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ABSTRACT. In 1982, Tamaki Yano proposed a conjecture predicting how is the set of b-
exponents of an irreducible plane curve singularity germ which is generic in its equisingularity
class. In 1986, Pi. Cassou-Nogues proved the conjecture for the one Puiseux pair case in [9].
In [1] the authors proved the conjecture for two Puiseux pairs germs whose complex algebraic
monodromy has distinct eigenvalues. A natural problem induced by Yano’s conjecture is, for
a generic equisingular deformation of an isolated plane curve singularity germ to study how
the set of b-exponents depends on the topology of the singularity. The natural generalization
suggested by Yano’s approach holds in suitable examples (for the case of isolated singularites
which are Newton non-degenerated, commode and whose set of spectral numbers are all dis-
tincts). Morevover we show with an example that this natural generalization is not correct.
We restrict to germs whose complex algebraic monodromy has distinct eigenvalues such that
the embedded resolution graph has vertices of valency at most 3 and we discuss some examples
with multiple eigenvalues.

INTRODUCTION
Let f: (C™,0) — (C,0) be a germ of a complex analytic function whose zero locus
(f7(0),0) c (C",0)
defines an isolated hypersurface singularity germ, that is the Minor number of f at 0,

p(f,0) := dimg M

0z17° "7 Oz,

is finite. A Milnor fibration was constructed in [19] as follows. Set B. = {z € C" : |z| < €} and
S. = {2z € C" : |z| = €}, one can choose €y such that for all 0 < € < €g, f~1(0) is transverse to S..
For 0 <n < ey and D, ={t € C: [t| <n},let X(t) = f~1(t) N Be,j2 and X = f~1(D;) N B, 2.
By Milnor, for such suitable € and 7, the mapping X \ f~(0) — D,,\ {0} is a C*-locally trivial
fibration whose general fibre Fy g, called Milnor fibre, has the homotopy type of a bouquet of
exactly p(f,0) of (n — 1)-dimensional spheres.

The geometric monodromy hg, , : Fro — FY o of the Milnor fibration is the monodromy trans-
formation of the Milnor fibration over the loop cexp(2nt),t € [0, 1] and ¢ small enough. The geo-
metric monodromy induces the complex algebraic monodromy h®’ : H(Fy o, C) — H?(Fy,C)
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whose eigenvalues are roots of unity. Since the Milnor fibre is a connected bouquet of (n — 1)-
spheres, the only interesting algebraic monodromy is h*"~! : H" "1 (Fyo,C) — H""(Fy,,C),
where dim¢ H" 1 (Fy9,C) = u(f,0).

Let O be the ring of germs of holomorphic functions on (C™,0), let D be the ring of germs of
holomorphic differential operators of finite order with coefficients in O. Let s be an indeterminate
commuting with the elements of D and set D[s] = D ®¢ C[s].

Given a holomorphic germ f € O, one considers O %, s|-f%asafree O [%, s} -module of rank

1 with the natural D[s]-module structure. Then, there exits a non-zero polynomial B(s) € CJ[s]

and some differential operator P = P(z, %7 s) € D[s], holomorphic in z1, ..., z, and polynomial
in 8%17 ceey %, which satisfy the following functional equation in O H, s] e
(1) P(s,z, D) f()*" = B(s) - f(x)".

The monic generator by o(s) of the ideal of such polynomials B(s) is called the Bernstein-Sato
polynomial (or b-function or Bernstein polynomial) of f at 0. The same result holds if we replace
O by the ring of polynomials in a field K of zero characteristic with the obvious corrections, see
e.g. [12, Section 10, Theorem 3.3].

This result was first obtained for f polynomial by Bernstein in [3] and in general by Bjork [4].
One can prove that by o(s) is divisible by s+ 1, and we also consider the reduced Bernstein-Sato
polynomial

~ bro(s
bro(s) = %S} 1).

In the case where f defines an isolated singularity, one can consider the nowadays called

Brieskorn lattice Hy := Q" /df A dQ"~2 introduced by Brieskorn in [8], and its saturation

Hy = (0ut)*Hy .

k>0

Malgrange [18] showed that the reduced Bernstein polynomial by o(s) is the minimal polynomial
of the endomorphism —d;t on the vector space F' := I%// o, 11%/, whose dimension equals the
Milnor number u(f,0) of f at 0. Following Malgrange [18], the set of b-exponents are the p
roots {ﬁl, . ,BM} of the characteristic polynomial of the endomorphism —0;t. Recall also that
exp(—2imd;t) can be identified with the (complex) algebraic monodromy of the corresponding
Milnor fibre Fy o of the singularity at the origin.

