polynomial of a completely reducible n-gonal curve C that
has one singular fiber only is

(t2dq6d − 1)(
n
2
)

where d is maximum degree of the irreducible components of C.

Proof. Since C has only one singular fiber, it is in the form

(y + a1(x − p1)d + p2)...(y + an(x − p1)d + p2),
where ai ≠ aj ∀i ≠ j, p1, p2 ∈ C and d ∈ Z. In other words, all the irreducible components of C
intersects at x = p1. In this case, there are d full twists around the singular fiber Fp1 . Hence, the

local monodromy around this fiber is (σ1σ2)d. Then, we have the following m×m local Libgober
matrix with m = (n

2
):
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LC =
⎛
⎜
⎝

t2dq6d − 1 ⋯ 0
0 ⋱ 0
0 ⋯ t2dq6d − 1

⎞
⎟
⎠

Furthermore, this matrix is the global Libgober matrix since there is only one singular fiber.
Thus, the Krammer polynomial kC(t, q) is equal to the greatest common divisor of the of the
order m minors in LC which is

kC(t, q) = (t2dq6d − 1)m.
�

6. Conclusion

In this paper, we introduce a new polynomial invariant using Krammer representation of
braid group. We compute the Krammer polynomials of essential braids and some certain n-
gonal curves. We also implement an algorithm to compute the Krammer polynomial of a curve
having its braid monodromies as an input in Sagemath [4] (available from http://www.math.

uco.edu/pages/maktas/Research.htm). As a future task, it would be very interesting to find
out other curves that have non-trivial Krammer polynomials. Moreover, following the same
idea, we plan to use different representations of the braid group to generate different polynomial
invariants. One can use, for example, the Gassner Representation of the pure braid group since
the braids in our case are also pure braids.

Appendix A. Krammer Representation of the Braid Group

One of the popular question in late 20th century was whether the Braid group is linear, i.e.,
it is isomorphic to a subgroup of GL(n,K) for n ∈ N and some field K. It is easy to show that
the Burau representation is faithful for n ≤ 3. Bigelow showed that it is unfaithful for n ≥ 5 [2]
and it is still unknown whether the Burau representation is faithful or not for n = 4.

Another representation, introduced by Lawrence [6], is studied to prove that the Braid group
is linear. Krammer showed that this representation is faithful for the Braid group B4 [5]. Then
finally Bigelow showed that it is faithful for all n [3].

The representation that is mentioned above is called Krammer representation. It is in

GLmZ[q±1, t±1] where m = n(n−1)
2

[5]. Here we will present the definition of the representa-
tion.

Let Dn =D ∖ P where D is the complex disk and P = {p1, ..., pn} with pi ∈D. Let

L =Dn ×Dn ∖∆,

where ∆ denotes the diagonal of Dn ×Dn. Let K be the set of all unoredered pairs of distinct
points in Dn, i.e., K = L/S2. Let α ∶ I → K be a path in K based at k0 = {p0, q0} where p0

and q0 are points on the boundary of Dn. Since the projection L → K is a 2-fold covering, we
can lift α to L, say α′, and it is in the form α′ = (α′1, α′2) where α′i ∶ I → Dn for i ∈ {1,2} and
α′1(s) ≠ α′2(s) for any s ∈ I. If α is a loop, α′1 and α′2 are either both loops or composition of
them results a loop.

Let α ∈ π1(K) and define maps a and b from π1(K) to Z as follows:

a(α) =
⎧⎪⎪⎨⎪⎪⎩

w(α′1) +w(α′2), α′1 and α′2 are both closed loops

w(α′1α′2), otherwise

where w denotes the winding number around the puncture points p1, ..., pn and

b(α) = β2β1

http://www.math.uco.edu/pages/maktas/Research.htm
http://www.math.uco.edu/pages/maktas/Research.htm
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where β1 ∶ I → S1 with

β1(s) = α′1(s)−α
′

2(s)

∣α′1(s)−α
′

2(s))∣

and β2 ∶ S1 → H1(RP 1) ≅ Z is the induced map of the projection S1 → RP 1. In other words, a
counts how many times α′1 and α′2 winds around the puncture points and b counts how many
times they wind around each other. Now, define a map φ ∶ π1(K)→ ⟨q, t⟩ by

φ(α) = qa(α)t−b(α).
Let K̃ be the regular covering of K corresponding to the kerφ. Let h be a homemorphism of

Dn to itself. Clearly, this induces a homemorphism hK of K to itself by

hK({d1, d2}) = {h(d1), h(d2)}
and this can be lifted to a homeomorphism h̃K ∶ K̃ → K̃. Since the group ⟨q, t⟩ acts on K̃

as a group of covering transformations, the homology H2(K̃) is a Z[q±1, t±1]-module. Hence,

h̃ commutes with the covering transformations q and t, and h̃ induces a Z[q±1, t±1]-module

isomorphism h̃∗ ∶H2(K̃)→H2(K̃). The representation κ ∶ Bn → Aut(H2(K̃)) where

κ(h) = h̃∗

is called the Krammer representation of Bn.
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