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ON VERTICES AND INFLECTIONS OF PLANE CURVES

FABIO SCALCO DIAS AND FARID TARI

Abstract. We count the number of inflections (I) and vertices (V ) concentrated at the
singularity of a germ of a parametrised plane curve and show that V = I + µ− 2, where µ is

the Milnor number of a certain singularity.

1. Introduction

There exist various counting formulae relating special points on a smooth (C∞) closed plane
curve. There are also lower bounds giving the minimum number of such special points on the
curves. For instance, the 4-vertex theorem states that any simple closed curve in the Euclidean
plane has at least 4 vertices (see [4] for a survey article). Formulae relating the number of
bitangencies, the number of inflections and the number of cusps on a closed plane curve are
obtained in [10, 11]. Such points are in fact projective invariant and a similar formula is obtained
in [15] for curves in the projective plane. In [8] the authors considered curves defined on an
interval and proved that, under some conditions, the formula in [11] still holds. Further work in
[7] includes cusp points. Other local and global formulae for curves parametrised by polynomials
are given in [7]. There is also work on inflections and vertices of sections of surfaces, flattenings
and Darboux vertices of space curves in, for example, [1, 9, 12, 17, 18].

Here we are concerned with vertices and inflections of germs of smooth, but not necessarily
regular, curves in the Euclidean plane. For a regular plane curve γ, a vertex is a point where
the derivative of its curvature function vanishes. Vertices can be captured by the evolute of γ
which is the locus of centres of its osculating circles (i.e., the centres of circles that have at least
3-point contact with γ). Vertices are points where the osculating circles have at least 4-point
contact with γ and the centres of such circles are where the evolute is singular. Another way of
characterising vertices is via the singularities of the distance squared functions on γ. A point
p on γ is a vertex if and only if the distance squared function from the centre of curvature
associated to p has an Ak-singularity with k ≥ 3 (i.e., it can be reduced by a change of variable
to ±tk+1, k ≥ 3). Varying the centres of the circles in the plane gives the family of distance
squared functions. The evolute is the bifurcation set of this family (see for example [3] and §2).

Our study is local in nature, so we consider germs of plane curves at a given point which we
take to be the origin. When the germ of the curve γ is singular, we call the closure of the centres
of the osculating circles of γ with its singular point removed the proper evolute of γ. The proper
evolute intersects the limiting normal line at the singular point of γ at a point c0 which could
be at infinity. In fact, any point on the limiting normal line is a centre of an osculating circle at
the singular point of γ, and the bifurcation set of the family of distance squared functions on γ
(the full evolute) consists of the proper evolute together with the limiting normal line counted
with multiplicity l. It turns out that when c0 is not at infinity, the number l coincides with the
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number I of inflections concentrated at the singular point (Theorem 3.5). The point c0 is also
where the singularity at the origin of the distance squared function from c0 is more degenerate
than that from any other point on the limiting normal line (Proposition 3.3). Let µ be the
Milnor number of this singularity. We prove in Theorem 3.4 that the number V of vertices of γ
concentrated at the singular point satisfies

V = I + µ− 2.

We give in §4 examples of deformations of singularities where I simple inflections and V
simple vertices appear on the deformed curve.

2. Preliminaries

Let γ : I → R2 be a smooth curve in the Euclidean plane where I is an open interval of R.
Suppose that γ is a regular curve parametrised by arc length s and write t(s) = γ′(s) for its
unit tangent vector. We denote by n(s) the unit normal vector to γ obtained by rotating t(s)
anti-clockwise by an angle of π/2. Then t′(s) = κ(s)n(s), where κ(s) is the curvature of γ at s.
The evolute of γ is the curve parametrised by

e(s) = γ(s) +
1

κ(t)
n(s).

When the parameter t of γ(t) = (x(t), y(t)) is not necessarily the arc length parameter, the
curvature is given at any t by

κ =
x′y′′ − x′′y′

(x′2 + y′2)
3
2

.