Kashiwara [15] expressed these ideas using differential operators and considered

M = D[s]f*/DIs]f**,

where s defines an endomorphism of D(s)f® by multiplication. This morphism keeps invari-
ant M := (s 4+ 1)M and defines a linear endomorphism of (2" ®p M)y which is naturally
identified with F' and under this identification —0;t becomes the endomorphism defined by the
multiplication by s.

In [18], Malgrange proved that the set Ry of roots of the Bernstein-Sato polynomial is
contained in Qp, see also Kashiwara [15], who also restricts the set of candidate roots. The
number —ay o := max Ry is the opposite of the log canonical threshold of the singularity and
Saito [21, Theorem 0.4] proved that

(2) Rf70 C [Ozf’o —n, 7Otf70].
Also Saito in [20] showed that the local moduli of p-constant deformation is determined by the

Brieskorn lattice if the p-constant stratum is smooth, as in the case of germs of plane curves
where he gave in [20, p. 30] a more simple formula describing the reduced Bernstein-Sato. There
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are many papers devoted to study Bernstein-Sato polynomial but it would be worthwhile to
refer to the existence of a relative Bernstein-Sato polynomial in [5], by Briancon et al., and for
results on the computation of the roots of Bernstein-Sato polynomial for functions with isolated
singularity, even if the methods used in [6] are different. In [7], Briancon et al. gave a multiple of
the Bernstein-Sato polynomial for any two variables function with isolated singularities. Some
general properties of p-constant deformations are also given by Varchenko in [24].

There is another set which is important too, the set of exponents of the monodromy (or
spectral numbers, up to the shift by one, in the terminology of Varchenko [25]). This notion was
first introduced by Steenbrink [22].

Let f: (C™,0) — (C,0) be a germ of a holomorphic function with isolated singularity. In
[22] Steenbrink constructed a mixed Hodge structure on H" ! (Fyq,C). Let

H" Y(F;o,C)y =ker(Ts — A : H" Y(Fy,C) — H" Y(Fy,,C));

where Ty, , T are, respectively, the unipotent and semi-simple factors of the Jordan decomposition
of the monodromy A"~ 1.
The set Spec(f) of spectral numbers are p rational numbers

O0<ar <<~ <, <n
which are defined by the following condition:
#{j : exp(—=2mia;) = A, ;| =n — p— 1} = dime Gt H" 1 (F},C)5, A#1
#{j:a; =n—p} =dimec Grh. H" ' (F},0C);.

The set Spec(f) of spectral numbers is symmetric, that is o; + ;1) = n. It is known that
this set is constant under p-constant deformation of f, see [25].

As it is well-known, neither the Bernstein-Sato polynomial nor the b-exponents are constant
along p-constant deformation. Given an equisingular type, a generic set of b-exponents or a
generic Bernstein-Sato polynomial are expected. In [27], Yano proposed a formula (see next
section) for the generic b-exponents for irreducible germs of curves (combined with the Jordan
form of the monodromy, this also yields to a formula for the generic Bernstein polynomial). This
formula was proved for one-Puiseux pair germs by the second named author in [10] and reproved
by M. Saito in [20].

In [1], the conjecture was proved for irreducible singularities with two Puiseux pairs and
monodromy without multiple eigenvalues. In this paper, we discuss how to extend the formula
for reducible germs of singularities. There is a natural interpretation of Yano’s formula in terms
of the resolution graph of the singularity, see (5). We are going to prove in this paper that this
formula holds for singularities with vertices of valency at most 3 (and at most two vertices of
valency 3) and monodromy without multiple eigenvalues (distinct from 1) (in fact, the correct
hypothesis may be distinct exponents of the monodromy, besides 1).

The restriction on the number 3-valency vertices comes from technical reason but it is most
probably avoidable; for example, the second named author proved it in [11] for singularities with
non-degenerate and commode Newton polygon (and distinct exponents for the monodromy).
The other two conditions seem to be more important, since we will give examples where it does
not hold in at least two cases: germs where the vertices have valencies at most 3 but there are
multiple exponents, and germs with vertices with valency greater than 3. We will discuss also
other examples and we will introduce the needed results about improper integrals.

1. EXTENDED YANO’S PROBLEM

Let f: (C?,0) — (C,0) be a germ of a non-zero holomorphic function such that its zero locus
defines an isolated singularity germ.
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Extended Yano’s Problem ([27]). For a generic equisingular deformation of an isolated plane
curve singularity germ f : (C2,0) — (C,0) and Milnor number p, to study how the set of
b-exponents {1, ...,Bu} depends on the topology of f.

