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ORBIFOLD EQUIVALENCE: STRUCTURE AND NEW EXAMPLES

ANDREAS RECKNAGEL AND PAUL WEINREB

Abstract. Orbifold equivalence is a notion of symmetry that does not rely on group actions.

Among other applications, it leads to surprising connections between hitherto unrelated sin-
gularities. While the concept can be defined in a very general category-theoretic language,

we focus on the most explicit setting in terms of matrix factorisations, where orbifold equiva-
lences arise from defects with special properties. Examples are relatively difficult to construct,

but we uncover some structural features that guarantee that certain perturbation expansions

(which a priori are formal power series) are actually finite. We exploit those properties to
devise a search algorithm that can be implemented on a computer, then present some new

examples including Arnold singularities.

1. Introduction

Orbifold equivalence is a phenomenon discovered when trying to describe well-known ideas
connected with the action of symmetry groups (originally in quantum field theories) in terms
of abstract category-theoretic terms. It turned out that all the data one is interested in when
studying these “orbifolds” can be extracted from a separable symmetric Frobenius algebra –
which may, but need not, arise from a group action. The abstraction therefore provides a
generalised notion of symmetry which does not rely on groups.

The original formulation led to some rather strong results concerning the classification of
rational conformal field theories [21], the more abstract bicategory point of view taken in [15]
allows for a wider range of applications, including so-called topological Landau-Ginzburg models.

In the latter context, orbifold equivalence provides a novel equivalence relation for quasi-
homogeneous polynomials, leading to unexpected relations between singularities – e.g. between
simple singularities of types A and E – and to equivalences of categories associated with them,
such as categories of matrix factorisations and of representations of path algebras of quivers. The
new equivalence also implies “dualities” between different topological field theories (correlation
functions of one model can be computed in another).

The main aim of the present paper is to construct explicit examples of orbifold equivalences,
which in the Landau-Ginzburg context are nothing but matrix factorisations with special prop-
erties. The method we employ is perturbation theoretic: one first finds a solution to a simpler
problem (here: finds a matrix factorisation of a simpler polynomial), then tries to express the
solution to the full problem as a formal power series in certain expansion parameters (here: the
variables of the complicated polynomial that do not occur in the simpler polynomial). It will
turn out that in the situation at hand those formal power series are actually finite.

We start by recalling some basic definitions concerning matrix factorisations [20, 44], then
make a few remarks about the mathematics and physics context. The “special property” we
demand (namely invertible quantum dimensions) will be addressed in section 2. Our main new
results will be presented in sections 3 and 4: We first uncover some structural properties of
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graded orbifold equivalences which imply finiteness of the perturbation expansion mentioned
above; next we exploit this to set up a search algorithm; then we list examples of orbifold
equivalences found in this way.

A rank N matrix factorisation of a polynomial W ∈ C[z1, . . . , zk] is a pair of N ×N matrices
E, J with polynomial entries satisfying

E J = J E = W 1N . (1.1)

We can collect E and J into a single matrix Q,

Q =

(
0 E
J 0

)
∈M2N (C[z]), (1.2)

satisfying Q2 = W 12N ; we have abbreviated z = (z1, . . . , zk). This notation is one way to make
the inherent Z2-grading of matrix factorisations explicit: Q anti-commutes with

σ =

(
1N 0
0 −1N

)
(1.3)

and we can use σ to decompose the space M2N (C[z]) into even and odd elements: The former
commute with σ and are called “bosonic” in the physics context, the latter anti-commute with
σ and are referred to as “fermionic”.

Every polynomial W admits matrix factorisations: First off, any factorisation of a monomial
provides a rank 1 factorisation; any polynomial can be written as a sum of monomials; and given
a matrix factorisation Qa of a polynomial Wa and a matrix factorisation Qb of a polynomial
Wb, the so-called tensor product factorisation Q := Qa ⊗̂Qb provides a matrix factorisation of
W := Wa +Wb. This Q is formed as in (1.2) from

E :=

(
Ja ⊗ 1 −1⊗ Eb
1⊗ Jb Ea ⊗ 1

)
, J :=

(
Ea ⊗ 1 1⊗ Eb
−1⊗ Jb Ja ⊗ 1

)
.

(We choose the symbol ⊗̂ for this Z2-graded tensor product, partly to avoid confusion with the
ordinary Kronecker product ⊗ of matrices appearing in the definition of E and J .)

Unfortunately, it will turn out (see section 3) that matrix factorisations obtained as iterated
tensor products of factorisations of monomials of W in general do not have the special additional
properties we are interested in.

In the following, we will exclusively focus on graded matrix factorisations:
First of all, we assume that the polynomial W (z) is quasi-homogeneous, i.e. that there exist

rational numbers |zi| > 0, called the weights of zi, such that for any λ ∈ C× := C \ {0} we have

W (λ|z1|z1, ..., λ
|zk|zk) = λDWW (z1, ..., zk)

for some rational number DW > 0, the weight of W . Unless specified otherwise, we will assume
that DW = 2, achievable by rescaling the |zi|. We will also assume that W ∈ m2 where
m = 〈z1, . . . , zk〉 is the maximal homogeneous ideal of C[z]. For some applications, it is important
that the Jacobi ring Jac(W ) = C[z]/〈∂z1W, . . . , ∂zkW 〉 is finite-dimensional as a C-vector space
(i.e. that the singularity defined by W at 0 is isolated), so let us assume this, as well.

We will refer to quasi-homogeneous polynomials of weight 2 as “potentials”, and to the rational
number

ĉ(W ) :=

k∑
i=1

(1− |zi|) (1.4)

as the central charge of the potential W .
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In the following, let us use the abbreviation

λ� z := (λ|z1|z1, ..., λ
|zk|zk) (1.5)

for the C×-action.
We call a rank N matrix factorisation Q of a potential W graded if there exists a diagonal

matrix (the “grading matrix” of Q)

U(λ) = diag(λg1 , . . . , λg2N )

with gi ∈ Q such that

U(λ)Q(λ� z)U(λ)−1 = λ Q(z) (1.6)

for all λ ∈ C×. We can set g1 = 0 without loss of generality.
We will assume that Q(z) has no non-zero constant entries. Otherwise Q is decomposable:

using row and column transformations, it can be brought into the form Q̃⊕Qtriv where Qtriv is
the trivial rank 1 factorisation W = 1 ·W .

Probably the first, very simple, example of a matrix factorisation made its appearance in
the Dirac equation, but only with Eisenbud’s discovery that free resolutions of modules over
C[z]/〈W 〉 eventually become periodic [20] was it realised that matrix factorisations can be defined
for general potentials and are a useful tools in mathematics.

Later, a category-theoretic point of view was introduced: one can e.g. form a category
hmfgr(W ) whose objects are (finite rank) graded matrix factorisations of W , and where (even
or odd) morphisms between two matrix factorisations Q1, Q2 of the same potential W are given
by the cohomology of the differential dQ1Q2

acting as

dQ1Q2
(A) = Q1A− (−1)s(A)AQ2 (1.7)

on A ∈ M2N (C[z]), where s(A) = 0 if A is even with respect to the Z2-grading σ in (1.3), and
s(A) = 1 if A is odd.

It was shown that hmfgr(W ) is equivalent to the bounded derived category of coherent sheaves
on zero locus ofW – and also to categories of maximal Cohen-Macaulay modules; see in particular
[38], but also [7]. Among these categories, hmfgr(W ) is the one where explicit computations are
easiest to perform.

Let us also make some remarks on the most notable application of matrix factorisations
in physics, namely topological Landau-Ginzburg models. (We include these comments mainly
because this context is the origin of some of the terminology; an understanding of the physical
concepts is not required for the remainder of the paper.) Topological Landau-Ginzburg models
are supersymmetric quantum field theories on a two-dimensional worldsheet; W (z) appears as
interaction potential, the degrees of freedom in the interior of the world-sheet (the “bulk fields”)
are described by the Jacobi ring Jac(W ).

Within the physics literature, there is strong evidence for a relation between supersymmetric
Landau-Ginzburg models with potential W and supersymmetric conformal field theories where
a Virasoro algebra with central charge c = 3 ĉ(W ) acts. The conformal field theory is thought to
describe the “IR renormalisation group fixed point” of the Landau-Ginzburg model and motivates
the term “central charge” for the quantity (1.4).

Additional structure appears if the worldsheet of the Landau-Ginzburg has boundaries: the
possible supersymmetry-preserving boundary conditions are precisely the matrix factorisations
Q of W [27, 5, 29, 24], and bosonic resp. fermionic degrees of freedom on the boundary are given
by the even resp. odd cohomology H•Q of the differential dQQ defined in eq. (1.7).
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Correlation functions in topological Landau-Ginzburg are computed as residues of functions
of several complex variables (see e.g. [22] for many details): If the worldsheet has no boundary,
the correlator of any element φ ∈ Jac(W ) is

〈φ 〉W = resz

[
φ

∂z1W · · · ∂zkW

]
, (1.8)

see eq. (8) in [43]. In a model where the worldsheet has a boundary with boundary condition
described by a matrix factorisation Q of W , one has [28, 24]

〈 φψ 〉KapLi
Q = resz

[
φ str

(
∂z1Q · · · ∂zkQ ψ

)
∂z1W · · · ∂zkW

]
(1.9)

for any bulk field φ ∈ Jac(W ) and any boundary field ψ ∈ H•Q. The supertrace is defined using

the Z2-grading from (1.3), as str(A) := tr(σ A).
The formula (1.9) is often referred to as Kapustin-Li correlator; a closely related expression

will be used, in the next section, to define the “special property” the matrix factorisations of
our interest are required to have.

The correlations functions above were first computed in physics, via localisation of path inte-
grals for supersymmetric topological quantum field theories, but they have since been discussed
in purely mathematical terms, notably in [34, 18].

Instead of worldsheets with boundary, one can also consider worldsheets which are divided
into two domains by a “fault line”, and the degrees of freedom on the two sides may be governed
by two different Landau-Ginzburg potentials V1(x) and V2(y). Such an arrangement is called
a (topological) defect, and is described [6] by a matrix factorisation Q(x, y) of V1(x) − V2(y).
Degrees of freedom localised on the defect line are described by the morphisms (bosonic or
fermionic) of Q(x, y), analogously to the boundary case.

Boundary conditions of a Landau-Ginzburg model with potential V1(x) can be viewed as
defects between V1(x) and the trivial model V2 = 0.

Another especially simple situation is that where one has the same potential V on both sides
of the defect line. Then one can define the identity defect (in the Landau-Ginzburg context
sometimes referred to as “invisible defect”), denoted IV . This takes the form of a nested tensor
product IV := Q(1) ⊗̂ · · · ⊗̂Q(n) of rank 1 matrix factorisations Q(i), each formed according to
(1.2) from

E(i) = [V (x1, ..., xi, yi+1, ...yn)− V (x1, ..., xi−1, yi, ..., yn)]/(xi − yi), J(i) = xi − yi. (1.10)

Topological defects come with additional structure, called the fusion product: In the fault line
picture, two defect lines which partition a worldsheet into three regions, with potentials V1(x),
V3(x′) in the outer regions and V2(y) in the middle, can be moved on top of each other, leaving
a single defect between V1(x) and V3(x′). In terms of matrix factorisations, the tensor product
Q12(x, y) ⊗̂Q23(y, x′) of two matrix factorisations Q12(x, y) of V1(x) − V2(y) and Q23(y, x′) of
V2(y)−V3(x′) is a matrix factorisation of V1(x)−V3(x′). This has infinite rank over C[x, x′], but
is equivalent (by a similarity transformation) to a finite-rank defect [6] depending on x, x′ only;
extracting this finite rank defect yields a representative of the fusion product Q12 ?Q23. The full
construction is somewhat technical (it involves finding and splitting an idempotent morphism of
the tensor product, see [10, 35] for details), but implementable on a computer.

A concrete mathematical application of defects appeared in the work of Khovanov and Rozan-
sky [30], who proposed to use matrix factorisations to define link invariants that generalise those
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of Reshetikhin-Turaev (“categorification of the Jones polynomial”). These invariants were made
explicitly computable using the fusion product in [10].

At a more abstract level, topological defects in Landau-Ginzburg models, together with struc-
tures such as the fusion product, form a bicategory LG (see e.g. Defs. 2.1 and 2.7 and Prop. 2.8 in
[11]), where objects are given by Landau-Ginzburg potentials, 1-morphisms by defects between
two potentials (i.e. matrix factorisations of the difference), and 2-morphisms by morphisms (as
occurring in (1.7)) of those matrix factorisations. This bicategory is “graded pivotal” (see [11]
Prop. 7.2), in particular it has adjoints: for each 1-morphism Q, i.e. each defect between V1(x)
and V2(y), the right adjoint Q†, a defect between V2(y) and V1(x), is given by

Q† =

(
0 JT

−ET 0

)
. (1.11)

(This equation holds if the number of y-variables is even, otherwise there is an additional ex-
change of E and J ; see [11, 15, 12] for details, which will not play a role in what follows.) The
identity defect provides a unit 1-morphism in End(V ) with respect to the fusion product (see
e.g. [11], Sect. 2).

A detailed knowledge of category theory is not required to understand the results of the
present paper. Indeed, while the category framework is convenient, perhaps even indispensable,
to develop the notion of orbifold equivalence and to fully appreciate its wide-ranging applications
(including possible extension to higher-dimensional topological field theories), the pedestrian
approach via explicit matrix factorisations seems much better suited to construct examples.

2. Orbifold equivalence

2.1. Definition and general properties. We now come to the definition of the “special prop-
erty” we require the defects of interest to have. In the following, let V1 ∈ C[x] and V2 ∈ C[y],
where x = (x1, . . . , xn) and y = (y1, . . . , ym), be two potentials.