We observe that if t0 is a singular point of γ, then (x′y′′ − x′′y′)(t0) = 0. Away from the
singular points of γ the denominator of κ is strictly positive, so if we denote the numerator of κ
by ι = x′y′′ − x′′y′, a point t0 is an inflection if and only of

(1) ι(t0) = (x′y′′ − x′′y′)(t0) = 0.

Similarly, by differentiating the curvature function, a point t0 is a vertex if and only if the
numerator υ(t) of κ′(t) vanishes at t0, that is

(2) υ(t0) =
(
(x′2 + y′2)(x′y′′′ − x′′′y′) + 3(x′x′′ + y′y′′)(x′′y′ − x′y′′)

)
(t0) = 0.

Remark 2.1. When the curve is parametrised in Monge-form γ(t) = (t, f(t)), a point t0 is an
inflection if and only if f ′′(t0) = 0 and a vertex if and only if(

(1 + f ′2)f ′′′ − 3f ′(f ′′)2
)

(t0) = 0.

The vertices of γ and its evolute can be picked up by the family of distance squared functions
D : I × R2 → R on γ given by

D(t, c) = 〈γ(t)− c, γ(t)− c〉,
where 〈, 〉 is the scalar product in R2. For c fixed, we write Dc(t) = D(t, c). The function Dc

measures the contact of the curve γ with circles centred at c (see for example [3]). When γ is a
regular curve, D′c(t0) = D′′c (t0) = 0 if and only if c is the point e(t0) on the evolute of γ. Thus,
the

Evolute =
{
c ∈ R2 : Dc has an A≥2 − singularity at some t ∈ I

}
,
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which is precisely the (local) bifurcation set of the family D. When γ is singular, we call the
bifurcation set of the family D the full evolute of γ and define the proper evolute of γ as the
closure of the centres of the osculating circles of γ with its singular point removed.

Inflections can be picked up by the family of height functions H : I × S1 → R on γ given by

H(t, v) = 〈γ(t), v〉,

where S1 denotes the unit circle in R2. The height function Hv(t) = H(t, v) is singular at t0 if
and only if v is parallel to the normal direction of γ at t0. When γ is regular, the singularity is
of type A≥2 if furthermore the point γ(t0) is an inflection point. (The discriminant of the family
H gives the dual of the curve γ.)

We denote by ord(f) the order of a smooth function f at t = 0, i.e., the first integer k such
that the kth order derivative f (k)(0) 6= 0. Thus, f has an Ak-singularity at t = 0 if and only if
ord(f) = k + 1. The Milnor number of f at t = 0 is µ = dimR E1/〈f ′〉 = ord(f) − 1, where E1
the ring of germs of smooth functions (R, 0)→ R.

3. Counting vertices and inflections

Let γ be a germ of a possibly singular smooth (C∞) plane curve. We choose a system of
coordinates in R2, assume that the point of interest is the origin and write γ(t) = (x(t), y(t)).
We make the following assumptions in this paper:

Assumption 1: x(t) and y(t) are not germs of flat-functions,
i.e. ord(x)(0) <∞ and ord(y)(0) <∞.

Assumption 2: y(t) is not a multiple of x(t) by a non-zero constant.

The set of germs of smooth plane curves can be identified with E21 = E1 × E1 and given the
Whitney topology. The subset of germs of plane curves satisfying Assumptions 1 and 2 above
form an open and dense subset of E21 .

With the above assumptions, we can reparametrise the curve, make isometric changes of
coordinates in the plane and write

(3) γ(t) = (tm,

k∑
i=m+1

ait
i +O(tk+1)).

Again, with the above assumptions, the curve γ has a limiting tangent and normal directions
at t = 0. We can define the multiplicity of γ as the order of the height function along the limiting
normal direction. The integer m in (3) is precisely the multiplicity of the curve at its singular
point.