The local Bernstein-Sato polynomial by (s) of a singularity germ is a powerful analytic in-
variant, but it is, in general, extremely hard to compute, even in the case of irreducible plane
curve singularities. It is well-known that the Bernstein-Sato polynomial varies in families in
the (non-singular) p-constant stratum ¥,y of f at 0. Since, for plane curves this stratum is
irreducible, it is conceivable that a generic Bernstein-Sato polynomial exists, i.e., the Bernstein-
Sato polynomial of a germ f with the same topology as f, depends on f, but there is a generic
Bernstein-Sato polynomial b%cf(f 0 (s): for every u-constant deformation of such an f, there is
a Zariski dense open set U/ on which the Bernstein-Sato polynomial of any germ in U equals

gen
bzu(f,o) (s)-

1.1. The original Yano’s conjecture: the irreducible case.

Let f be an irreducible germ of plane curve. In 1982, Tamaki Yano [27] made a conjecture
concerning the b-exponents of such germs. Let (n,bq,bs,...,by) be the characteristic sequence
of f, see e.g. [26, Section 3.1]. Recall that this means that f(z,y) = 0 has as root (say over x)
a Puiseux expansion

L by
rT=--F+ayn +---+agyn +...
with exactly g characteristic monomials. Denote by := n and define recursively
e(k) — n lf k = O7
ged(e®=D b)) if1<k<g.
We define the following numbers for 1 < k < g:
_ 1 1), N () _ G+ _betn
Rk = B(T) bke + ij+1 (6 — € ) ) Tk ‘= e(k’) .
j=0

Note that Ry admits the following recursive formula:

n if k=0,
Ry = e(k—1) ]
o (Be—1+bp —bry) if1<k<g

We end with the following definitions R} :=n, r{ :=2 and for 1 <k < ¢:

Rye®
/o /o (k) 7, (k—1)
R o TR {rke /e J + 1L
Yano defined the following polynomial with fractional powers in ¢
g g I
e 1 —1 k1 —t

(3) R(’I’L7b1,...,bg;t) =t+ E tRIZT— E tRkT

k=1 L—=tf o 1 —tR

)

and he proved that R(n,b1,...,by;t) has non-negative coefficients.

Yano’s Conjecture ([27]). For almost all irreducible plane curve singularity - germs
f:(C2,0) = (C,0) with characteristic sequence (n,by,bs,...,by), the b-exponents {By,....B,}
are given by the generating series

B
Ztﬁ, — R(n7b17. .. ,bq7t)
i=1

For almost all means for an open dense subset in the p-constant strata in a deformation space.
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Yano’s conjecture holds for ¢ = 1 as it was proved by Pi. Cassou-Nogues in [10] making
explicitly a relation between two variables improper integrals and the Bernstein-Sato polynomial
of f, see also [9].

In [1], the authors, with the same ideas, were interested in the case g = 2. For g = 2, the
characteristic sequence (n, by, be) can be written as (nynz, mng, mna+q) where ny, m,na, q € Zso
satisfying

ged(ng, m) = ged(ng, q) = 1.
In [1] we solve Yano’s conjecture for the case
(4) ged(g,n1) =1 or ged(q,m) = 1.

The above condition is equivalent to ask for the algebraic monodromy to have distinct eigenval-
ues. In that case, the u b-exponents are all distinct and they coincide with the opposite of roots
of the reduced Bernstein-Sato polynomial (which turns out to be of degree p).

To encode the topology of a germ of an irreducible plane curve singularity

(C = f_l{o}vo) - (C270)

several sets of invariants can be used: Puiseux characteristic exponents, Puiseux pairs, New-
ton pairs, (minimal) embedded resolution graph, Eisenbud-Neumann splice diagram, semigroup
I(c,0) € N generated by all the possible intersection multiplicities i({h = 0},C) at 0 for all
h e O(@{o), etc.

Let f: (C2%,0) — (C,0) be a germ of a non-zero holomorphic function f. Let B be an open
ball centered at the origin. Let 7 : X — B be an embedded resolution of (f~1{0},0). We denote
by E;,i € J, the irreducible components of 7= 1(f~1{0})eq. For every i € J, let N; and v; — 1
be the multiplicities of F; in the divisor of respectively f o and 7*(dz A dy) on X. One has
that N; and v; belong to N* and if F; is an irreducible component of the strict transform of
f71{0} then v; = 1. Denote also E; := E; \ (Uj%:Ej) for i € J. Then one has the following
interpretation of the R(n,b1,...,by;t)

o 1-—-1t¢
R(nby,....byit)=t— Y - X(Ei)tyi/N’im
icd, B;#£C

where C is the unique strict transform of f~'{0}. For a vertex i of the minimal embedded
resolution graph its valency d; is the number of adjacent vertices to it. A vertex is called a
rupture vertex if its valency is at least 3. Most of the vertices in the resolution graph have
valency 2 and since the corresponding exceptional divisors F; are rational curves X(Ei) = 0.
Furthermore in this case the valency of the vertex are either 1, 2 or 3.