Definition 2.1: V1 and V2 are orbifold equivalent if there exists a (graded) matrix factorisation
Q(x, y) of V1(x)− V2(y) for which the quantum dimensions qL(Q) and qR(Q) are invertible.
The quantum dimensions of Q are defined as

qL(Q) = (−1)(
m+1

2 ) resx

[ str(∂x1Q · · · ∂xnQ · ∂y1Q · · · ∂ymQ)

∂x1
V1 · · · ∂xn

V1

]

qR(Q) = (−1)(
n+1
2 ) resy

[ str(∂x1Q · · · ∂xnQ · ∂y1Q · · · ∂ymQ)

∂y1V2 · · · ∂ymV2

]
(2.1)

As in (1.9), we have used str(A) = tr(σ A) to abbreviate the supertrace, defined with the help
of the Z2-grading from (1.3).
We will call such a Q an orbifold equivalence between V1 and V2, and we will write V1 ∼oeq V2
to indicate that V1 and V2 are orbifold equivalent.

We will see below that, in the graded case, the quantum dimensions are complex numbers, so
“invertible” simply means “non-zero”.

The quantum dimensions in (2.1) are defined using a specific ordering of variables, but one
can show that permutations of the variables leave the values invariant up to a sign (using e.g.
Lemma A.2 in [19]). Notice also the close similarity of (2.1) to the Kapustin-Li correlator; this
will play a role in section 3.
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One could in principle drop the requirement that Q is a graded matrix factorisation (or even
that V1 and V2 are quasi-homogeneous), the quantum dimensions can be computed for any
matrix with polynomial entries. Not much is known in this general situation, so we restrict
ourselves to quasi-homogeneous potentials and graded matrix factorisations in this paper.

We summarise some abstract properties of the notions of orbifold equivalence and quantum
dimensions in a theorem; all statements were proven before, see [11, 14, 15, 13] and references
therein:

Theorem 2.2:

(a) ∼oeq is an equivalence relation; see [13] Thm. 1.1.
(b) Knörrer periodicity: V1 ∼oeq V1 + y21 + y22 , where V1 + y21 + y22 ∈ C[x, y1, y2] ; see [15]

Sect. 7.2 and [13] Prop. 1.2.
(c) If V1(x) ∼oeq V2(y) and V3(x′) ∼oeq V4(y′), then V1(x) +V3(x′) ∼oeq V2(y) +V4(y′); see

[13] Prop. 1.2. (Note that in this relation each potential depends on a separate set of
variables.)

(d) The quantum dimensions do not change under similarity transformations, i.e.
qL(Q) = qL(U QU−1) for any invertible even matrix U with entries in C[x, y]; analo-
gously for qR(Q); see [14] Lemma 3.1.

(e) The quantum dimensions are additive with respect to forming direct sums: if Q and

Q̃ are two matrix factorisations of V1 − V2, then qL(Q ⊕ Q̃) = qL(Q) + qL(Q̃), and

analogously for qR(Q⊕ Q̃).
(f) Up to signs, the quantum dimensions are multiplicative with respect to fusion products

Q?Q̃, and with respect to forming tensor products Q12(x, y) ⊗̂Q34(x′, y′) where Q12 and
Q34 constitute matrix factorisations of V1(x)− V2(y) and V3(x′)− V4(y′), respectively,
cf. item (c); see [11] Prop. 8.5 or [15] Thm. 6.1.

(g) Passing to the adjoint defect interchanges left and right quantum dimensions:
qL(Q†) = qR(Q) and qR(Q†) = qL(Q); see [11] Prop. 8.5 or [15] Thm. 6.1.

A quantity of central importance in the bicategory treatment of orbifold equivalences is
A(Q) := Q† ? Q, sometimes called “symmetry defect” [3, 4, 15]. This fusion product is a
defect from V2 to itself, and it can be shown (see Cor. 1.6 in [15]) that

hmfgr(V1) ' mod(Q† ? Q) (2.2)

where the right hand side denotes the category of modules over A(Q), consisting of matrix
factorisations of V2 on which the defect A(Q) acts via the fusion product. This equivalence of
categories is one of several relations existing between structures associated to V1 and to V2 as
soon as the two potentials are orbifold equivalent.

Within the domain of Landau-Ginzburg models, orbifold equivalence leads to a “duality” of
the two topological field theories: bulk correlators in the V1-model can be computed as correlators
in the V2-model enriched by defect lines carrying the defect A(Q) – see e.g. [15] for a nice pictorial
presentation of this fact.

All one needs to prove these statements in the bicategory language is that A(Q) is a “separable
symmetric Frobenius algebra” (see e.g. Def. 2.1 in [15]).

Explicit computations involving A(Q) can become rather tedious when dealing with compli-
cated orbifold equivalences. However, there is a very simple numerical invariant which contains
useful information, namely the (left or right) quantum dimension of A(Q): Using the facts
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collected in Theorem 2.2, we find

qL(A(Q)) = qL(Q†)qL(Q) = qL(Q)qR(Q) = qR(A(Q)). (2.3)

E.g., assume that Q is an indecomposable defect (i.e. not similar to a direct sum) and has
qL(A(Q)) 6= ±1; then Q is a “true orbifold equivalence” rather than a “mere equivalence” in

the bicategory LG, i.e. there cannot be a Q̃ such that Q ? Q̃ and Q̃ ? Q are similar to the unit
1-morphisms IV1 and IV2 of V1 resp. V2 (see the next subsection for the definition of IV ).

Perhaps more interestingly, an orbifold equivalence Q does not arise from the action of a
finite symmetry group on the potential unless qL(A(Q)) is contained in some cyclotomic field:
this follows from constraints on the quantum dimensions of orbifold equivalences associated with
group actions, see the remarks in the next subsection.

By definition, orbifold equivalence describes a property of a pair of potentials, a defect between
them with non-vanishing quantum dimensions merely needs to exist. Ultimately, one would like
to be able to read off directly from the potentials whether they are orbifold equivalent or not.
So far, however, only the following two facts are known to be necessary criteria for (graded)
orbifold equivalence:

Proposition 2.3: Using the notation from Def. 2.1, V1(x) and V2(y) are orbifold equivalent
only if the total number of variables n+m is even and only if the two potentials have the same
central charge, ĉ(V1) = ĉ(V2).

Both statements were proven in [15], in Prop. 6.2 resp. Prop. 6.4; we will give a slightly modified
derivation in section 3.

If two potentials V1 and V2 have the same central charge but an odd total number of variables,
one can still ask if V1 + x2n+1 is orbifold equivalent to V2 (or if V1 is orbifold equivalent to
V2 + y2m+1): adding such squares does not change the central charge.

Assuming the total number of variables to be even, a natural question is whether equality of
central charges is already sufficient for the existence of (graded) orbifold equivalences. We will
make a few comments on this in section 5.

2.2. Known examples. We briefly recapitulate the examples of orbifold equivalences known
so far.

(a) The identity defect IV from eq. (1.10) provides an orbifold equivalence between the
potential V and itself, with quantum dimensions qL(IV ) = qR(IV ) = 1, see e.g. [11], Prop 8.5.

(b) The example from which “orbifold equivalences” derive their name involves a symmetry
group G (the “orbifold group”) of the potential V , a finite subgroup of C[x]-automorphisms
which leaves V invariant. Then one can, for each g ∈ G, construct “twisted” identity defects IgV
formed in the same manner as IV in (1.10) except that each Ji is replaced with Jgi = xi− g(yi),
and Ei replaced accordingly. Details are given in [6, 15, 3, 4], where it is also shown that the
quantum dimensions of IgV are given by det(g)±1, see e.g. eq. (3.13) in [3]. (Hence, the quantum
dimensions of IgV are contained in the cyclotomic field determined by the order of the symmetry
group G.) In this special situation, the symmetry defect A(Q) from above is given by the
separable symmetric Frobenius algebra A(Q) =

⊕
g∈G I

g
V , from which one can extract complete

information about the orbifolded topological Landau-Ginzburg model – without recourse to the
fact that A(Q) arose from a group action.
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(c) The most interesting orbifold equivalences so far have been found for simple singularities
of ADE type [15, 13]. The potentials are

VAn(x1, x2) = xn+1
1 + x22, VDd

(x1, x2) = xd−11 + x1x
2
2, VE6(x1, x2) = x31 + x42,

VE7
(x1, x2) = x31 + x1x

3
2, VE8

(x1, x2) = x31 + x52 (2.4)

with n ≥ 1 and d ≥ 4. The corresponding Landau-Ginzburg models are related to so-called
N = 2 superconformal minimal models with central charge ĉ < 1. It turns out that whenever
two of these potentials have the same central charge, they are also orbifold equivalent; the classes
with more than one representative are {Ad−1, Dd/2+1} for even d not equal to 12, 18 or 30, and
{A11, D7, E6}, {A17, D10, E7} and {A29, D16, E8}. The A-D orbifold equivalences are related to
(simple current) orbifolds in the CFT context, but the A-E orbifold equivalences do not arise
from any group action [13]; they are examples of “symmetries” beyond groups.

For the purposes of elucidating some general observations to be made later, and also of
conveying an idea of the typical complexity of the matrix factorisations involved, we reproduce
a concrete example of an orbifold equivalence from [13], namely that between VA11

= x121 + x22
and VE6

= y31 + y42 . In this case, the smallest possible (see subsection 3.2) orbifold equivalence
is of rank 2. With Q formed from E and J as in (1.2), the matrix elements of E are given by

E11 = y22 − x2 + 1
2y1(sx1)2 + 2t+1

8 (sx1)6

E12 = − y1 + y2(sx1) + t+1
4 (sx1)4

E21 = y21 + y1y2(sx1) + t
4y1(sx1)4 + 2t+1

4 y2(sx1)5 − 9t+5
48 (sx1)8

E22 = y22 + x2 + 1
2y1(sx1)2 + 2t+1

8 (sx1)6 (2.5)

J = −adjugate(E), where the complex coefficients s, t satisfy the algebraic equations

t2 = 1/3, s12 = −576(26t− 15).

This defect has non-zero quantum dimensions, namely qL(Q) = s, qR(Q) = 3(1− t)/s.

(d) In [36], an explicit rank 4 orbifold equivalence was written down between two of the four-
teen (quasi-homogeneous) exceptional unimodal Arnold singularities (listed e.g. in [1]), namely
between E14 and Q10 described by the potentials

VE14(x) = x81 + x22 + x33 and VQ10
(y) = y41 + y1y

2
2 + y33 ,

both having central charge ĉ = 13
12 . However, one should notice that this orbifold equivalence

already follows from the A-D results of [15] and the general property Theorem 2.2 (c): One has
VE14

(x) = VA7
(x1, x2) + x33 and VQ10

(y) = VD5
(y1, y2) + y33 , and VA7

∼oeq VD5
.

In the same way, one can of course construct other orbifold equivalences at arbitrarily high
central charge, simply by adding up potentials describing suitable simple singularities with ĉ < 1.

3. Some structural results on orbifold equivalences

If one tries to generate examples of orbifold equivalences truly beyond simple singularities,
one soon realises that the approach taken in [13] is neither general nor systematic enough. In
that work, the method employed to find expressions like (2.5) was to set one of the variables

xi, yj occurring in W (x, y) = V1(x)−V2(y) to zero, to pick some simple matrix factorisation Q̃ of

the resulting potential W̃ and to complete Q̃ to a graded matrix factorisation Q(x, y) of the full
W (x, y) using quasi-homogeneous entries that contain the missing variable – under additional
simplifying constraints such as J = −adjugate(E). But as soon as one has to cope with a larger

number of variables, or higher rank, one needs a lot of luck to hit a good starting point Q̃.
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Nevertheless, the computations in [13] contain germs of ideas which can be formulated in
general terms and exploited in a systematic manner. In this section, we will show that every
graded orbifold equivalence has a (finite) perturbation expansion, a structure from which one can
draw some general conclusion on the form Q(x, y) must take. The grading is a crucial ingredient,
and we will present a constraint on the allowed grading matrices in subsection 3.2. Together with
the perturbative structure, this will enable us to devise a relatively efficient search algorithm for
orbifold equivalences in section 4.

3.1. Orbifold equivalences as graded perturbations. Given a matrix factorisation Q of a
potential W , one can ask whether Q, or the differential dQQ associated with it, admits deforma-
tions. As is familiar in the context of deformation theory, deformation directions are controlled
by Ext1 – or H1

Q, the space of boundary fermions –, obstructions by Ext2 – or H0
Q. References

and some results can e.g. be found in [9].
We will now show that graded orbifold equivalences, or indeed any graded defect between

V1(x) and V2(y), can be naturally viewed as a deformation of a matrix factorisation of V1(x),
with the variables yj featuring as deformation parameters and −V2(y)12N as obstruction term.
In contrast to the usual procedure in deformation theory, we will not restrict to the vanishing
locus of the obstruction term.

That the defect is graded will turn out to have a very desirable consequence: the perturbation
expansion terminates after finitely many steps. (At first glance, this appears to follow already
from the fact that the potentials and the entries of our matrix factorisations are polynomials;
but recall that one has 1 = (1 − x) · (1 + x + x2 + . . .), as formal power series. The grading is
crucial in excluding such effects.)

For the following discussion, it is convenient to introduce some further notions concerning
graded matrix factorisations: Let U(λ) be a grading matrix as in (1.6). Borrowing some further
physics terminology, we say that a matrix A ∈ M2N (C[z]) has “R-charge” R wrt. the grading
U(λ) if

U(λ)A(λ� z)U(λ)−1 = λRA(z). (3.1)

(The graded matrix factorisation Q in (1.6) then has R-charge 1.)
This relation implies that the entries Ars of A are quasi-homogeneous polynomials in the zi.