We define, for reasons that will be apparent later,

n1 := min{i : ai 6= 0, i 6= 2m}.

If γ is analytic and n1 < 2m, then n1 is the first Puiseux exponent β1.
We define, in the usual way, the number of inflections I and the number of vertices V con-

centrated at the singular point of γ by

I = dimR
E1

〈x′y′′ − x′′y′〉
,

V = dimR
E1

〈(x′2 + y′2)(x′y′′′ − x′′′y′) + 3(x′x′′ + y′y′′)(x′′y′ − x′y′′)〉
.

Clearly, I = ord(ι)(0) and V = ord(υ)(0).
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Theorem 3.1. For γ as in (3),

I =

{
3m− 3 if n1 > 2m and a2m 6= 0
m+ n1 − 3 otherwise

V =

{
3m+ n1 − 6 if n1 < 4m, or n1 > 4m and a2m = 0
7m− 6 if n1 = 4m and a4m − a32m 6= 0, or n1 > 4m and a2m 6= 0

Proof. The proof follows by calculating the order of the functions ι and υ at the origin. For γ
as in (3), we have

ι(t) =

{
2a2mm

3t3m−3 +O(t3m−2) if a2m 6= 0 and n1 > 2m
an1

n1m(n1 −m)tm+n1−3 +O(tm+n1−2) otherwise

and the value of I follows. Similarly, for calculating the vertices V we have

υ(t) =

{
an1m

3n1(2m− n1)(m− n1)t3m+n1−6 +O(t3m+n1−5) if n1 < 4m, or n1 > 4m and a2m = 0

24m6(a4m − a32m)t7m−6 +O(t7m−5) if n1 = 4m and a4m − a32m 6= 0

−24a32mm
6t7m−6 +O(t7m−5) if n1 > 4m and a2m 6= 0

�

Remarks 3.2. 1. One can also calculate the number of vertices when a4m − a32m = 0. A
condition depending on the non-vanishing of a polynomial in the coefficients ai, i ≥ 2m, is then
required.
2. Theorem 3.1 is also valid for regular curves. In this case m = 1 and

I =

{
0 if n1 > 2 and a2 6= 0
n1 − 2 otherwise

V =

{
0 if n1 = 3
1 if n1 ≥ 4 and a32 − a4 6= 0

Guided by the example of the cusp (see Figure 1), we shall seek an interpretation of the
formula of V in Theorem 3.1 using the bifurcation set of the family of distance squared function
D on γ, given by

D(t, c) = (tm − a)2 +

( k∑
i=m+1

ait
i +O(tk+1)− b

)2

,

with c = (a, b).

Proposition 3.3. Let γ be a germ of a singular curve parametrised as in (3). Then the distance
squared function Dc on γ has a degenerate singularity at t = 0 for any point c on the limiting
normal line a = 0 of γ at t = 0. There is a unique point c0 on this line where the singularity
of Dc0 at t = 0 is more degenerate than any other singularity of Dc at t = 0, with c 6= c0. The
Milnor number µ of Dc0 is given by

µ =

 2m− 1 if n1 < 2m
n1 − 1 if 2m < n1 < 4m
4m− 1 if n1 = 4m and a4m − a32m 6= 0, or n1 > 4m and a2m 6= 0

The point c0 is at infinity when n1 > 2m and a2m = 0, and the associated circle becomes a
line. The Milnor number of the height function on γ along a normal direction to this line is
n1 − 1.

When c0 is not at infinity, it is precisely the point of intersection of the proper evolute with
the limiting normal line to γ at its singular point.
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Proof. We divide the proof in two cases: n1 < 2m and n1 > 2m.
For the case n1 < 2m we have γ(t) = (tm, an1

tn1 +O(tn1+1)), so

D(t, c) = (tm − a)2 + (an1t
n1 +O(tn1+1)− b)2

= a2 + b2 − 2atm − 2ban1
tn1 + t2m − 2bO(tn1+1) +O(t2n1).