The shape of the minimal embedded resolution graph in this case is the same as the Eisenbud-
Neumann splice diagram (cf. [14, page 49]). If the germ (C,0) has g Newton pairs {(pk, qx)}1_,
with ged(pr,qx) = 1 and pp > 2 and g, > 1 (and by convention, g; > pp), define the integers
{ax}{_, by a1 := 1 and ag41 := @r41 + Pr+1prax for k> 1. Then its Eisenbud-Neumann splice
diagram decorated by the following splice data {(pk, ar)};_, and has the following shape:

FIGURE 1.
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The g rupture components Ei,..., Eg, ordered from the left to the right of the resolution graph
are the same as in the splice diagram and their numerical data can be computed inductively
from the

Ni:=ap pi prg1---.-pg for 1 <k <g;
Ug := prlk—1 + Qk where vy =1,
The numerical data associated to the components g+1 components of valency 1 Ey, E1, ..., Fq,

here Ej is the most left hand side vertex corresponding to the first blow-up and its numerical
data is equal to (No,vp) = (n,2) with n = p1pa---pg. The numerical data associated to other
valency one components can be also computed from

Ny =ak pry1-...-pg for 1 <k <g;

VkZﬁk_1+[1%1 for1<k<g

1.2. Yano’s conjecture for isolated germs of plane curves.
A natural extension of the Yano conjecture for isolated plane curve singularity germ could be
the following conjecture

Extended Yano’s Conjecture. For almost all isolated plane curve singularity germ
J:(C2,0) — (C,0) with isolated singularity and Milnor number u, the b-exponents {Sy,...,B,}
are given by the generating series

m
3 11—t
Bi _ L vi/N;

(5) }}_ft =1+ 36— 2) (t 1 _tl/m> ,

showing how b-exponents depends on the topology of f.

Example 1.1. Let f(z,y) = y* — 2% be a germ with two As-singularities having intersection
number equals 6. The minimal embeded resolution graph has 3 exceptional divisors E1, Fs, E3
with numerical data (N, v,d) given respectively by equals (4,2,1), (6,3,1) and (12,5,4). Then

(5) equals
b (=0 Y (s (10 (-1
o2 (0 e ) - ()

equals
E 43 P/ o gT/6 91312 g1 112 4 45/6 4 g3/ y2/3 4 9pT/12 4 94512
Using Singular [13] inside [23], a p-constant versal deformation of f is given by
g(x,y,a,b) == f+ ax®y?® + bay?
and the Bernstein-Sato polynomial of g for random values of a and b is equal to
—17/12,—4/3,~5/4,—7/6,—13/12, -1, —11/12, —5/6, —3/4, —2/3, —7/12, —5 /12,

so that they do not coincide.

This can be confirmed using checkRoot for s = —17/12 of [16] in Singular [13], where the
base field is C(a,b). Moreover, it can be proved that for general a,b the Tjurina number equals
the expected value for Hertling-Stahlke bound, i.e., 14; using [17] the values of Tjurina number
are constant in these p-constant strata.

The previous example shows that the proposed conjecture may not hold when there are ver-
tices with valency greater than 3. Based on the irreducible case we want to study the conjecture
for the case where valencies are at most 3.
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Modified extended Yano’s Conjecture. Let X, be the p-constant stratum of a germ
f : (C%,0) — (C,0) of isolated singularity, such that no eigenvalue ¢ # 1 of the monodromy
is mutiple (in particular the valency of the vertices of the resolution graph is at most 3). Then
the p b-exponents {Bl, . ,Bﬂ} of a generic element of ¥,, are given by the generating series (5)

Most probably, the hypothesis on the monodromy can be replaced no repeated non-integral
exponent of the monodromy as the result in [11] for non-degenerate Newton polynomial germs
suggests; some examples in the last section go in the same direction. The condition on the
valency seems to be more essential, due to Example 1.1.

1.3. Singularities with non-degenerated principal part and commode.

Assume that the power series f has non-degenerated principal part and denote its Newton
polygon at 0 by I'y , with ¢ facets and commode (I'y meets with = 0 at (0, 79) and with y =0
at (00,0)). We also assume that the set Spec(f) of spectral numbers are distinct.

Assume that f;(z,y) = 1, with f;(z,y) = %, is the equation of the facet F; of I'; so that
ged(e, diymny) =1, 1 <i < L. /

Set

N={q€Q: 0pg€NormqgeN}
Let by be the monic polynomial such that its roots are the rational numbers o; 5, :=
with 0 < k < n; and for all facet F; such that o; ) ¢ N.

_citdi+k .

uz

Theorem 1.2 ([11, Theorem 1]). For almost all germs of plane curves which have I'y as Newton
polygon at the origin and all non-integral elements in Spec(f) are distinct then f admits by as
Bernstein-Sato polynomial.