Their weights can be computed from the grading matrix as

w(Ars) = gs − gr +R for r, s = 1, . . . , 2N. (3.2)

In the special case A = Q we will sometimes write w(Q) for the matrix formed from the w(Qrs)
and call it the weight matrix of Q; analogously we will use w(E), w(J) for the weight matrices
of E and J related to Q as in (1.2).

By way of a brief excursion, and also as a step towards a proof of Prop. 2.3, let us use the
notion of R-charges to provide a self-contained derivation of a statement that is well-known
in the physics literature on topological Landau Ginzburg models, namely that the correlators
(1.8,1.9) have a “background charge”. Instead of employing arguments from an underlying
twisted conformal field theory, this can be derived from properties of the residue. We focus on
the Kapustin-Li correlator here:

Proposition 3.1: Set z = (z1, . . . , zk) and let Q(z) be a (graded) rank N matrix factorisation
of a potential W (z) with dimC(Jac(W )) < ∞. Let ψ ∈ M2N (C[z]) be a morphism of definite
Z2-degree s(ψ) and definite R-charge Rψ. Then

〈ψ 〉KapLi
Q = 0
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unless s(ψ) + k is even and unless Rψ = ĉ(W ).

Proof: The statement on the Z2-degree follows because Q and its partial derivatives are odd
matrices wrt. to the Z2-grading σ, hence a product of n of these with the even or odd matrix ψ
has no diagonal terms, hence zero supertrace, if k + s(ψ) is odd.

As the Jacobi ring of W is a finite-dimensional C-vector space, for each i = 1, . . . , k there is
a νi ∈ Z+ and polynomials Cij such that zνii =

∑
j Cij(z)∂zjW (z). This implies, see e.g. [22],

that

resz

[
f

∂z1W · · · ∂zkW

]
= resz

[
det(C)f

zν11 · · · z
νk
k

]
for any polynomial f(z).

In the case at hand, f = str(∂z1Q · · · ∂zkQ·ψ), and since Q, its derivatives, and ψ have definite
R-charges, a rescaling of the zi can be traded for conjugation with the grading matrix U(λ) –
this leaves the supertrace invariant – up to extra prefactors λ1−|zi| resp. λRψ from relation (3.1).
Hence f is quasi-homogeneous of weight Rψ + ĉ(W ).

It is easy to see that det(C) is quasi-homogeneous of weight −k−ĉ(W )+
∑
i νi|zi|. The residue

projects f · det(C) onto the monomial zν1−11 · · · zνk−1k , which has weight −k+ ĉ(W ) +
∑
i νi|zi|.

Thus the residue can be non-zero only if Rψ = ĉ(W ). �

Turning to the perturbation expansion of orbifold equivalences, we assume, as before, that
V1(x) and V2(y) are quasi-homogeneous potentials of weight 2, without linear terms, and we
denote the weights of the variables by |xi| for i = 1, . . . , n, resp. |yj | for j = 1, . . . ,m. We
abbreviate W (x, y) := V1(x)− V2(y).

Proposition 3.2: Assume that Q(x, y) is a (graded) rank N orbifold equivalence between
V1(x) and V2(y), i.e. Q2 = W 12N and qL(Q) qR(Q) 6= 0. Set Q1(x) := Q(x, y)|y=0 and
Fj := ∂yjQ(x, y)|y=0 for j = 1, . . . ,m. Then

(1) Fj is a fermionic morphism of Q1 with R-charge Rj = 1− |yj |, for all j = 1, . . . ,m.
(2) The left quantum dimension of Q can be written as

qL(Q) = 〈F1 · · ·Fm 〉KapLi
Q1

where 〈· · · 〉KapLi
Q1

denotes the Kapustin-Li boundary correlator of the LG model with
bulk potential V1 and boundary condition Q1.

(3) Q(x, y) has a finite perturbation expansion, with yj appearing as parameters:

Q(x, y) =

κmax∑
κ=0

Q(κ)(x, y) with Q(0)(x, y) = Q1(x) and Q(1)(x, y) =
∑
j

yj Fj .

The higher order terms satisfy

{Q1, Q
(κ)}+

κ−1∑
λ=1

Q(κ−λ)Q(λ) = −V (κ)
2 (3.3)

where {·, ·} denotes the anti-commutator and where V
(κ)
2 is the order κ term of V2.

Proof: The Fj are odd wrt. the σ-grading (as Q is), and they are in the kernel of dQ1Q1 because
{Q1, Fj} = ∂yjQ(x, y)2|y=0 = ∂yjW 1|y=0 = 0. Let U(λ) be the grading for Q(x, y) – and, for
that matter, for Q1(x). Differentiating (1.6) gives

U(λ) ∂yjQ(λ� x, λ� y)U(λ)−1 = λ1−|yj | ∂yjQ(x, y),

so in particular the Fj are fermions of Q1 with definite R-charge Rj = 1− |yj |.
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To see the second statement, note that the left quantum dimension of a graded matrix fac-
torisation is a quasi-homogeneous polynomial in y, and in fact has to be a (non-zero) number
in order to be invertible. Hence qL(Q) does not depend on the y-variables. Setting y = 0 in
the first of the residue formulas (2.1) directly produces the Kapustin-Li correlator (1.9) of the
product F1 · · ·Fm of “boundary fermions” in the (V1, Q1) theory.

Eq. (3.3) simply follows from a Taylor expansion of Q2 = W 12N around y = 0, keeping in
mind that Q1(x) is a matrix factorisation of V1(x).

Finiteness of the perturbation series can be seen by analysing R-charges and weight matrices:

The order κ term Q(κ)(x, y) =
∑

~pM
(κ)
~p y~p is a linear combination of monomials in the yj , where

~p ∈ Zm+ with p1 + . . . + pm = κ, and where M
(κ)
~p ∈ M2N (C[x]) are matrix-valued coefficients.

The latter are odd wrt. the Z2-grading, and they have R-charge R
(κ)
~p = 1−p1|y1|− . . .−pm|ym|.

The entries of M
(κ)
~p are homogeneous polynomials in the xi, the weight of the r-s-entry is

wrs = gs − gr + R
(κ)
~p , where the gr define the grading matrix U(λ) as before. Since all the

variable weights are strictly positive, for large enough κ not only the R-charge but also the

weights wrs will become negative for all r, s ∈ {1, . . . , 2N}, which implies that M
(κ)
~p has to

vanish. �

An analogous expansion can be performed around x = 0, and the right quantum dimen-
sion of Q(x, y) takes the form of a correlator of boundary fermions in the Landau-Ginzburg
model with bulk potential −V2(y) and boundary condition Q2(y) := Q(x, y)|x=0. Setting

F̃i := ∂xi
Q(x, y)|x=0, we have

qR(Q) = 〈 F̃1 · · · F̃n 〉KapLi
Q2

.

In the present paper, the main application of Prop. 3.2 will be to devise a more systematic
search algorithm for orbifold equivalences, which allows us to tackle more difficult situations than
the simple singularities discussed in [13]. But there are some immediate structural consequences
implied by the perturbation expansion:

First off, the condition ĉ(V1) = ĉ(V2) necessary for the existence of a graded orbifold equiv-
alence follows immediately from the “background charge” of topological Landau-Ginzburg cor-
relators: The product F1 · · ·Fm is a morphism with R-charge

∑
j(1 − |yj |) = ĉ(V2), and its

Kapustin-Li correlator in the (V1, Q1)-model vanishes, according to the statement rederived in
Prop. 3.1, unless this R-charge coincides with the background charge ĉ(V1) of that model.

Prop. 3.2 also constrains what form the matrix elements of an orbifold equivalence Q(x, y)
can take: Clearly, for each j = 1, . . . ,m there must be a Q-entry that contains a term linear
in yj , lest one of the partial derivatives Fj is zero; likewise for the xi. (In fact, none of the Fj
can be trivial in the Q1-cohomology, i.e. none can be of the form Fj = Q1Aj − Aj Q1 for some
Aj ∈ M2N (C[x, y]), because the Kapustin-Li form is independent of the representative of the
cohomology class.)

Moreover, under very mild additional assumptions on the potentials, one can show that orb-
ifold equivalences must involve some “entanglement” of the x- and y-variables:

Proposition 3.3: Assume that V2(y) ∈ m3, i.e. has no quadratic or lower order terms. Then
an orbifold equivalence Q(x, y) between V1(x) and V2(y) must have mixed xy-terms, i.e. it cannot
have the form Q(x, y) = Q1(x) +Q2(y).

Proof: Assume Q(x, y) = Q1(x) +Q2(y). The first summand is a matrix factorisation of V1(x),
the second summand one of −V2(y); consequently {Q1(x), Q2(y)} = 0 and also {∂xiQ1, Fj} = 0.
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Moreover,

0 = −∂yj1∂yj2V2(y)|y=0 = {Fj1 , Fj2}+ {Q2(y), ∂yj1∂yj2Q2(y)}|y=0.

The last term vanishes (since the matrix factorisations we consider, including Q2(y), have no
constant terms), so all the Fj anti-commute and square to zero.

Let N := σ ∂x1
Q1 · · · ∂xn

Q1 F1 · · ·Fm, which is the argument of the trace in the residue
formula for qL(Q). In the case at hand, this matrix N is nilpotent,

N2 = ±(∂x1Q1 · · · ∂xnQ1)2(F1 · · ·Fm)2 = 0,

hence tr(N) = 0 and qL(Q) = 0.
Note that we can relax the assumption on V2(y): as soon as there is one variable yj∗ such

that ∂yj∗∂yjV2(y)|y=0 = 0 for all j = 1, . . . ,m, we have that Fj∗ anti-commutes with all Fj , and
N is nilpotent. �

In particular, this result rules out the simplest tensor products as orbifold equivalences (under
the stated assumptions on the potentials): if Q(x, y) = Qa(x) ⊗̂Qb(y) where Qa(x) is a matrix
factorisation of V1(x) and Qb(y) one of −V2(y), then Q(x, y) has zero quantum dimensions.

That the standard method (forming tensor products) of constructing matrix factorisations
for complicated polynomials is barred when seeking orbifold equivalences goes some way in
explaining why the latter are hard to find. Results of the type of Prop. 3.3 may also prove useful
for showing that equality of central charges is an insufficient criterion for two potentials to be
orbifold equivalent.

3.2. Weight split criterion. The perturbative expansion described in Prop. 3.2 is a useful
ingredient of an algorithmic search for orbifold equivalences, but, as it stands, the need to select
a grading and a Q1(x) as starting point seems to limit efficiency quite severely. In this subsection,
we will point out that the gradings (and hence the weight matrices of Q1(x, y) and Q(x, y)) are
subject to a highly selective criterion – a criterion that applies to any graded matrix factorisation
Q(z) of any quasi-homogeneous potential W (z), not just to defects.

It will be more convenient to rescale the variable weights such that all |zi| are natural numbers;
so for the remainder of this subsection, the weight of W (z) is given by some integer DW ∈ Z+,
not necessarily equal to 2.

Before giving a general formulation, let us see the criterion “at work” in the concrete exam-
ple of the A11-E6 orbifold equivalence found in [13] and reproduced in subsection 2.2. Here,
VA11

(x) = x121 + x22, VE6
(y) = y31 + y42 , and W (z) = VA11

(x) − VE6
(y) with z = (x, y). The

variable weights are |x1| = 1, |x2| = 6, |y1| = 4, |y2| = 3 (after scaling up to integers, so that
DW = 12).

Any graded matrix factorisation EJ = JE = W1N must in particular contain (quasi-
homogeneous) polynomials factorising the x22-term from W – and such factors must occur in
each row and each column of E and J . Up to constant prefactors, these polynomials must be of
the form x2 + frs for some frs having the same weight as x2. So each row and each column of
the weight matrices w(E) and w(J) must contain a 6.

Likewise, the y31-term has to be factorised, so each row and column of w(E) and w(J) has to
contain a 4 (from a factor y11 + . . .) or an 8 (from a factor y21 + . . .).

If we want to construct a rank N = 2 matrix factorisation of W = VA11
− VE6

, these two
observations (together with the constraint that Q should be graded) fix the weight matrices
completely, up to row and column permutations and up to swapping E and J :

w(E) =

(
6 4
8 6

)
(3.4)
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which is indeed the weight matrix for the A11-E6 orbifold equivalence (2.5) found by Carqueville
et al. (Thanks to the low rank and the small number of variables, it is fairly easy to arrive at a
concrete Q once the above w(E) is known.)

In order to formulate the criterion in general, we need some notation. Let

W (z) =

T∑
τ=1

mν(z)

be the decomposition of the potential into monomial terms; each mτ has weight DW . For each
τ = 1, . . . , T , let Sτ be the set of weights of possible non-trivial divisors of mτ , i.e.

Sτ =
{
w ∈ {1, . . . , DW − 1} : ∃f ∈ C[z] s.th. f divides mτ and f has weight w

}
.

Weight split criterion: If Q(z) is a graded matrix factorisation of W (z) with weight matrix
w(Q), then each row and each column of w(Q) contains an element of Sτ for all τ = 1, . . . , T .

Note that this criterion allows to deduce – at least case by case – what minimal rank Nmin

a graded orbifold equivalence between V1 and V2 must have: If the number T of terms in
W = V1 − V2 is high, and if many of the sets Sτ are disjoint, the matrix factorisation needs to
have high rank. So far, however, we have not found a closed formula for Nmin.