On the limiting normal line a = 0, Dc has an An1−1-singularity except when b = 0, that is
when c0 = (0, 0). The function Dc0 has an A2m−1-singularity, so its Milnor number is µ = 2m−1.

For the second case n1 > 2m, we write γ(t) = (tm, a2mt
2m + an1t

n1 +O(tn1+1)). Thus,

D(t, c) = (tm − a)2 + (a2mt
2m + an1

tn1 +O(tn1+1)− b)2
= a2 + b2 − 2atm + (1− 2ba2m)t2m − 2ban1t

n1 + a22mt
4m

−2bO(tn1+1) +O(t2m+n1).

Suppose that a2m 6= 0. Then, on the limiting normal line a = 0, the function Dc has an
A2m−1-singularity for all b except when b = b0 = 1/(2a2m). If we write c0 = (0, b0), then Dc0

has An1−1-singularity (so µ = n1 − 1) if n1 < 4m. When n1 = 4m, we have

Dc0(t) = b20 −
1

a2m
(a4m − a32n)t4m +O(t4m+1)

and this is an A4m−1-singularity (so µ = 4m − 1) provided a4m − a32n 6= 0. If n1 > 4m, the
singularity of Dc0 is of type A4m−1.

Suppose now that a2m = 0. This means that c0 above is at infinity, so the circle of centre
c0 becomes the horizontal line and the distance squared function becomes the height function
along the direction (0, 1). This height function is given by an1

tn1 +O(tn1+1) and has an An1−1-
singularity.

The evolute is parametrised by e(t) = γ(t) + (1/κ(t))n(t), t 6= 0. If we write γ = (x, y), then

n = (x′2 + y′2)−
1
2 (−y′, x′) and κ = (x′2 + y′2)−

3
2 ι. It follows that

e = (x− x′2 + y′2

ι
y′, y +

x′2 + y′2

ι
x′).

Using the expression for ι(t) in the proof of Theorem 3.1, we conclude that

c0 =

{
(0, 0) if n1 < 2m

(0, 1
2a2m

) if n1 > 2m and a2m 6= 0

above is precisely the limit of e(t) as t→ 0. (When n1 > 2m and a2m = 0, e(t) goes to infinity
on the line a = 0 as t→ 0.) �

We can now relate the number of vertices V , the number of inflections I and the Milnor
number µ of Dc0 (Proposition 3.3) as follows.

Theorem 3.4. Let γ be a germ of a smooth curve satisfying Assumptions 1 and 2. Suppose
further that the point c0 where the proper evolute intersects the limiting normal line of γ at its
singular point is not at infinity. Then

V = I + µ− 2.

Proof. We take γ as in (3) and compute the values of V, µ and I using Theorem 3.1 and Propo-
sitions 3.3 and these are as in Table 1. The proof becomes a matter of checking the formula for
these values. Observe that when n1 = 4m, we need the condition a4m − a32n 6= 0.

When c0 is at infinity (a2m = 0 and n1 > 2m), we have I = m + n1 − 3 and µ = n1 − 1, so
I + µ− 2 = m+ 2n1 − 6 6= V . (Here V = 3m+ n1 − 6 if n1 6= 4m or to 7m− 6 if n1 = 4m and
a4m 6= 0; see Theorem 3.1.) �
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Table 1. Values of V, µ and I.