Note that Example 1.1 does not satisfy the hypotheses of the above theorem. The minimal
embeded resolution graph of germs in Theorem 1.2 has all exceptional divisors of valencies
exactly 1,2 and 3. There are at most 2 divisors with valency 1 and /¢ divisors of valency 3. For
all 1 <14 </, let E; be the corresponding divisor has numerical data (N;,v;,d;) = (ni, ¢; +d;, 3).
So that the roots in this case appear as in the EN-diadram of the germ. So that a generic
equisingular deformation of f admits by as Bernstein-Sato polynomial.

If two spectral numbers are congruent mod Z, their difference is £1, and they correspond to
a 2-Jordan block of the monodromy, so we can recover the b-exponents from the Bernstein-Sato
polynomial.

Proposition 1.3. If the germ f is Newton non-degenerated with respect to its Newton polygon,
commode and all the spectral numbers are distinct then for a generic equisingular deformation
of [ the b-exponents are given by (5).

2. IMPROPER INTEGRALS
Most of the results in this section come from [1]. We start with 1-variable improper integrals.

Proposition 2.1. Let f : [0,1] x C — C be an analytic function. Then the function
1
dt
s »—>/ ft,8)t°—
0 t

is holomorphic on s > 0 and admits a meromorphic continuation to C with poles contained in
Z<q. Moreover, if f(t,s) is algebraic whenever t is algebraic and s rational, then, the residues
are algebraic.

If the function f is independent of s, then the above function will be denoted by G(s). Let
us consider now the 2-variable case.
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Proposition 2.2. Let f € Rlz,y] such that f > 0 in [0,1]* and let a1,b1,a2,b2 € Z>q (by
convention 27 =400 if a; = 0). The function

11
S*—)/ / f(ﬂi y)sxals+b1yags+b2djﬂ'
0 Jo Ty
s holomorphic in Rs > max (——1 ——) and admits a meromorphic continuation on C, where
the set of poles is a subset of S = {—bla%, v € Lo } U {—E’Q(;"T”Q, vy € Lo }
We can be more explicit on those poles.

Proposition 2.3. With the hypotheses of Proposition 2.2, let « € S.

P1) Ifa= -8t for some vy € Z>o and « —batre vy, Z>q, then the pole is of order
ay = a2 =
at most one and its residue equals
1 ovL foz
V1'a1 Ghul,a,m (CLQCY + b2)7 h’u1 0T (y) = o (07 y)
P2) If a = =2t for some vy € Z>o and o # =B Yy € Z~y, then the pole is of order
as = al =
at most one and its residue equals
1 v fo
Z/Q!CLQ Ghu2,a,y (ala + b1)7 huz,a,y(m) = aywz (:I;7 0)
(P3) If a= fbl:—l”l = fb"’a% for some v1,vy € Z>0, then the pole is of order at most 2 and
the coefficient of (s — «)~2 in the Laurent expansion is

1 oYL +v2 fa
vilvlaias Ozt 8y”2

(0,0).

(P4) If in the previous situation the pole is of order at most one, then the continuation of the
functions Gy, ., and Gy, ., =~ are holomorphic at asa + by and ayja + by, respectively
and its residue equals

1

V1!a1

Ghul'a,x(aga‘f‘bg) + Gh a1a+b1).

V2-,a,y(

l/g!ag

The last result does not appear in [1] but it can be deduced easily. The following lemma is
useful for the residue computations.

Lemma 2.4. Let p € N and ¢ € Ryg. Given s1,ss € C such that —a = s1 + so > 0 then

— 59

(6) G(yp+c)a (psl) + G(1+cw1’)°‘ (pSQ) = B (317 52)

where B is the beta function.

In [1], we proceeded as follows. For a fixed equisingularity type, we consider generic poly-
nomial representatives f with real algebraic coeflicients, in some field K, and such that for a
suitable semi-algebraic compact domain D, we had f > 0 in D\ {(0,0)} (the origin is in the
boundary of D). For a special choice of coordinates and a weight function g we consider the
following integrals

s dx dy
(7) I(fa g, Bla 527 B3)(S) = /D f(I, y) Z‘Bly32g(l‘7 y)B%?Z
where (1, 82,83 + 1 € Z~¢. These integrals are holomorphic in a semiplane of C and admitted
a meromorphic continuation (see Example 4.3 for an idea of the proof). The knowledge of the

residues allowed us to prove the following theorem.
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Theorem 2.5. Let f € K[z,y] be as above. Let o be a pole of Z(f, 1, B2, B3)(s) with transcen-
dental residue, and such that o+ 1 is not a pole of Z(f, By, B4, B4)(s) for any (51, B, B). Then
a is a root of the Bernstein-Sato polynomial by(s) of f.

3. PARTIAL PROOF OF THE CONJECTURE

We are going to prove the modified extended conjecture when the number of rupture vertices
is small.