Let us look at further examples to illustrate the usefulness of this criterion. For the two
unimodal Arnold singularities VE13

(x) = x32 +x2x
5
1 and VZ11

(y) = y31y2 +y52 , the variable weights
are |x1| = 2, |x2| = 5, |y1| = 4, |y2| = 3 (re-scaled so that W has weight 15). A good way to
visualise the possible weight splits is by way of tables where each column represents a monomial
term in the full potential. The table on the left contains factorisations of the monomials, the
one on the right records the weights of those factors:

x32 x2x
5
1 y31y2 y52

x22, x x2, x
5
1 y31 , y2 y42 , y2

x2x1, x
4
1 y21 , y1y2 y32 , y

2
2

x2x
2
1, x

3
1 y1, y

2
1y2

x2x
3
1, x

2
1

x2x
4
1, x

1
1

x32 x2x
5
1 y31y2 y52

10, 5 5, 10 12, 3 12, 3
7, 8 8, 7 9, 6
9, 6 4, 11
11, 4
13, 2

We see that the terms inW admit weight splits 5+10 and 5+10 = 7+8 = 9+6 = 11+4 = 13+2
(from E13) and 12 + 3 = 8 + 7 = 4 + 11 and 12 + 3 = 9 + 6 (from Z11). The criterion then
dictates that in each row and each column of w(E), there must be a 5 or a 10, and there must
be one from the set {3, 4, 7, 8, 11, 12}.

One can just about fit the above weights into a rank 2 matrix w(E) with entries 5, 12, 10, 3,
but this leads to zero quantum dimensions (the associated Q are tensor products and ruled out
as orbifold equivalences by Prop. 3.3 because they have no mixed terms).

At rank 3, one can form 24 weight matrices w(E) satisfying the weight split criterion, and one
of those leads to an orbifold equivalence, see the next section. It is worth mentioning that the
“successful” w(E) is one where many entries are members of both the weight split list coming
from E13 and the weight split list coming from Z11; these offer the best opportunity for an
“entanglement” of x and y variables.

How restrictive the weight split criterion can be becomes clear when one tries to construct
an orbifold equivalence for the Arnold singularities Z13 and Q11: here, one needs a rank 6
matrix factorisation, and of about 2.7 million conceivable weight matrices w(Q) only 60 pass the
criterion.
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There are additional restrictions on viable weight matrices w(Q) which apply if Q is to be an
orbifold equivalence between V1(x) and V2(y). E.g., the requirement that non-trivial fermions
of given R-charge have to exist (needed for non-zero quantum dimensions, cf. Prop 3.2), means
that for each variable yj , at least one of the w(Q)-entries must be of the form |yj |+ n(x) where
n(x) is some Z+-linear combination of the weights |xi|; analogously with the roles of x and y
interchanged. In the examples we studied, this condition from existence of fermions turned out
to be far less restrictive than the weight split criterion arising from the matrix factorisation
conditions.

4. Algorithmic search, and some concrete results

In this section, we will present some new examples of orbifold equivalences. Most of them were
discovered using an algorithm based on the perturbative expansion introduced in the previous
section. First, we make some general remarks on the “computability” of orbifold equivalences
and outline a computer-implementable algorithm to deal with the problem, then we list the new
examples themselves.

4.1. Towards an algorithmic search for orbifold equivalences. The question whether
there is a rank N graded orbifold equivalence Q between two given potentials V1 and V2 can
be converted into an ideal membership problem and, for fixed N , can be decided by a finite
computation.

To see this, let us write the matrix elements of Q as

Qrs =
∑
~p

ars,~p z
~p for r, s ∈ {1, . . . , 2N} (4.1)

where z = (x1, . . . , xn, y1, . . . , ym) and where ~p ∈ Zm+n
+ is a multi-index. (Note that, for graded

Q, the sum is finite due to (3.2) and because the variables have strictly positive weights.)
The main “trick” now is to shift one’s focus away from the variables z and work in a ring
of polynomials in the ars,~p :

The requirement that Q is a rank N matrix factorisation of W (z) = V1(x) − V2(y) imposes
polynomial (in fact: bilinear) equations fMF

α (a) = 0 on the coefficients ars,~p ∈ C. (α labels the
various bilinear equations, a collectively denotes all the coefficients.)

The quantum dimensions can be computed, using Def. 2.1, whether or not Q is a matrix
factorisation; for a graded Q, one obtains two polynomials (of degree n + m) in the ars,~p. The
requirement that both quantum dimensions are non-zero is equivalent to the single equation

fqd(a, aaux) := qL(Q)qR(Q) aaux − 1 = 0

being solvable, where aaux is an additional auxiliary coefficient.
Thus, the matrix Q is an orbifold equivalence between V1 and V2 if and only if the system

fMF
α = 0, fqd = 0 (4.2)

of polynomial equations in the coefficients ars,~p and aaux has a solution. By Hilbert’s weak
Nullstellensatz, this is the case if and only if

1 /∈ 〈 fMF
α , fqd 〉C[a,aaux]. (4.3)

This type of ideal membership problem can be tackled rather efficiently with computer algebra
systems like Singular. (Such computer algebra packages are usually restricted to working over
Q, but for potentials V1, V2 with rational coefficients, the polynomials in (4.2) have rational
coefficients, too, and it is enough to study (4.3) over the rationals in order to prove or disprove
existence of an orbifold equivalence with coefficients ars,~p in the algebraic closure Q.)
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Once a grading U(λ), hence a weight matrix forQ, has been chosen, it is easy to write down the
most general homogeneous matrix elements Qrs (4.1) that conform with this grading. Moreover,
there is only a finite number of possible gradings U(λ) = diag(λg1 , . . . , λg2N ) for a given rank
N . To see this, recall that the weights of the Q-entries are given by w(Qrs) = gs − gr + 1 (we
set the weight of the potential to 2), and also that we can fix g1 = 0 wlog – so in particular
w(Q1r) = gr + 1 and w(Qr1) = −gr + 1. Therefore, at least one of the gr has to satisfy
−1 ≤ gr ≤ 1, otherwise the entire first row or column of Q would have to vanish (because the
weights would all be negative), which would contradict the matrix factorisation conditions. We
can repeat the argument for the gr nearest to g1 and find, overall, that gr ∈ [−2N, 2N ] for all r.
Finally, Qrs can be a non-zero polynomial in the xi, yj only if its weight w(Qrs) is a sum of the
(finitely many, rational) weights |xi|, |yj |, hence only finitely many choices gr from the interval
[−2N, 2N ] can lead to a graded rank N matrix factorisation of V1(x)− V2(y).

All in all, the question whether there exists a rank N orbifold equivalence between two
given potentials V1, V2 can be settled in principle. Our guess is that there is an upper bound
Nmax(V1, V2) such that, if no orbifold equivalence of rank N < Nmax(V1, V2) exists, then none
exists at all – but we have only circumstantial evidence: All known (indecomposable) examples
of orbifold equivalences have rank smaller than the nested tensor product matrix factorisation
obtained by factorising each monomial in V1 − V2; and packing a matrix factorisation “too
loosely” risks making the supertrace inside the quantum dimensions vanish.

So much for the abstract question whether orbifold equivalence is a property that can be
decided algorithmically at all. In order to search for concrete examples, we have devised an
algorithm based on the perturbation expansion and the weight split criterion introduced in
section 3:

Algorithm:

(a) From the potentials V1(x), V2(y), compute the variable weights |xi|, |yj |.
(b) Choose a rank N .
(c) Exploiting the weight split criterion from subsection 3.2, compute all admissible grad-

ings (i.e. weight matrices) for this rank.
(d) Choose a weight matrix and form the most general matrix factorisation Q1(x) of V1(x)

with this weight matrix.
(e) For each yj , compute the space of fermions Fj of Q1(x) with R-charges 1− |yj |.
(f) For any R-charge RM that can occur in the expansion of Q(x, y) from Prop. 3.2, deter-

mine the space of odd matrices with that R-charge.
(g) Compute Q(x, y) using the conditions from Prop. 3.2 (3), then compute the quantum

dimensions qL(Q) and qR(Q). (Everything will depend on unknown coefficients a.)
(h) Extract the conditions fMF

α (a) = 0 and fqd(a) = 0 on the coefficients appearing in
Q(x, y) and check whether this system of polynomial equations admits a solution.

Computer algebra systems such as Singular have built-in routines to perform the last step,
employing (variants of) Buchberger’s algorithm to compute a Gröbner basis of the ideal spanned
by fMF, fqd.

Already when forming the “most general” Q1(x) with a given weight matrix, undetermined
coefficients a (along with bilinear constraints) enter the game – but far fewer than would show
up in the most general matrix Q(x, y) with the same weight matrix, because one only uses
the x-variables to form quasi-homogeneous entries: the perturbation expansion from Prop. 3.2
“organises” the computation to some extent from the outset. Nevertheless, even for harmless
looking potentials V1, V2 one can easily end up with close to one thousand polynomial equations
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in hundreds of unknowns ars,~p. Due to restrictions on memory and run-time, it is advisable
in practice to make guesses for some of the coefficients ars,~p occurring in Q(x, y) or already in
Q1(x), instead of trying to tackle the most general ansatz. (Some of these can be computer-aided
guesses: e.g., Buchberger’s algorithm may allow to decide fairly quickly that a certain coefficient
cannot be zero; then one may try to set it to 1.) We have succeeded in automatising most of the
steps involved in making the equations tractable for Singular, some of the results are collected
in the next subsection.

Finding an explicit solution for the coefficients a is of course desirable, but not necessary to
prove that two potentials are orbifold equivalent. It appears that Singular is not the optimal
package for determining explicit solutions (although it is very efficient in establishing solvability);
feeding the polynomial equations resulting from the Singular code into Mathematica, say, might
be more promising.

If one is content with existence statements, additional avenues are open: One could e.g.
employ numerical methods to find approximate solutions to the system of equations (4.2), then
check whether any of them satisfies the criteria of the Kantorovich theorem or of Smale’s α-
theory, see e.g. [26, 42]. If so, one has proven (rigorously) that there is an exact solution in a
neighbourhood of the numerical one. We did not take this route, but it might lead to a more
efficient computational tool towards a classification of orbifold equivalent potentials.

4.2. New examples. We now present new examples of orbifold equivalences, starting with a
few isolated (but hard-won) cases, including all remaining pairs of unimodal Arnold singularities.
Then we add a series of equivalences obtained by simple transformations of variables.

Theorem 4.1: In each of the following cases, the potential V1(x) is orbifold equivalent to the
potential V2(y):

(1) V1(x) = x61 + x22 and V2(y) = y31 + y32 .
(These are the singularities A5 and, up to Knörrer periodicity, A2 ⊕ A2, using the

notation for a direct sum of singularisties from [1], Chapter 2, Section 2.2; the central
charge for this example is ĉ = 2

3 .)

(2) V1(x) = x51 x2 + x32 and V2(y) = y31 y2 + y52 .
(These are two of the exceptional unimodal Arnold singularities, namely E13 resp.

Z11, at central charge ĉ = 16
15 .)

(3) V1(x) = x61 + x1 x
3
2 + x23 and V2(y) = y2 y

3
3 + y32 + y21 y3.

(These are the exceptional unimodal Arnold singularities Z13 resp. Q11, at central
charge ĉ = 10

9 .)

(4) V1(x) = x21 x3 + x2 x
2
3 + x42 and V2(y) = −y21 + y42 + y2 y

4
3 .

(These are the exceptional unimodal Arnold singularities S11 resp. W13, at central
charge ĉ = 9

8 .)

(5) V1(x) = x101 x2 + x32 and V2(y) = y1y
7
2 + y31y2.

(These are a chain resp. a loop (or cycle), in the nomenclature of [32, 25, 31], at
central charge ĉ = 6

5 , a value shared by the pair Q17 and W17 of bimodal Arnold
singularities.)

Proof: In contrast to E14-Q10, none of these cases can be traced back to known results on
simple singularities. Lacking, therefore, any elegant abstract arguments, we can only establish
these orbifold equivalences by finding explicit matrix factorisations Q of V1 − V2 with non-zero
quantum dimensions. The ranks of the Q we found are, in the order of the cases in the theorem,
2, 3, 6, 4 and 3. In most cases, Q depends on coefficients a which are subject to (solvable!)
systems of polynomial equations. We list those matrices on the web-page [39], in the form of a
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Singular-executable text file. This page also provides a few small Singular routines to perform
the necessary checks: extraction of the matrix factorisation conditions (bilinear equations on the
a), computation of the quantum dimensions, computation of the Gröbner basis for the ideal in
(4.3). For the sake of completeness, and in order to give an impression of the complexity, the
matrices and the polynomial equations are also reproduced in the appendix of the present paper.

In all of the five cases, the orbifold equivalence satisfies qL(Q)qR(Q) 6= ±1, hence A = Q† ?Q
is not similar to the identity defect: in the sense defined after eq. (2.3), these are “true orbifold
equivalences”, not “mere equivalences in the bicategory LG”. �

The web-page mentioned above also presents direct orbifold equivalences between D7 and E6,
between D10 and E7, and between D16 and E8. That these simple singularities are orbifold
equivalent follows already from the A-D and A-E results in [15, 13]; what makes the direct D-E
defects noteworthy is that they have at most rank 3. (The smallest orbifold equivalence between
E8 and A29 is of rank 4.)

Together with the straightforward E14-Q10 orbifold equivalence mentioned in section 2, Theo-
rem 4.1 exhausts all orbifold equivalences among the (quasi-homogeneous) exceptional unimodal
Arnold singularities: no other pairs with equal central charge exist among those fourteen po-
tentials. The orbifold equivalent pairs are precisely the pairs that display “strange duality”
(Dolgachev and Gabrielov numbers are interchanged), see e.g. [41].

Among the 14 exceptional bimodal Arnold singularities, only Q17 and W17 have the same
central charge (namely ĉ = 6

5 .); we have not yet found an orbifold equivalence between them
(nor between Q17 or W17 and the pair in item (5) above).