Conditions I µ V
n1 < 2m m+ n1 − 3 2m− 1 3m+ n1 − 6

2m < n1 < 4m 3m− 3 n1 − 1 3m+ n1 − 6
4m < n1 3m− 3 4m− 1 7m− 6

n1 = 4m, a4m − a32m 6= 0 3m− 3 4m− 1 7m− 6

We turn now to a geometric interpretation of the number I. The idea is suggested by Figure
1. When the cusp of γ0 is deformed in a family γu, we get in Figure 1 (right) a birth of two
inflections. We know that the evolute goes to infinity at an inflection asymptotically along the
normal line to the curve at the inflection (see for example [14]). As u gets closer to 0, the
branches of the evolute that are close to the two normal lines at the inflections are dragged
to the point c0 (which coincides in this case with the singular point of γ) to form the limiting
normal line to γ0 at the cusp counted with multiplicity l = 2. Thus, l = I = 2. We have the
following result when c0 is not at infinity.

Theorem 3.5. Let γ be a germ of a smooth curve parametrised as in (3). Then the limiting
normal line a = 0 is a part of the bifurcation set of the family D of distance squared functions
on γ and has multiplicity l, with

l =

{
n1 +m− 3 if n1 < 2m

3m− 3 if n1 > 2m

Suppose that the proper evolute intersects the limiting normal line a = 0 at a point c0 which
is not at infinity (i.e., a2m 6= 0 or n1 < 2m). Then l = I.

Proof. The bifurcation set of the family D is given by

B1 = {c = (a, b) ∈ R2 | ∃ t ∈ I such that D′c(t) = D′′c (t) = 0}.

Following the proof of Proposition 3.3, when n1 < 2m we have

D′(t, c) = 2tm−1
(
− am− ban1

n1t
n1−m +mtm +O(tn1−m)),

D′′(t, c) = 2tm−2
(
− am(m− 1)− ban1

n1(n1 − 1)tn1−m +m(2m− 1)tm +O(tn1−m)).

Denote by m(f, g) the multiplicity of the germ (f, g) : (R2, 0)→ R2 of a smooth map in (a, b),
so m(f, g) = dimR E2/〈f, g〉 and gives the maximum number of (complex) solutions that appear
in a deformation of the system of equations f(a, b) = 0, g(a, b) = 0. Given f, g, h : (R2, 0)→ R,
we have m(f, hg) = m(f, g) +m(f, h).

If we write D′(t, c) = tm−1φ1 and D′′(t, c) = tm−2φ2, then the multiplicity l of the limiting
normal line a = 0 as a solution of D′(t, c) = D′′(t, c) = 0 (considered as equations in (t, a)) is

l = m(tm−1, φ2) +m(tm−2, φ1) +m(φ1, φ2)
= (m− 1) + (m− 2) + (n1 −m)
= m+ n1 − 3.

For computing m(φ1, φ2), we need to assume that the point on the limiting normal line is a
generic one, that is b 6= 0, equivalently we are away from the point c0 where the proper evolute
intersects the limiting normal line.

When n1 > 2m (and by hypothesis a2m 6= 0), we have

D′(t, c) = 2tm−1
(
− am−m(2ba2m − 1)tm +O(tm+1)

)
,

D′′(t, c) = 2tm−2
(
− am(m− 1)−m(2m− 1)(2ba2m − 1)tm +O(tm+1)

)
.
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Following the same arguments as above and taking points away from c0 = (0, 1
2a2m

), we get

l = (m− 1) + (m− 2) +m
= 3m− 3.

�

Remark 3.6. When n1 > 2m and a2m = 0 we have I = m+n1− 3 and l = 3m− 3 so l < I. In
this case the proper evolute goes to infinity, that is c0 goes to infinity. The geometric explanation
for why l = I given before Theorem 3.5 when c0 is not at infinity does not work in this case as
there does not exist a point on the limiting normal line to drag to the branches of the evolute
near the inflections. Thus, these branches may not collapse to the limiting normal line and
contribute to the multiplicity of this line as part of the bifurcation set of the family of distance
squared functions on γ. The fact that l < I indicates that indeed some of these branches do not
collapse to the limiting normal line.