Theorem 3.1. The extended Yano’s conjecture holds for germs of plane curve singularities with
no multiple eigenvalues of the monodromy (except maybe 1), and such that there are at most two
rupture vertices and their valency is at most 3.

Sketch of the proof. As we have seen in Example 1.1, the valency condition and the non-existence
of multiple values distinct from 1 seem to be essential. The condition of 1 or 2 branching vertices
is only technical.

There are three types of such singularities.

(S1) The resolution graph is linear.

(S2) The germ is the product of two irreducible germs with one-Puiseux pair (m,n) and inter-
section number > mn, and eventually two smooth branches with intersection numbers
m,n with the singular branches.

(S3) The resolution graph coincides with the one of a two-Puiseux pair irreducible (which is
part of the germ).

The case (S1) is a consequence of [11, Theorem 1]. The case (S2) is represented by the pu-
constant versal deformation of f = z¢y"((y™ —x™)? — x"y"), where €, € {0,1} and u, v depend
on the intersection number of the two singular branches. We omit the cases where there are
multiple eigenvalues distinct from 1. We follow the strategy in [1]. The presence of z,y does not
affect this strategy as we explain later for (S3). If there are more than 2 branches, 1 is a multiple
eigenvalue of the monodromy. Nevertheless, the only point where this condition is needed is for
Varchenko’s lower semicontinuity [24] and only eigenvalues distinct from 1 cannot be multiple
for this result.

Let us finish with (S3). Let us consider the improper integral Z(f, g, 51, 52, 83) of (7), studied
in [1], where B1, B2, 83 + 1 € Zsq, f,g are real polynomials positive on [0,1]2\ {(0,0)}, f is a
2-Puiseux-pair germ singularity for which the Newton polygone is of type (y™ £ z™)P, g is a
1-Puiseux pair singularity with Newton polygone y™ + 2™ and maximal contact with f. For (S3)
we replace f by zy"fg7, €,n,7 € {0,1}. We repeat the process as in [1]. O

4. COMPUTATIONS ON EXAMPLES WITH MULTIPLE EIGENVALUES

Example 4.1. Let us consider f(z,y) = y° + 22y? + 2%; its p-constant miniversal deformation
is a singleton, so its Bernstein-Sato polynomial coincides with the generic one. This singularity
does not satisfy [11, Theorem 1] since the exponents :i:lio, j:% appear twice (j:% appear only
once). Using Singular, the Bernstein polynomial is

(c2) (o D) (s D) o (o4 ) (++.2),

The extended conjecture is satisfied even though we are not in the hypotheses of the modified
one.

Example 4.2. Let us consider f(z,y) = y°+x2y?+27; its u-constant versal deformation is also a
singleton, so its Bernstein polynomial coincides with the generic one. This singularity does satisfy
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[ 4 @ @
(5,3) (10,5) (4,2) (10,5) (5,3)
FIGURE 2. Resolution graph of y° + 22y? + 2° with (N, v)-data.

[11, Theorem 1] since 1 appear as exponents of the monodromy, even though exp (2ir£l) = —1
is a double eigenvalue. Using Singular, we can confirm the expected Bernstein-Sato polynomial.

Example 4.3. Let us consider f(x,y) = 23y> + 27 +1°%; a u-constant versal deformation is given
by fis(z,y) = 23y® + 27 + taSy + sxy” + 8. As in the previous example the hypotheses of [11,
Theorem 1] are satisfied and hence the extended conjecture holds; note that there are multiple
eigenvalues for the monodromy but the exponents of the monodromy are distinct.

( @ @
(7,3) (14,6) (21,7) (6,2) (15,5) (24,8) (8,3)

Yano’s candidates start at % = % = %. The particular Bernstein-Sato polynomials may

depend on s, t; let us study some jumps using improper integrals. Choose t,s € R>q; note that
ft.s > 01in [0,1]2\ {(0,0)}. Let us denote, for 81, B2 € Z>1:

s dx dy
Z61,62 =/ frs(@,y)alry? ——=
[ ]2 r vy

)

Let us decompose this square in two domains:
{y) €01 |af <y <1}, {@y) €01 |0<y<ai}
Integrating on each subdomain we decompose Zg, g, = 11 ,3,,8, + 12,8, ,85 -
Let us consider the change of variables = + xy3, y — y*:
ey, ye oyt = Tip 8, = 4/ ft’s(m,y)sxﬁlywﬁwﬁmsdjd—y
[0,1]2 ry
where
fro(x,y) i= taby + szy!® + 27 4+ 23 4yt

In the same way is = — 22, y — zty;

dx d
e 2,y oty = Tog g = 3/ f;s(x’y)sxwlﬂﬁgwls By 0T 0Y
10,1)2 Ty
where

fis(@y) =taoy + sz’ +2"y® + 47 + 1.