It might be worth mentioning that the arguments one can use to treat the E14-Q10 case –
i.e. Theorem 2.2 (c) – also show that orbifold equivalence does not respect the modality of a
singularity:
The exceptional unimodal Arnold singularity Q12 with VQ12

(x) = x51 + x1 x
2
2 + x33 is orbifold

equivalent to the exceptional bimodal Arnold singularity E18 given by VE18
(y) = y101 + y32 + y23 :

the former is VD6(x1, x2) + x33, the latter VA9(y1, y2) + y33 , and VD6 ∼oeq VA9 due to the results
of [15]. By the same method, one can relate other exceptional Arnold singularities to sums of
simple singularities; among the examples involving bimodal singularities are

VQ16
(x) ∼oeq VA13

(y1, y2) + y33

and

VU16
(x) = VD4

(x1, x2) + x53 ∼oeq VA5
(y1, y2) + y53 ∼oeq z

3
1 + z32 + z53 = z31 + VE8

(z2, z3).

A number of more or less expected orbifold equivalences, including infinite series, can be
established via transformations of variables:

Lemma 4.2: Assume Q(x, y) is an orbifold equivalence between V1(x) and V2(y), and assume
that y 7→ y′ is an invertible, weight-preserving transformation of variables. Then Q(x, y′) is
an orbifold equivalence between V1(x) and V2(y′) if the weights |yi| are pairwise different, or if
V2(y) ∈ m3.

Proof: First, focus on the variable transformation itself: We can assume wlog. that the y1, . . . , ym
are labeled by increasing weight, y1 having the lowest weight. Then the transformation can be
written as yj 7→ y′j = fj(y) +

∑
k∈Ij Ajkyk where Ajk ∈ C, where Ij = {k : |yk| = |yj |} and

where fj depends only on those yl with |yl| < |yj |. As y 7→ y′ preserves weights, fj has no linear
terms. The Jacobian J of the transformation is lower block-diagonal and det(J ) = det(A), a
non-zero constant.
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Since Q′ := Q(x, y′) is obviously a matrix factorisation of V1(x)−V2(y′), we only need to study
the quantum dimensions of Q′. The relation qR(Q′) = det(A) qR(Q) results immediately from
making a substitution of integration variables in the formula for the right quantum dimension.

The left quantum dimension of Q′ can be expressed as a Kapustin-Li correlator (in the (V1, Q1)

model) of the fermions F ′j = ∂y′jQ
′|y′=0 =

∑m
l=1

∂yl
∂y′j |y=0 Fl. Here, we have already exploited

y′ = 0 ⇔ y = 0 to simplify, but the summation over l might still lead to linear combinations
which are difficult to control. The extra assumptions on V2(y) avoid this: If all |yj | are pairwise

different, then ∂yl
∂y′j |y=0 = bj δj,l for some non-zero constants bj . If V2 starts at order 3 or higher,

the Fj anti-commute with each other inside the correlator: adapting the proof of Prop. 3.3, one
finds

0 = −∂yj1∂yj2V2|y=0 = {Fj1 , Fj2}+ {Q1(x), ∂yj1∂yj2Q(x, y)|y=0},

and the last term vanishes in the Q1-cohomology, therefore does not contribute to the Kapustin-
Li correlator. Hence, the correlator is totally anti-symmetric in the Fj , and the linear combina-
tion of correlators making up the left quantum dimension is simply qL(Q′) = det(A)−1 qL(Q).
�

Applying this lemma to the identity defect of V1(x)−V1(y), one can establish orbifold equiv-
alences e.g. in the following cases:

(1) So-called “auto-equivalences” of unimodal Arnold singularities: Different descriptions
of the same singularity exist for U12, Q12, W12, W13, Z13 and E14. The assumptions on
the variable weights resp. structure of V2 made in Lemma 4.2 hold for all these cases.
These orbifold equivalences were already discussed in [37]; although we were unable
to verify the concrete formulas given there (e.g., eqs. (8) and (10) in the Appendix
of that paper seem to contain errors), the general structure (Q being a nested tensor
product of rank 4) coincides with what one obtains from the identity defect upon a
weight-preserving transformation of variables.

The orbifold equivalence between

VQT
17

(x) = x31x2 + x52x3 + x23 and V (y) = y31y2 + y102 + y23

is of the same type, occurring at a central charge shared by the bimodal Arnold singu-
larity Q17. (The T in QT17 indicates that the polynomial VQT

17
can be formed from VQ17

by transposing the “exponent matrix” extracted from the latter; this process yields an-
other quasi-homegeneous polynomials of the same central charge. See [31] for a concise
exposition, the details are not relevant for the purposes of the present paper.)

(2) Equivalences between quasi-homogeneous polynomials of Fermat, chain and loop (or
cycle) type at ĉ < 1:
VA2n−1

(x) = x2n1 + x22 and VDT
n+1

(y) = yn1 y2 + y22

VLn
(x) = xn1x2 + x1x

2
2 and VD2n

(y) = y2n−11 + y1y
2
2

VCn
(x) = x21x2 + xn2x3 + x23 and VD2n+1

(y) + y23 = y2n1 + y1y
2
2 + y23

with n ≥ 2 in all three pairs. (Again, nomenclature and notations have their origin in
works on quasi-homegeneous polynomials, in particular [32, 25, 31].) Explicit orbifold
equivalences for A-DT were already given in [40].

(3) Cases involving non-trivial marginal bulk deformations, e.g.
at central charge ĉ = 10

9 , one finds an orbifold equivalence between the direct sum

A8⊕A2 of simple singularities, V(A8⊕A2)(x) = x91 +x32, and special deformations of ZT13,

given by VZT
13

(y) = y61y2 + y32 + µ2 y
3
1y

2
2 , if µ2 = ±

√
3;
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at central charge ĉ = 8
7 , the two deformed singularities VET

19
(x) = x31x2+x72+µ1 x1x

5
2

and V2(y) = y1y
5
2 +y31y2+µ2 y

2
1y

3
2 are orbifold equivalent as long as the two deformation

parameters are related by µ1 = µ ( 1
3µ

2
2 − 1) with 3µ3 = −µ2( 2

9µ
2
2 − 1).

Lemma 4.2 can also be used to prove an orbifold equivalence one would expect on geometric
grounds: An elliptic curve can be described by the Legendre normal form

Vλ(x) = −x22x3 + x1(x1 − x3)(x1 − λx3),

where λ is a complex parameter with λ 6= 0, 1, and two such curves Vλ and Vλ′ describe bira-
tionally equivalent tori if and only if

λ′ ∈ {λ, 1− λ, 1/λ, 1/(1− λ), (λ− 1)/λ, λ/(λ− 1) }, (4.4)

see e.g. IV.4 in [23]. One can apply a weight-preserving variable transformation to bring Vλ into
an alternative form Ve(y) = −y22y3 + (y1 − e1 y3)(y1 − e2 y3)(y1 − e3 y3), with pairwise different
e1, e2, e3. The parameters of the two forms are related by λ = (e3 − e1)/(e2 − e1), and the six
different λ′-values in (4.4) arise from permuting the ei, which of course leaves Ve unchanged;
thus we find Vλ′ ∼oeq Vλ.

Since, in all the examples listed after Lemma 4.2, we start from the identity defect, the orbifold
equivalence resulting from the transformation of variables automatically satisfies

qL(Q′) qR(Q′) = 1,

so it is likely that they are “mere equivalences” in the bicategory LG. (One way to verify this
would be to compute and analyse the fusion product (Q′)† ? Q′.) But Lemma 4.2 can also be
applied to the orbifold equivalence between Dn+1 and A2n−1, say, to produce a defect with
qL(Q′) qR(Q′) = 2 between Dn+1 and DT

n+1.

Furthermore, the potentials of type DT
n , Cn and Ln listed in item (2) appear as separate,

non-equivalent entries in classifications of quasi-homogeneous polynomials [32, 25], but not in
classifications of singularities as in [1]: in the latter classification, one allows for more general
types of variable transformations to identify two singularities, in particular the transformations
need not respect variable weights (and indeed, some of the polynomials listed in [1] are not
even quasi-homogeneous). The orbifold equivalences given in item (2) of Lemma 4.2 may not
be surprising, but it is not clear to us whether there are abstract theorems guaranteeing that
polynomials which are equivalent as singularities are (orbifold) equivalent in LG.

A first edition of an “oeq catalogue”, i.e. a list of polynomials sorted into orbifold equivalence
classes based on the results of [15, 13] and our new findings, is available at the web-page [39].

5. Open problems and conjectures

Ultimately, one would like to find a simple (combinatorial or number-theoretic) criterion that
allows to read off directly from the potentials V1, V2 whether they are orbifold equivalent or not
– instead of taking a detour via constructing an explicit orbifold equivalence Q.

Having invested quite a lot of effort into finding such matrices Q, the authors sincerely hope
that such a criterion involves conditions beyond the ones listed in Prop. 2.3.

And there are indeed reasons to believe that ĉ(V1) = ĉ(V2) alone is insufficient for V1 ∼oeq V2:
One line of arguments concerns marginal deformations: Let V be a potential which admits a

marginal deformation, i.e. there is a quasi-homogeneous element φ ∈ Jac(V ) of weight 2. (The
Fermat elliptic curve

V (x) =

3∑
i=1

x3i with φ = x1x2x3
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is an example.) Set V1(x) = V (x) + µφ(x), where µ ∈ C is a deformation parameter, and
V2(y) = V (y); we have ĉ(V1) = ĉ(V2).

The examples of orbifold equivalences listed at the end of section 4, involving ZT13, ET19 or the
geometrically equivalent tori (4.4), already suggest that a given method of constructing a defect
Q between V + µφ and V might lead to an orbifold equivalence for a discrete set of µ-values
only.

In general, let Q(x, y;µ) be rank N matrix factorisation of V1(x) − V2(y) and assume its
µ-derivative exists in a neighbourhood of µ = 0. Then the bosonic morphism

Φ := φ(x) 12N = {Q, ∂µQ}

is zero in the cohomology of Q, and 1 ⊗ Φ is zero in the cohomology of Q†⊗̂Q. This should
imply that Φ is absent from End(A) for A = Q† ? Q, which in turn makes it unlikely that there
is a projection from End(A) to Jac(V ) – but the latter has to be the case [15] if Q is an orbifold
equivalence.

A more direct proof that c(V1) = ĉ(V2) does not guarantee orbifold equivalence might result
from incompatibility of the “weight split lists” Sτ occurring in the weight split criterion from
subsection 3.2.

We conjecture that orbifold equivalences Q have trivial fermionic cohomology.
This is true in every concrete case for which we have computed H1

Q, and the conjecture is
backed up by the following observation: If a matrix factorisation Q of W has a non-trivial
fermion ψ ∈ H1

Q, one can form the cone

Cψ(λ) =

(
Q λψ
0 Q

)
which is again a matrix factorisation of W for any λ ∈ C. The upper triangular form implies
that qL(Cψ(λ)) = qL(Q ⊕ Q) = 2qL(Q) for any value of λ (likewise for the right quantum
dimension). In general, however, cones Cψ(λ) with λ 6= 0 are not equivalent (related by similarity
transformations) to the direct sum Q ⊕ Q, so one would not expect the quantum dimensions to
always coincide.

A related question (related due to the role of fermions in deformations of matrix factorisations)
is whether there can be moduli spaces of orbifold equivalences between two fixed potentials, or
whether the equations only ever admit a discrete set of solutions. Our computations point
towards the latter, but we have no proof.

The bicategory setting might provide a better language in which to tackle these general
questions.

We hope that the orbifold equivalences presented here prove fruitful in singularity theory, and
in other areas related to matrix factorisations by well-established equivalences of categories, but
one should also explore applications of orbifold equivalence in string theory, or in the context of
mirror symmetry.

E.g., orbifold equivalences between Arnold singularities may also imply relations between
N = 2 supersymmetric gauge theories in 4 dimensions “engineered” from these singularities, see
[16, 17].

It is reasonable to expect that potentials related by “Berglund-Hübsch-Krawitz” duality [2, 31]
are orbifold equivalent (E13 ∼oeq Z11 is one example), and this duality is one approach to
constructing mirror manifolds.

One might also explore whether some of the orbifold equivalences of Landau-Ginzburg po-
tentials can be “lifted” to relations of the conformal field theories associated with them. In
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particular, the question whether there is a CFT analogue to A5 ∼oeq A2⊕A2, perhaps in terms
of an orbifold construction, should be accessible because the central charge is that of a theory
of two free bosons. The A2-model is assocatiated with a free boson compactified on a circle, see
[33] and references therein; we do not know whether a similar statement can be made for A5.

Let us add some speculative comments on orbifold equivalence and entanglement. In quantum
physics, entanglement refers to the phenomenon that a physical system comprised from two
subsystems (like an electron-positron pair) can be in a state such that observations made on one
subsystem immediately determine properties of the second subsystem no matter how great the
separation between the two. This behaviour has no analogue in classical physics.

Already the general consequences implied by an orbifold equivalence V1 ∼oeq V2 – e.g. the
relation (2.2) between categories, or more directly the one between correlators in the Landau-
Ginzburg models associated with V1(x) and V2(y) – are strongly reminiscent of entanglement.

Closer to the level of concrete formulas, one notices that quantum states displaying entangle-
ment are formed from states describing the subsystems in a manner that resembles the mixing
of x- and y-variables implied by Prop. 3.3.

Indeed, we expect that the quantum dimensions of a defect can be related to a suitably defined
entanglement entropy in Landau-Ginzburg models.

If this can be made manifest and the “symmetries” discussed here can ultimately be traced
back to quantum entanglement, perhaps “entanglement equivalence” might be a more appropri-
ate term than “orbifold equivalence”.

Acknowledgements. We are indebted to N. Carqueville for introducing us to the problem, for
many valuable discussions, and for an early version of the Singular code to compute quantum
dimensions. We also thank I. Brunner, D. Murfet and I. Runkel for useful conversations and
comments.
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Appendix A. Appendix: explicit defects

For the sake of completeness, we collect the orbifold equivalences that can serve to prove
Theorem 4.1. The Singular-executable formats given on the web-page [39] should be of more
practical use.