4. Examples of realisations

In the previous section, we counted the number of vertices V and inflections I concentrated
at the singular point of a germ of a plane curve. The numbers V and I are equal to 1 when the
curve is regular and the vertex and inflection are ordinary ones. Therefore, V and I represent
the maximum number of vertices and inflections that can appear in a deformation of the curve.
A natural question follows: is there always a (real) deformation of the curve where V vertices
and I inflections appear on the deformed curve? We consider this question in some examples.

A2-singularity (ordinary cusp).
The curve can be parametrised by γ(t) = (t2, a3t

3 + O(t4)), with a3 6= 0, so its defining
equation has an A2-singularity (see [2] for a relation between the singularity of a parametrisation
and that of a defining equation). Here l = I = 2, µ = 3 and V = 3 ([14]), and any Ae-versal
deformation of γu, with γ0 = γ exhibits V vertices and I inflections for u > 0 or u < 0 (as in
the model γu(t) = (t2, ut+ t3), with u > 0), see [14] and Figure 1.

Figure 1. A generic deformation of the cusp and of its evolute ([14]). The full
squares represent the inflections and the full discs the vertices.

A4-singularity (ramphoid cusp).
The curve can be parametrised by γ(t) = (t2, a4t

4 + a5t
5 + O(t6)), with a5 6= 0. In [6, 13, 16],

ways to obtain models of the singularities of a plane curve which take into consideration its
contact with lines at the singular point are proposed. The equivalence relation in [6] is denoted
by Ah and it is shown there that there are three Ah-models of ramphoid cusps represented by
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(t2, t4 + t5), (t2, t5 + t6), (t2, t5) ([6]). The proposed methods in [6, 13, 16] can handle well a
single curve. However, finding a theory that explains the deformations of the singularities of a
curve as well as the changes in its geometry (appearance and configuration of its inflections and
vertices) is still an open problem. An approach to deal with this problem is proposed in [14].

Consider the case γ(t) = (t2, a4t
4 + a5t

5 + a6t
6 +O(t7)), with a4 6= 0, a5 6= 0 and a6 6= 0. (In

particular γ∼Ah
(t2, t4 + t5), which is the least degenerate Ah-singularity within the A-class A4;

see [6, 13, 16]. The geometric meaning of a6 6= 0 can be found in [14].) Here V = 5, I = 3 and
µ = 4. It is shown in [14] that any Ae-versal deformation γu, with γ0 = γ, exhibits V vertices
and I inflections. Such deformations can be written in the form

γu=(u,v)(t) = (t2, vt+ ā2(u)t2 + ut3 + ā4(u)t4 + ā5(u)t5 +Ou(t6)),

with ā2(0) = 0, ā4(0) = a4 6= 0, ā5(0) = a5 6= 0, ā6(0) = a6 6= 0. We have a stratification of the
parameter space u = (u, v) into codimension 1 phenomena given by curves (Figure 2, central
figure) and stable phenomena in open sets delimited by these curves. In the region delimited by

the curve C : v = 0 (where γu is singular) and the curve SI : v =
1

16b24
u3 +O(u4) (where γu

has a second order inflection) with v > 0 there appear V = 5 simple vertices and I = 3 simple
inflections with relative position as in Figure 2 3© ([14]).

E6-singularity.
The curve can be parametrised by γ(t) = (t3, a4t

4 + O(t5)), with a4 6= 0. (Existence of a
Morsification of this singularity and of others are studied in [5].) In this case V = 7 and I = 4.
This case shows how hard the situation gets as the singularity becomes more degenerate. We shall
not attempt here to obtain a model deformation of γ which takes into consideration singularities,
vertices and inflections, but only exhibit a 1-parameter family of curves γα, α small enough with
γ0 = γ, where V = 7 vertices and I = 4 inflections appear on γα for α 6= 0. For simplicity, we
take γ(t) = (t3, t4) and γu(t) = (t3 + ut, t4 + vt2 + wt), which is an Ae-versal deformation of γ,
where u = (u, v, w). Changes of the number of inflections or vertices occur when γu is singular,
has a second or higher order inflection or a second or higher order vertex.