Note that I g, g, satisfies the hypotheses of Proposition 2.2, which was the goal of these changes
of variables. Since it is not the case for I1 g, g,, let us perform a decomposition of the square as

{(zy) €017 [0<y <ot} {(oy) €[0,1 a1 <y <1},
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and denote the corresponding integral decomposition as I1 g, 8, = 11,1,8,,8, +11,2,8,,8,- Suitable
changes of variables yield:

R ) dxd
T 1’11, Yy x?’y — 11717,817132 —44 ft,s(l'vy)sx4(551+352+245)y3ﬁ1+4ﬁ2+21877y,
[0,1]2 Ty
where
fos(@,y) =ty + sa®y'0 + 2 4yt 41,
and
11 3 3 s..B1,4(581+382+24s) dz dy
z=zy s, y—=y = Tiap .8, =12 Jrs(x,y)*x™y —_—,
[0,1]2 Tz y
where

frs(z,y) i= taby3¢ + szy® +2Ty™ + 2% + 1.

The candidate pole 72% can be pole only for 81 = f3 = 1, and in this case the residue is

44 (L of-st wdr 3 [Lofa dy

_ O - — R O ]

21 J, Oy (z,0) xz 21), Oz (0:9)y Yy

8- 44t (! 20 aodr 3-8t ! _20 ody

0 0
8t ! 20 5du 8t ! 20 2du 8t 5 2
= 1 TR T — — 1 “ys—=——B|=,2).

212/0( S TEl AL e TE <7’3>

Hence, for t # 0 (and algebraic), we have that —2

Note that we can prove that —% is a pole of Z7 » with transcendental residue for any (algebraic)

is a root of the Bernstein-Sato polynomial.

value of ¢,s. In particular, —% is a root of the Bernstein polynomial if ¢ = 0 and s is algebraic
after Theorem 2.5. Note that —2% and —% cannot be simultaneously roots of the Bernstein-

Sato polynomial, since exp (—Qiﬂ'%) = exp (—2i7r§) is a simple eigenvalue of the monodromy.

These results are confirmed by Singular and checkRoot. We have then proved that there is a
function fy in the p-constant stratum such that —% is not a root of Bernstein-Sato polynomial
for fo, compare with [2]

Example 4.4. Let us consider fi(z,y) := (z* — 4®)? 4+ 25y? which corresponds to the case
(S3). A p-constant versal deformation is given by fi(z,y) = fi(z,y) + t128%y + t22”. Let
D= {(z,y) €[0,1]2| 0 <y < z3} and for t1,t; € R>, consider

B3 dj @

Iﬁ1,ﬂ2,ﬂ3 ;:/ ft(x’y)sxﬁlyﬁz(xﬁl _yS)
D Ty

for 51, B2, B3+1 € Z~¢. In order to check that it is holomorphic with meromorphic continuation,
we perform a first change of variable:

- dzd
ety at(l-y) = Iﬂl,ﬂzﬁa:?/ ) e
[0,1]2 Ty
where q(y) = (1 —4)?271(3 — 3y + y*)* and
felw,y) = y*(3 =3y +17)? + 2 (1 = )® + iz (1 —y) + toa®.
Decomposing the square in two triangles with the diagonal line, we can decompose

Iﬁlvﬁ27ﬁ3 - 11,517527/33 + 12751,[32753;
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(26,8)
@ @ @
(8,3) (16,5) (24,7) (6,2)
FIGURE 3.
with the following changes of variables we obtain
A dzx d
@ @,y = 2y = Tipy 6,0 Jelz, y)sw?’ﬂl+452+13ﬂ3+1+263y’33HQ(fvy);x*y
[0,1]2 )

and z — zy, y+— y =

ft(% y)sxSBl +4,62+12/33+24sy3,61+4ﬁ2+1363+1+26sq(y) dj dy
[0,1]2 Ty

12,8, ,82,85=3

)

where
fe(m,y) =23 = Bay + 2%y°)% + (1 — ay)® + t12° (1 — 2y) + tox,
fe(z,y) = (3 =3y +y»)? +22(1 — y)? + t1z?y* (1 — y) + tax’y.

47

Example 4.5. A p-constant miniversal deformation for f(z,y) = (y* — 23)? + 2'? is constant.
It does not satisfy the hypotheses of the modified extended conjecture, since there are mul-
tiple eigenvalues (and multiple exponents of the monodromy) but, nevertheless, the extended

conjecture holds.

Example 4.6. Let f(z,y) := z(y® — 2?)(y* — 2'°), with p-constant miniversal deformation
fi(z,y) == f(x,y)+ty". This example has multiple eigenvalues (besides 1) and it is a counterex-
ample for the extended conjecture. It is not hard to prove that % is not a Yano’s candidate while

19

—13 is a root of the Bernstein polynomial as it can be checked with checkRoot in Singular

(working over C(t) instead of randomly evaluating t).