To save writing zeroes, we list matrices E and J only. Q is constructed from them as in
(1.2). For fear of producing typos, we have largely refrained from attempts at simplifying the
Singular output (except for the very easy case A5 ∼oeq A2⊕A2). The matrices spelled out in the
following are the simplest ones we could find: what results from our Singular algorithm typically
contains many more coefficients ars,~p, and we have chosen explicit values for some of them.

The orbifold equivalences are listed in the order they appear in Theorem 4.1.

(1) A rank 2 orbifold equivalence between A5 and A2 ⊕A2:

E =

(
x2
1 − a1(y1 + y2) x2 + a2x1(y1 − y2)

x2 − a2x1(y1 − y2) −x4
1 − 64a8

1y
2
2 + 16a5

1y1y2 − a1x
2
1(y1 + y2)− 4a2

1y
2
1

)
J =

(
x4
1 + 64a8

1y
2
2 − 16a5

1y1y2 + a1x
2
1(y1 + y2) + 4a2

1y
2
1 x2 + a2x1(y1 − y2)

x2 − a2x1(y1 − y2) −x2
1 + a1(y1 + y2)

)
where the coefficients have to satisfy

a22 = 3a21 and a31 = 1
4 .
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The quantum dimensions of Q are qL(Q) = −2a1a2 and qR(Q) = − 4
3a2. Since their product is

2, this is a “true orbifold equivalence”, not an ordinary equivalence in the bi-category of Landau-
Ginzburg potentials. On the other hand, since 2 is contained in any cyclotomic field, a group
action might be the source of this orbifold equivalence.

(2) An ugly rank 3 orbifold equivalence between E13 and Z11:
The matrix elements Ers and Jrs are given by

E11 = −x2
1 − y1a2

E12 = −x1y2a3 − x1y2a4 + x2

E13 = −y2a4

E21 = x1y2a3 − x1y2a5 + x2

E22 = y2
2a

2
1a

2
4 + y2

2a1a3a4 + y2
2a1a

2
4 + y2

2a1a4a5 − x3
1a1 + y2

2a
2
3 + y2

2a3a4 − y2
2a3a5 + y2

2a
2
5 + x1y1a1a2 −

x1y1a1a6 + x3
1 − y2

2a7

E23 = x2
1 + y1a6

E31 = −x3
1a1 − x3

1 − y2
2a7

E32 = −x2
1y2a

2
1a4 + 2y1y2a

2
1a4a2 − x2

1y2a1a3 − x2
1y2a1a4 − x2

1y2a1a5 + y1y2a1a3a2 + 2y1y2a1a4a2 +
y1y2a1a5a2 − y1y2a1a4a6 − x2

1y2a3 + x2
1y2a5 + y1y2a3a2 − y1y2a4a6 − y1y2a5a6 + x1x2

E33 = x1y2a5 + x2

J11 = −x1y
3
2a

2
1a

2
4a5 − x4

1y2a
2
1a4 − x1y

3
2a1a3a4a5 − x1y

3
2a1a

2
4a5 − x1y

3
2a1a4a

2
5 + 2x2

1y1y2a
2
1a4a2 −

x2
1y1y2a

2
1a4a6+2y2

1y2a
2
1a4a2a6−x4

1y2a1a3−x4
1y2a1a4−x2y

2
2a

2
1a

2
4−x1y

3
2a

2
3a5−x1y

3
2a3a4a5+x1y

3
2a3a

2
5−

x1y
3
2a

3
5+x2

1y1y2a1a3a2+2x2
1y1y2a1a4a2−x2

1y1y2a1a3a6−2x2
1y1y2a1a4a6+y2

1y2a1a3a2a6+2y2
1y2a1a4a2a6+

y2
1y2a1a5a2a6−y2

1y2a1a4a
2
6−x4

1y2a3−x2y
2
2a1a3a4−x2y

2
2a1a

2
4−x2y

2
2a1a4a5+x2

1y1y2a3a2−x2
1y1y2a3a6−

x2
1y1y2a4a6 + y2

1y2a3a2a6 − y2
1y2a4a

2
6 − y2

1y2a5a
2
6 +x1y

3
2a5a7 +x3

1x2a1 −x2y
2
2a

2
3 −x2y

2
2a3a4 +x2y

2
2a3a5 −

x2y
2
2a

2
5 − x1x2y1a1a2 + x1x2y1a1a6 + x1x2y1a6 + x2y

2
2a7

J12 = −x2
1y

2
2a

2
1a

2
4 − y1y

2
2a

2
1a

2
4a2 − x2

1y
2
2a1a3a4 − x2

1y
2
2a1a

2
4 − x2

1y
2
2a1a4a5 − y1y

2
2a1a3a4a2 − y1y

2
2a1a

2
4a2 −

y1y
2
2a1a4a5a2 − x2

1y
2
2a3a4 − x2

1y
2
2a3a5 − y1y

2
2a

2
3a2 − y1y

2
2a3a4a2 + y1y

2
2a3a5a2 − y1y

2
2a

2
5a2 − x1y

2
1a1a

2
2 +

x1y
2
1a1a2a6 + x1y

2
1a2a6 + y1y

2
2a2a7 − y1y

2
2a6a7 − x1x2y2a3 + x1x2y2a5 + x2

2

J13 = −y3
2a

2
1a

3
4 − y3

2a1a3a
2
4 − y3

2a1a
3
4 − y3

2a1a
2
4a5 + x3

1y2a1a4 − y3
2a

2
3a4 − y3

2a3a
2
4 + y3

2a3a4a5 − y3
2a4a

2
5 −

x1y1y2a1a4a2 + x1y1y2a1a4a6 + x3
1y2a3 + x1y1y2a3a6 + x1y1y2a4a6 + y3

2a4a7 − x2
1x2 − x2y1a6

J21 = −3y1y
2
2a

2
1a

2
4a2−2y1y

2
2a1a3a4a2−3y1y

2
2a1a

2
4a2−2y1y

2
2a1a4a5a2+y1y

2
2a1a

2
4a6+x5

1a1+x2
1y

2
2a3a5−

x2
1y

2
2a

2
5−y1y

2
2a

2
3a2−2y1y

2
2a3a4a2+y1y

2
2a3a5a2−y1y

2
2a

2
5a2−x1y

2
1a1a

2
2+x3

1y1a1a6+y1y
2
2a

2
4a6+y1y

2
2a4a5a6+

x1y
2
1a1a2a6 + x5

1 + x3
1y1a6 + x1y

2
1a2a6 + x2

1y
2
2a7 + y1y

2
2a2a7 + x1x2y2a3 + x2

2

J22 = x3
1y2a1a4 + x3

1y2a4 + x3
1y2a5 + x1y1y2a5a2 + y3

2a4a7 + x2
1x2 + x2y1a2

J23 = x1y
2
2a3a4 − x1y

2
2a4a5 − x4

1 − x2
1y1a2 − x2

1y1a6 − y2
1a2a6 + x2y2a4

J31 = −x3
1y

2
2a

3
1a

2
4 − 2x3

1y
2
2a

2
1a

2
4 − 2x3

1y
2
2a

2
1a4a5 − 2x1y1y

2
2a

2
1a3a4a2 +3x1y1y

2
2a

2
1a

2
4a2 +2x1y1y

2
2a

2
1a4a5a2 −

y4
2a

2
1a

2
4a7 + x6

1a
2
1 − x3

1y
2
2a1a3a4 − x3

1y
2
2a1a

2
4 + x3

1y
2
2a1a3a5 − 2x3

1y
2
2a1a4a5 − 2x3

1y
2
2a1a

2
5 − x4

1y1a
2
1a2 −

x1y1y
2
2a1a

2
3a2 + 3x1y1y

2
2a1a

2
4a2 + 4x1y1y

2
2a1a4a5a2 + x1y1y

2
2a1a

2
5a2 + x4

1y1a
2
1a6 +

x1y1y
2
2a1a3a4a6−x1y1y

2
2a1a

2
4a6−x1y1y

2
2a1a4a5a6−y4

2a1a3a4a7−y4
2a1a

2
4a7−y4

2a1a4a5a7+x2
1x2y2a

2
1a4−

x3
1y

2
2a3a4−x3

1y
2
2a3a5−x4

1y1a1a2−2x2y1y2a
2
1a4a2+2x1y1y

2
2a3a4a2+x1y1y

2
2a

2
5a2+x2

1y
2
1a1a

2
2+x4

1y1a1a6+
x1y1y

2
2a3a4a6 − x1y1y

2
2a

2
4a6 + x1y1y

2
2a3a5a6 − 2x1y1y

2
2a4a5a6 − x1y1y

2
2a

2
5a6 − x2

1y
2
1a1a2a6 +2x3

1y
2
2a1a7 −

y4
2a

2
3a7−y4

2a3a4a7+y4
2a3a5a7−y4

2a
2
5a7−x1y1y

2
2a1a2a7+x1y1y

2
2a1a6a7−x6

1+x2
1x2y2a1a3+x2

1x2y2a1a4+
x2
1x2y2a1a5 −x2y1y2a1a3a2 − 2x2y1y2a1a4a2 −x2y1y2a1a5a2 +x2y1y2a1a4a6 −x2

1y
2
1a2a6 −x1y1y

2
2a2a7 +

x1y1y
2
2a6a7 + y4

2a
2
7 − x2y1y2a3a2 + x2y1y2a4a6 + x2y1y2a5a6 − x1x

2
2

J32 = x4
1y2a

2
1a4−x2

1y1y2a
2
1a4a2−2y2

1y2a
2
1a4a

2
2+x4

1y2a1a5−x2
1y1y2a1a4a2−y2

1y2a1a3a
2
2−2y2

1y2a1a4a
2
2−

y2
1y2a1a5a

2
2 + x2

1y1y2a1a4a6 + y2
1y2a1a4a2a6 − x4

1y2a4 − x4
1y2a5 − x2

1y1y2a5a2 − y2
1y2a3a

2
2 + x2

1y1y2a4a6 +
x2
1y1y2a5a6 + y2

1y2a4a2a6 + y2
1y2a5a2a6 − x1y

3
2a3a7 − x1y

3
2a4a7 + x3

1x2a1 − x1x2y1a2 + x2y
2
2a7

J33 = x2
1y

2
2a

2
1a

2
4 − 2y1y

2
2a

2
1a

2
4a2 + x2

1y
2
2a1a3a4 + x2

1y
2
2a1a

2
4 + x2

1y
2
2a1a4a5 − y1y

2
2a1a3a4a2 − 2y1y

2
2a1a

2
4a2 −

y1y
2
2a1a4a5a2+y1y

2
2a1a

2
4a6−x5

1a1+x2
1y

2
2a4a5+x2

1y
2
2a

2
5−y1y

2
2a3a4a2−x3

1y1a1a6+y1y
2
2a

2
4a6+y1y

2
2a4a5a6+

x5
1 + x3

1y1a2 + x1y
2
1a2a6 − x2

1y
2
2a7 − y1y

2
2a6a7 − x1x2y2a4 − x1x2y2a5 + x2

2
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The seven coefficients a1, . . . , a7 are subject to matrix factorisation conditions which take the
form of twelve algebraic equations fα(a) = 0 with