The stratum in the u-space where γu is singular is a (germ at the origin of a) surface with a
cross-cap singularity and is given by

C : 27w2 + 4u(2u− 3v)2 = 0.

We have

ιu(t) = 12t4 + 6(2u− v)t2 − 6wt+ 2uv,

and calculating its resultant with ι′u(t) with respect to t gives the second order inflections stratum,
which is the union of the surface C together with another cross-cap surface given by

SI : 27w2 − 2v(6u− v)2 = 0.

We have

υu(t) = −960t9 − 24(9 + 56u− 12v)t7 + 720wt6 − 24(15u− 9v + 44uv − 18v2)t5

+30w(9− 8u+ 24v)t4 − 24(u2 + 3uv − 9w2 + 10uv2 − v3)t3

+12w(6u− 4uv + 3v2)t2 + 24u(u2 − 2vu+ w2 − v3)t− 6w(u2 + w2 + 2uv2)

with ord(υ0)(0) = 7. The resultant of υu(t) and υ′u(t) with respect to t, which gives the second
order vertices stratum SV , is too lengthy to reproduce here (one of its factors is the left hand
side of the equation of C, with multiplicity 3).
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Figure 2. From [14]: deformation of a ramphoid cusp of Ah-type (t2, t4 + t5).
In stratum 3© (middle figure), we have a realisation of V = 5 vertices (full
squares) and I = 3 inflections (full discs) as in figure 3©.

We restrict to a plane through the origin in the u-space. It turns out that a good choice is
the plane w = 0. Observe that on such a plane ιu becomes an even polynomial and υu an odd
polynomial in t. In particular, their roots come in pairs ±ti, together with t = 0 for υu.

The trace of C on the plane w = 0 is

C0 : 4u(2u− 3v)2 = 0



ON VERTICES AND INFLECTIONS OF PLANE CURVES 79

u

v

SV0

SV0

SV0

SV0
SI0

SI0

C0

C0

Figure 3. Left: traces of the strata C, SI, SV on the plane w = 0. The shaded
region is where V = 7 vertices and I = 4 inflections appear on the deformed
curve. Right: the curve γ1 = (t3 − 0.018t, t4 − 0.01t2) with V = 7 vertices (full
discs) and I = 4 inflections (full squares).

and that of SI is

SI0 : 2v(6u− v)2 = 0

(together with C0).
The trace SV 0 of SV on w = 0 consists of C0 (with multiplicity 3) and three other curves

given by 27u − 108u2 + 108uv + 9v2 + 32v3 = 0 (with multiplicity 2), u2 − 2uv − v3 = 0 (with
multiplicity 3) and 243u(14u− 3v) + P 5

3 = 0 (with multiplicity 2), where P 5
3 is a polynomial of

degree 5 and order 3 in (u, v). The curves C0, SI0, SV 0 are as in Figure 3 (left).
The number of inflections and vertices of γu are constant in the open region in Figure 3

(left), delimited by the curves C0, SI0, SV 0. It turns out that in the shaded region in Figure 3
(left), γu has V = 7 vertices and I = 4 inflections. In particular, if we take u = −0.018α and
v = −0.01α, the curve γα = (t3 − 0.018αt, t4 − 0.01αt2) for α near zero, has V = 7 vertices and
I = 4 inflections (Figure 3 (right)). Indeed, ια(t) = 12t4 − 0.156αt2 + 0.00036α2 has four real
roots when α > 0 which are given by ±0.1

√
α,±0.05477225575

√
α. We solve υα(t) = 0 for α = 1

(this is not a restriction as the number of vertices is constant in the shaded region in Figure 3
(left)) and get the following roots

0,±0.03007832731,±0.07738799248,±0.1142378731.

Acknowledgment: We thank the referee for valuable suggestions and for a thorough reading
of the paper.
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