f1 = −(1/3)a1a
2
3a4a6−(1/3)a1a3a

2
4a6+(1/3)a1a3a4a5a6+(2/3)a1a

2
4a5a6+(2/3)a1a4a

2
5a6−(2/3)a2a

3
3−

(1/3)a2a
2
3a4+2a2a

2
3a5+(2/3)a2a3a4a5−2a2a3a

2
5+(4/3)a2a

3
5−(1/3)a2

3a4a6−(1/3)a3a
2
4a6+(2/3)a2

4a5a6+
(4/3)a4a

2
5a6 + (2/3)a2a3a7 − (4/3)a2a5a7 − (5/3)a3a6a7 + (1/3)a5a6a7

f2 = 2a2
1a3a

2
4a6−4a2

1a
2
4a5a6+2a1a3a

2
4a6−4a1a

2
4a5a6−2a2a

3
3+6a2a

2
3a5−6a2a3a

2
5+4a2a

3
5−2a3a4a5a6+

4a4a
2
5a6 + 2a2a3a7 − 4a2a5a7 − 6a3a6a7

f3 = −7a3
1a2a3a

2
4a6 + 11a3

1a2a
2
4a5a6 − 4a2

1a2a
2
3a4a6 − 12a2

1a2a3a
2
4a6 − 2a2

1a2a3a4a5a6 + 15a2
1a2a

2
4a5a6 +

14a2
1a2a4a

2
5a6 − a2

1a
3
4a

2
6 − a1a2a

3
3a6 − 9a1a2a

2
3a4a6 − 8a1a2a3a

2
4a6 + 4a1a2a3a4a5a6 + 4a1a2a

2
4a5a6 +

7a1a2a4a
2
5a6 +5a1a2a

3
5a6 − 2a1a

3
4a

2
6 − 2a1a

2
4a5a

2
6 − 12a2

1a2a4a6a7 − a2
2a

3
3 − 2a2

2a
2
3a4 + a2

2a
2
3a5 − a2

2a3a
2
5 −

a2a
3
3a6−5a2a

2
3a4a6−3a2a3a

2
4a6+a2a

2
3a5a6+a2a3a4a5a6−a2a3a

2
5a6+a2a

3
5a6−a3

4a
2
6−2a2

4a5a
2
6−a4a

2
5a

2
6−

6a1a2a3a6a7−7a1a2a4a6a7−6a1a2a5a6a7+a1a4a
2
6a7+a2

2a3a7−a2a3a6a7−a2a5a6a7+a4a
2
6a7+a5a

2
6a7

f4 = −(5/2)a3
1a3a

2
4 + 2a3

1a
2
4a5 − 2a2

1a
2
3a4 − (9/2)a2

1a3a
2
4 + 2a2

1a3a4a5 + 3a2
1a

2
4a5 − 2a2

1a4a
2
5 − (3/2)a1a

3
3 −

4a1a
2
3a4−2a1a3a

2
4+(9/2)a1a

2
3a5+(11/2)a1a3a4a5+a1a

2
4a5−(9/2)a1a3a

2
5−4a1a4a

2
5+6a2

1a4a7−(3/2)a3
3−

2a2
3a4+(9/2)a2

3a5+3a3a4a5−(9/2)a3a
2
5−a4a

2
5+a3

5+3a1a3a7+6a1a4a7+3a1a5a7+(7/2)a3a7+a4a7−a5a7

f5 = 3a1a
3
3a4a6 + a1a

2
3a

2
4a6 − 9a1a

2
3a4a5a6 + 8a1a3a4a

2
5a6 − 2a1a

2
4a

2
5a6 − 4a1a4a

3
5a6 + 5a2a

4
3 + a2a

3
3a4 −

19a2a
3
3a5−2a2a

2
3a4a5+25a2a

2
3a

2
5+a2a3a4a

2
5−15a2a3a

3
5−a2a4a

3
5+2a2a

4
5+3a3

3a4a6+a2
3a

2
4a6−8a2

3a4a5a6+
7a3a4a

2
5a6 − 2a2

4a
2
5a6 − 5a4a

3
5a6 − 9a1a3a4a6a7 + 4a1a

2
4a6a7 + 9a1a4a5a6a7 − 8a2a

2
3a7 + 2a2a3a4a7 +

11a2a3a5a7 + a2a4a5a7 + 11a2
3a6a7 − 11a3a4a6a7 + 3a2

4a6a7 − 11a3a5a6a7 + 11a4a5a6a7 + 3a2
5a6a7 −

2a2a
2
7 + 2a6a

2
7

f6 = 3a2
1a

2
4a6 +2a1a3a4a6 +5a1a

2
4a6 +2a1a4a5a6 + a2a

2
3 +2a2a3a4 − a2a3a5 + a2a

2
5 +2a3a4a6 +2a2

4a6 +
a4a5a6 − a2a7 + a6a7

f7 = a1a2 − a1a6 − a6

f8 = −2a2
1a2a4a

2
6 − a1a2a3a

2
6 − 3a1a2a4a

2
6 − a1a2a5a

2
6 − a2

2a3a6 − a2a3a
2
6 − a2a4a

2
6 + 1

f9 = a2
1a

3
4a7 + a1a3a

2
4a7 + a1a

3
4a7 + a1a

2
4a5a7 + a2

3a4a7 + a3a
2
4a7 − a3a4a5a7 + a4a

2
5a7 − a4a

2
7 + 1

f10 = 5a2
1a3a

2
4a6 − a2

1a
2
4a5a6 + 3a1a

2
3a4a6 + 8a1a3a

2
4a6 + 3a1a3a4a5a6 − a1a

2
4a5a6 + a2a

3
3 + 3a2a

2
3a4 +

a2a
3
5 + 3a2

3a4a6 + 3a3a
2
4a6 + a3a4a5a6 + a4a

2
5a6 − a2a3a7 − a2a5a7

f11 = −3a2
1a4a

2
6 − a1a3a

2
6 − 6a1a4a

2
6 − a1a5a

2
6 − a2

2a3 − a2a3a6 − a2a4a6 − a3a
2
6 − 3a4a

2
6

f12 = a3
1a

3
4+2a2

1a
3
4+3a2

1a
2
4a5+a1a3a

2
4+a1a

3
4+3a1a

2
4a5+3a1a4a

2
5+a3a

2
4+a3a4a5+a4a

2
5+a3

5−2a1a4a7−
a3a7 − a4a7 − a5a7

These twelve equations are solvable, and the quantum dimensions, subject to the matrix
factorisation conditions, are given by

qL(Q) = a1a4a6 + a2a3 + a4a6 + a5a6

qR(Q) = (462a1a5a
2
6a

2
7+603a3

1a
2
6−2002a2

2a3a
2
7+158a2

2a4a
2
7−853a2

2a5a
2
7−898a2a3a6a

2
7−2784a2a4a6a

2
7−

136a2a5a6a
2
7+214a3a

2
6a

2
7−1294a4a

2
6a

2
7+1111a5a

2
6a

2
7+2646a2

1a
2
6−261a1a

2
6−291a2

2−301a2a6−2095a2
6)/764

Note that these expressions result after reduction by the ideal spanned by the fα, hence the
quantum dimensions of this defect are non-zero numbers after inserting any special solution to
the equations fα(a) = 0.

(3) A rank 6 orbifold equivalence between Z13 and Q11, which could be worse:

E11 = 2y3a
2
1a2 + 2y3a1a3

E12 = −(3/2)x3
1a

3
1a

3
2 − x3

1a
2
1a3a

2
2 + (1/2)x3

1a1a
2
3a2 + 2x2y3a4a

2
1a2 + 2x2y3a4a1a3 − x2y3a1 + x1y2a3 + x3

E13 = 0
E14 = −(3/8)x2

1a4a
3
1a

3
2 − (1/4)x2

1a4a
2
1a3a

2
2 + (1/8)x2

1a4a1a
2
3a2 + (1/4)x2

1a
2
3 − y2

E15 = −x2

E16 = 0
E21 = (3/2)x3

1a
3
1a

3
2 + x3

1a
2
1a3a

2
2 − (1/2)x3

1a1a
2
3a2 + x2y3a1 − x1y2a3 + x3

E22 = (3/4)x3
1x2a4a

3
1a

3
2−x2

1y
2
3a

4
1a

2
2+(1/2)x3

1x2a4a
2
1a3a

2
2−x2

1y
2
3a

3
1a3a2−(1/4)x3

1x2a4a1a
2
3a2−(1/2)x3

1x2a
2
3+

x2
2y3a4a1 + y2y

2
3a

2
1 − x1x2y2a4a3 + (1/2)x2

1y
2
3a2 − y2

1a
2
5 + x1x2y2 + x2x3a4

E23 = (9/32)x4
1a

2
4a

6
1a

6
2 + (3/8)x4

1a
2
4a

5
1a3a

5
2 − (1/16)x4

1a
2
4a

4
1a

2
3a

4
2 − (1/8)x4

1a
2
4a

3
1a

3
3a

3
2 + (1/32)x4

1a
2
4a

2
1a

4
3a

2
2 +
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(3/8)x2
1y2a4a

3
1a

3
2 + (1/4)x2

1y2a4a
2
1a3a

2
2 − (1/8)x4

1a
4
3 − (1/8)x2

1y2a4a1a
2
3a2 + x1x2y3a

2
1a2 + (3/4)x2

1y2a
2
3 +

x2y1a5 − y2
2

E24 = 0
E25 = 0
E26 = (1/2)x3

1y3a
4
1a

3
2 − (3/8)x2

1y1a4a
3
1a5a

3
2 − (1/4)x2

1y1a4a
2
1a3a5a

2
2 − (1/2)x3

1y3a
2
1a

2
3a2 +

(1/8)x2
1y1a4a1a

2
3a5a2 + (1/4)x2

1y1a
2
3a5 + x1y2y3a

2
1a2 + x2y

2
3a

2
1 + x1x

2
2 − y1y2a5

E31 = 0
E32 = (9/32)x4

1a
2
4a

6
1a

6
2 + (3/8)x4

1a
2
4a

5
1a3a

5
2 − (1/16)x4

1a
2
4a

4
1a

2
3a

4
2 − (1/8)x4

1a
2
4a

3
1a

3
3a

3
2 + (1/32)x4

1a
2
4a

2
1a

4
3a

2
2 +

(3/8)x2
1y2a4a

3
1a

3
2 + (1/4)x2

1y2a4a
2
1a3a

2
2 − (1/8)x4

1a
4
3 − (1/8)x2

1y2a4a1a
2
3a2 + x1x2y3a

2
1a2 + (3/4)x2

1y2a
2
3 −

x2y1a5 − y2
2

E33 = −(3/4)x2
1y3a4a

5
1a

4
2 − (1/2)x2

1y3a4a
4
1a3a

3
2 + (1/4)x2

1y3a4a
3
1a

2
3a

2
2 + 3x2

1y3a
4
1a

3
2 + 2x2

1y3a
3
1a3a

2
2 −

(1/2)x2
1y3a

2
1a

2
3a2 − 2y2y3a

2
1a2 − 2y2y3a1a3 + x2

2

E34 = (3/2)x3
1a

3
1a

3
2 + x3

1a
2
1a3a

2
2 − (1/2)x3

1a1a
2
3a2 + x2y3a1 − x1y2a3 + x3

E35 = 0
E36 = −(3/8)x2

1x2a4a
3
1a

3
2 + 2x1y

2
3a

4
1a

2
2 − (1/4)x2

1x2a4a
2
1a3a

2
2 + 2x1y

2
3a

3
1a3a2 + (1/8)x2

1x2a4a1a
2
3a2 −

2y1y3a
2
1a5a2 + (1/4)x2

1x2a
2
3 − 2y1y3a1a3a5 − x2y2

E41 = −(3/8)x2
1a4a

3
1a

3
2 − (1/4)x2

1a4a
2
1a3a

2
2 + (1/8)x2

1a4a1a
2
3a2 + (1/4)x2

1a
2
3 − y2

E42 = −(3/8)x2
1x2a

2
4a

3
1a

3
2 − (1/4)x2

1x2a
2
4a

2
1a3a

2
2 + (1/8)x2

1x2a
2
4a1a

2
3a2 + (1/4)x2

1x2a4a
2
3 − x2y2a4

E43 = −(3/2)x3
1a

3
1a

3
2 − x3

1a
2
1a3a

2
2 + (1/2)x3

1a1a
2
3a2 − x2y3a1 + x1y2a3 + x3

E44 = −y2
3a

2
1 − x1x2

E45 = x1y3a
2
1a2 − y1a5

E46 = 0
E51 = −x2

E52 = −x2
2a4

E53 = 0
E54 = x1y3a

2
1a2 + y1a5

E55 = −x2
1a

2
1a

2
2 + y2

E56 = −(3/2)x3
1a

3
1a

3
2 − x3

1a
2
1a3a

2
2 + (1/2)x3

1a1a
2
3a2 − x2y3a1 + x1y2a3 + x3

E61 = −x1x2a3

E62 = (1/2)x3
1y3a

4
1a

3
2 + (3/8)x2

1y1a4a
3
1a5a

3
2 + (1/4)x2

1y1a4a
2
1a3a5a

2
2 − (1/2)x3

1y3a
2
1a

2
3a2 −

(1/8)x2
1y1a4a1a

2
3a5a2 − (1/4)x2

1y1a
2
3a5 + x1y2y3a

2
1a2 + x2y

2
3a

2
1 − x1x

2
2a4a3 + x1x

2
2 + y1y2a5

E63 = −(3/8)x2
1x2a4a

3
1a

3
2 − (1/4)x2

1x2a4a
2
1a3a

2
2 + (1/8)x2

1x2a4a1a
2
3a2 + 2y1y3a

2
1a5a2 + (1/4)x2

1x2a
2
3 +

2y1y3a1a3a5 + x1y
2
3a2 − x2y2

E64 = x2
1y3a

2
1a3a2 + x1y1a3a5

E65 = (3/2)x3
1a

3
1a

3
2 − (1/2)x3

1a1a
2
3a2 + x2y3a1 + x3

E66 = x4
1a

4
1a

4
2 + (3/2)x4

1a
3
1a3a

3
2 − (1/2)x4

1a1a
3
3a2 + 2y3

3a
4
1a2 + 2y3

3a
3
1a3 + x2

1y2a
2
1a

2
2 + 2x1x2y3a

2
1a2 +

x1x2y3a1a3 + x1x3a3 + y2
2

J11 = −(3/4)x3
1x2a4a

3
1a

3
2 + x2

1y
2
3a

4
1a

2
2 − (1/2)x3

1x2a4a
2
1a3a

2
2 + x2

1y
2
3a

3
1a3a2 + (1/4)x3

1x2a4a1a
2
3a2 +

(1/2)x3
1x2a

2
3 − x2

2y3a4a1 − y2y
2
3a

2
1 + x1x2y2a4a3 − (1/2)x2

1y
2
3a2 + y2

1a
2
5 − x1x2y2 − x2x3a4

J12 = −(3/2)x3
1a

3
1a

3
2 − x3

1a
2
1a3a

2
2 + (1/2)x3

1a1a
2
3a2 + 2x2y3a4a

2
1a2 + 2x2y3a4a1a3 − x2y3a1 + x1y2a3 + x3

J13 = −(3/8)x2
1x2a

2
4a

3
1a

3
2 − (1/4)x2

1x2a
2
4a

2
1a3a

2
2 + (1/8)x2

1x2a
2
4a1a

2
3a2 + (1/4)x2

1x2a4a
2
3 − x2y2a4

J14 = −(9/32)x4
1a

2
4a

6
1a

6
2− (3/8)x4

1a
2
4a

5
1a3a

5
2+(1/16)x4

1a
2
4a

4
1a

2
3a

4
2+(1/8)x4

1a
2
4a

3
1a

3
3a

3
2− (1/32)x4

1a
2
4a

2
1a

4
3a

2
2−

(3/8)x2
1y2a4a

3
1a

3
2 − (1/4)x2

1y2a4a
2
1a3a

2
2 + (1/8)x4

1a
4
3 + (1/8)x2

1y2a4a1a
2
3a2 − x1x2y3a

2
1a2 − (3/4)x2

1y2a
2
3 −

x2y1a5 + y2
2

J15 = −(1/2)x3
1y3a

4
1a

3
2 + (3/8)x2

1y1a4a
3
1a5a

3
2 + (1/4)x2

1y1a4a
2
1a3a5a

2
2 + (1/2)x3

1y3a
2
1a

2
3a2 −

(1/8)x2
1y1a4a1a

2
3a5a2 − (1/4)x2

1y1a
2
3a5 − x1y2y3a

2
1a2 − x2y

2
3a

2
1 + x1x

2
2a4a3 − x1x

2
2 + y1y2a5

J16 = −x2
2a4

J21 = (3/2)x3
1a

3
1a

3
2 + x3

1a
2
1a3a

2
2 − (1/2)x3

1a1a
2
3a2 + x2y3a1 − x1y2a3 + x3

J22 = −2y3a
2
1a2 − 2y3a1a3

J23 = (3/8)x2
1a4a

3
1a

3
2 + (1/4)x2

1a4a
2
1a3a

2
2 − (1/8)x2

1a4a1a
2
3a2 − (1/4)x2

1a
2
3 + y2

J24 = 0
J25 = −x1x2a3
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J26 = x2

J31 = 0
J32 = (3/8)x2

1a4a
3
1a

3
2 + (1/4)x2

1a4a
2
1a3a

2
2 − (1/8)x2

1a4a1a
2
3a2 − (1/4)x2

1a
2
3 + y2

J33 = y2
3a

2
1 + x1x2

J34 = (3/2)x3
1a

3
1a

3
2 + x3

1a
2
1a3a

2
2 − (1/2)x3

1a1a
2
3a2 + x2y3a1 − x1y2a3 + x3

J35 = x2
1y3a

2
1a3a2 − x1y1a3a5

J36 = −x1y3a
2
1a2 + y1a5

J41 = −(9/32)x4
1a

2
4a

6
1a

6
2 − (3/8)x4

1a
2
4a

5
1a3a

5
2 + (1/16)x4

1a
2
4a

4
1a

2
3a

4
2 + (1/8)x4

1a
2
4a

3
1a

3
3a

3
2 −

(1/32)x4
1a

2
4a

2
1a

4
3a

2
2 − (3/8)x2

1y2a4a
3
1a

3
2 − (1/4)x2

1y2a4a
2
1a3a

2
2 + (1/8)x4

1a
4
3 +

(1/8)x2
1y2a4a1a

2
3a2 − x1x2y3a

2
1a2 − (3/4)x2

1y2a
2
3 + x2y1a5 + y2

2

J42 = 0
J43 = −(3/2)x3

1a
3
1a

3
2 − x3

1a
2
1a3a

2
2 + (1/2)x3

1a1a
2
3a2 − x2y3a1 + x1y2a3 + x3

J44 = (3/4)x2
1y3a4a

5
1a

4
2 + (1/2)x2

1y3a4a
4
1a3a

3
2 − (1/4)x2

1y3a4a
3
1a

2
3a

2
2 − 3x2

1y3a
4
1a

3
2 − 2x2

1y3a
3
1a3a

2
2 +

(1/2)x2
1y3a

2
1a

2
3a2 + 2y2y3a

2
1a2 + 2y2y3a1a3 − x2

2

J45 = (3/8)x2
1x2a4a

3
1a

3
2 − 2x1y

2
3a

4
1a

2
2 + (1/4)x2

1x2a4a
2
1a3a

2
2 − 2x1y

2
3a

3
1a3a2 −

(1/8)x2
1x2a4a1a

2
3a2 + 2y1y3a

2
1a5a2 − (1/4)x2

1x2a
2
3 + 2y1y3a1a3a5 + x2y2

J46 = 0
J51 = −(1/2)x3

1y3a
4
1a

3
2 − (3/8)x2

1y1a4a
3
1a5a

3
2 − (1/4)x2

1y1a4a
2
1a3a5a

2
2 + (1/2)x3

1y3a
2
1a

2
3a2 +

(1/8)x2
1y1a4a1a

2
3a5a2 + (1/4)x2

1y1a
2
3a5 − x1y2y3a

2
1a2 − x2y

2
3a

2
1 − x1x

2
2 − y1y2a5

J52 = 0
J53 = 0
J54 = (3/8)x2

1x2a4a
3
1a

3
2 + (1/4)x2

1x2a4a
2
1a3a

2
2 − (1/8)x2

1x2a4a1a
2
3a2 −

2y1y3a
2
1a5a2 − (1/4)x2

1x2a
2
3 − 2y1y3a1a3a5 − x1y

2
3a2 + x2y2

J55 = −x4
1a

4
1a

4
2 − (3/2)x4

1a
3
1a3a

3
2 + (1/2)x4

1a1a
3
3a2 − 2y3

3a
4
1a2 − 2y3

3a
3
1a3 − x2

1y2a
2
1a

2
2 − 2x1x2y3a

2
1a2 −

x1x2y3a1a3 − x1x3a3 − y2
2

J56 = −(3/2)x3
1a

3
1a

3
2 − x3

1a
2
1a3a

2
2 + (1/2)x3

1a1a
2
3a2 − x2y3a1 + x1y2a3 + x3

J61 = 0
J62 = x2

J63 = −x1y3a
2
1a2 − y1a5

J64 = 0
J65 = (3/2)x3

1a
3
1a

3
2 − (1/2)x3

1a1a
2
3a2 + x2y3a1 + x3

J66 = x2
1a

2
1a

2
2 − y2

The five coefficients a1, . . . , a5 are subject to thirty-seven relatively simple conditions fα(a) = 0
with

f1 = a2
1 + a2

5

f2 = −3a1a2a4 + 52a1a3a
2
5 − 7a3a4 − 10

f3 = −1839a1a2a3 + 30a2
2a

2
5 + 835a2

3 + 72a4
4

f4 = 94888a1a4a
2
5 − 6675a3

2 + 7504a3a
3
4 + 41908a2

4

f5 = −159a1a2a4 + 52a2
3a

2
4 + 383a3a4 + 445

f6 = 83a1a2a
2
5 + 14a2a3a

2
4 + 53a2a4 − 75a3a

2
5

f7 = 225a1a2a
2
4 + 2314a1a

2
5 + 187a3a

2
4 + 724a4

f8 = −36a1a2a3 + 15a2
2a

2
5 + 8a3

3a4 + 47a2
3

f9 = 2a1a
2
3a4 + 78a1a3 − 15a2

2a
2
4 − 81a2a

2
5

f10 = 10a1a2a3a4 + 13a1a2 + 6a2
3a4 + 29a3

f11 = 33a1a
2
2a4 − 27a2a3a4 − 72a2 − 52a2

3a
2
5

f12 = −145863a3
2 + 47444a4

3 − 31896a3a
3
4 − 82080a2

4

f13 = 1892a1a
3
3 − 648a1a

3
4 + 228a2

2a3a4 − 2223a2
2

f14 = 8a1a3a
2
4 + 44a1a4 + a2

2a
2
3 − 92a4

5

f15 = 1311a1a2a
2
3 + 342a3

2a4 − 211a3
3 + 180a3

4

f16 = −4926a1a2a
2
4 + 1157a3

2a3 + 102a3a
2
4 + 7968a4

f17 = 41a4
2 − 132a2a

2
4 − 408a3a4a

2
5 − 784a2

5
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f18 = 1002a1a
3
2 − 12a1a

2
4 − 469a2

2a3 + 1224a4a
4
5

f19 = 7a1a3a4 + 10a1 − 3a2a4a
2
5 + 52a3a

4
5

f20 = −2a1a3a
2
5 + 2a2a

4
5 − 1

f21 = 67716a1a
4
5 − 959a2a

3
3 − 1584a2a

3
4 + 23256a4a

2
5

f22 = −71a1a
2
2 + 116a2a

2
3a4 + 403a2a3 + 48a3

4a
2
5

f23 = 3649a2a
3
3 + 9999a2a

3
4 + 33858a3a

2
4a

2
5 + 55575a4a

2
5

f24 = 654a1a3a
2
4 + 17604a1a4 + 1157a2

2a
2
3 + 10350a2a

2
4a

2
5

f25 = 283176a1a
2
4a

2
5 − 170487a3

2a4 − 166964a3
3 + 46476a3

4

f26 = 123a1a2a
2
5 + 15a2a3a

2
4 + 106a2

3a4a
2
5 + 514a3a

2
5

f27 = −6a1a
2
3a4 − 29a1a3 + 10a2a3a4a

2
5 + 13a2a

2
5

f28 = 3a1a2 + 3a2
2a4a

2
5 − a2

3a4 − 7a3

f29 = 246a1a2a4a
2
5 − 39a2a

2
4 − 128a3a4a

2
5 − 623a2

5

f30 = 33a1a
2
2 + 36a2a

2
3a4 + 129a2a3 + 40a3

3a
2
5

f31 = −22a1a
3
3 − 24a2

2a3a4 − 9a2
2 + 54a2a

2
3a

2
5

f32 = 2a1a2a
2
3 − 6a3

2a4 + 45a2
2a3a

2
5 + 3a3

3

f33 = −40a1a
2
2a3 + 123a3

2a
2
5 + 51a2a

2
3 + 48a2

4a
2
5

f34 = 9a1a
2
2a

2
5 + 7a1a

2
3 + 6a2

2a4 − 18a2a3a
2
5

f35 = −329a1a3a4 + 89a1 + 78a2
2a

3
4 + 453a2a4a

2
5

f36 = −3211a1a2a3 + 393a3
2a

2
4 + 2637a2

2a
2
5 + 306a3

3a4 + 1765a2
3

f37 = −5112a1a4a
2
5 + 19a3

2 + 612a2
4 + 15008a6

5

The quantum dimensions of Q are:
qL(Q) = (24/13)a2a4a

3
5 − (4/13)a1a3a4a5 + (50/13)a1a5

qR(Q) = −2a1a2a5 − 2a3a5 .

(4) A rank 4 orbifold equivalence between S11 and W13:

E11 = x1y3 − y1
E12 = −x2y

2
3 + x2

1 + x2x3

E13 = −x2 + y2
E14 = 0
E21 = −y2

3 − x3

E22 = −x1y3 − y1
E23 = 0
E24 = −x2 + y2
E31 = x3

2 + x2
2y2 + x2y

2
2 + y3

2 − x3y
2
3

E32 = −x1y
3
3 − y1y

2
3

E33 = −x1y3 − y1
E34 = y2y

2
3 − x2

1 − x2x3

E41 = 0
E42 = y4

3 + x3
2 + x2

2y2 + x2y
2
2 + y3

2

E43 = y2
3 + x3

E44 = x1y3 − y1

J11 = −x1y3 − y1
J12 = y2y

2
3 − x2

1 − x2x3

J13 = x2 − y2
J14 = 0
J21 = y2

3 + x3

J22 = x1y3 − y1
J23 = 0
J24 = x2 − y2
J31 = −y4

3 − x3
2 − x2

2y2 − x2y
2
2 − y3

2
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J32 = −x1y
3
3 + y1y

2
3

J33 = x1y3 − y1
J34 = −x2y

2
3 + x2

1 + x2x3

J41 = 0
J42 = −x3

2 − x2
2y2 − x2y

2
2 − y3

2 + x3y
2
3

J43 = −y2
3 − x3

J44 = −x1y3 − y1

This rather simple Q does not depend on any coefficients, although more general orbifold
equivalences between S11 and W13 can be found.

Its quantum dimensions are qL(Q) = −2 and qR(Q) = −1.

(5) A rank 3 orbifold equivalence between a chain and a loop at central charge ĉ = 6
5 :

E11 = 2a1x
4
1 + 2a1x1y

2
2

E12 = a1x
3
1y2 + a1y

3
2 + y1

E13 = a1x
5
1 + a1x

2
1y

2
2 + x2

E21 = −2a1x
3
1y2 − a1y

3
2 + y1

E22 = −a1x
2
1y

2
2 + x2

E23 = −a1x
4
1y2 + x1y1

E31 = −a1x
5
1 + x2

E32 = −x1y1
E33 = −y1y2

J11 = a1x
5
1y1y2 − a1x

2
1y1y

3
2 − x2

1y
2
1 + x2y1y2

J12 = a1x
6
1y1 − a1y1y

4
2 + x1x2y1 − y2

1y2
J13 = a2

1 + 1x10
1 + a1x

5
1x2 − a1x1y1y

3
2 − x1y

2
1 + x2

2

J21 = −a2
1x

9
1y2 + a1x

6
1y1 + a1x

4
1x2y2 + 2a1x

3
1y1y

2
2 + a1y1y

4
2 − x1x2y1 − y2

1y2
J22 = x10

1 − a2
1x

7
1y

2
2 + 2a1x

4
1y1y2 + a1x

2
1x2y

2
2 + 2a1x1y1y

3
2 + x2

2

J23 = a2
1x

5
1y

3
2 + a2

1x
2
1y

5
2 + a1x

5
1y1 + 2a1x

3
1x2y2 + a1x

2
1y1y

2
2 + a1x2y

3
2 − x2y1

J31 = (a2
1 + 1)x10

1 + a2
1x

7
1y

2
2 − a1x

5
1x2 − 2a1x

4
1y1y2 − a1x

2
1x2y

2
2 − a1x1y1y

3
2 + x1y

2
1 + x2

2

J32 = a2
1x

8
1y2 + a2

1x
5
1y

3
2 − a1x

5
1y1 − a1x

3
1x2y2 − 2a1x

2
1y1y

2
2 − a1x2y

3
2 − x2y1

J33 = −a2
1x

3
1y

4
2 − a2

1y
6
2 − 2a1x

4
1x2 − a1x

3
1y1y2 − 2a1x1x2y

2
2 + y2

1

This contains only a single coefficient a1 which has to satisfy a21 = −1.

The quantum dimensions of this defect are qL(Q) = −2 and qR(Q) = −3 .
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