@ ® @ @ @ (13,6)
(7,3)  (13,5)  (5,2) (7,3) (9,4)  (11,5)

FIGURE 4. Resolution graph for Example 4.6

Example 4.7. Let f(x,y) := y'% — 23y®> — 212, A p-constant versal deformation is given by

fe(z,y) = fa,y) + tix"y® + toxy® + t32%9® + taa®y® + 52ty
_,’_tGIlOyZ +t7x9y3 +t8x11y2 +t9x10y3 +t10$11y3-

1 4

Using random values we can prove that —12 and —-% are both roots of the Bernstein poly-

15 15
nomial, but only % is a Yano’s candidate.



48

(1]

2]

[12]
[13]
[14]
[15]
[16]

(17]

18]

E. ARTAL, PI. CASSOU-NOGUES, I. LUENGO, AND A. MELLE

REFERENCES

E. Artal Bartolo, Pi. Cassou-Nogues, I. Luengo, and A. Melle-Herndndez, Yano’s conjecture for 2-
Puiseuz pairs irreducible plane curve singularities, Publ. RIMS Kyoto Univ. 53 (2017), no. 1, 211-239.
DOI: 10.4171/PRIMS/53-1-7

E. Artal Bartolo, Pi. Cassou-Nogues, I. Luengo, and A. Melle-Hernandez, Bernstein polynomial of 2-
Puiseuz pairs irreducible plane curve singularities, Methods Appl. Anal. 24 (2017), no. 2, 185-214.
DOI: 10.4310/MAA.2017.v24.n2.a2

I.N. Bernstein, Analytic continuation of generalized functions with respect to a parameter, Funkcional. Anal.
i Prilozen. 6 (1972), no. 4, 26-40. DOI: 10.1007/BF01077645

J.-E. Bjork, The Bernstein class of modules on algebraic manifolds, Paul Dubreil and Marie-Paule Malliavin
Algebra Seminar, 33rd Year (Paris, 1980), Lecture Notes in Math., vol. 867, Springer, Berlin-New York,
1981, pp. 148-156. DOI: 10.1007/BFb0090385

J. Briangon, F. Geandier, and Ph. Maisonobe, Déformation d’une singularité isolée d’hypersurface et
polynémes de Bernstein, Bull. Soc. Math. France 120 (1992), no. 1, 15-49. DOI: 10.24033/bsmf.2178

J. Briangon, M. Granger, Ph. Maisonobe, and M. Miniconi, Algorithme de calcul du polynéme de Bernstein:
cas non dégénéré, Ann. Inst. Fourier (Grenoble) 39 (1989), no. 3, 553-610. DOI: 10.5802/aif.1177

J. Briangon, P. Maisonobe, and T. Torrelli, Matrice magique associée a un germe de courbe plane et division
par l'idéal jacobien, Ann. Inst. Fourier (Grenoble) 57 (2007), no. 3, 919-953. DOI: 10.5802/aif.2281

E. Brieskorn, Die Monodromie der isolierten Singularitdten von Hyperflichen, Manuscripta Math. 2 (1970),
103-161. DOI: 10.1007/BF01155695

Pi. Cassou-Nogues, Racines de polyomes de Bernstein, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 4, 1-30.
DOI: 10.5802/aif.1067

Pi. Cassou-Nogues, Séries de Dirichlet et intégrales associées a un polynome o deux indéterminées, J.
Number Theory 23 (1986), no. 1, 1-54. DOI: 10.1016/0022-314X (86)90002-8

Pi. Cassou-Nogues, Polynéme de Bernstein générique, Abh. Math. Sem. Univ. Hamburg 58 (1988), 103-123.
DOI: 10.1007/BF02941372

S. C. Coutinho, A primer of algebraic D-modules, London Mathematical Society Student Texts, vol. 33,
Cambridge University Press, Cambridge, 1995. DOI: 10.1017/CB0O9780511623653

Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans Schénemann, SINGULAR 4-1-1 — A com-
puter algebra system for polynomial computations, http://www.singular.uni-k1.de, 2018.

D. Eisenbud and W.D. Neumann, Three-dimensional link theory and invariants of plane curve singularities,
Annals of Mathematics Studies, vol. 110, Princeton University Press, Princeton, NJ, 1985.

M. Kashiwara, B-functions and holonomic systems. Rationality of roots of B-functions, Invent. Math. 38
(1976/77), no. 1, 33-53. DOI: 10.1007/BF01390168

V. Levandovskyy and J. Martin-Morales, Algorithms for checking rational roots of b-functions and their
applications, J. Algebra 352 (2012), 408-429. DOI: 10.1016/j.jalgebra.2011.12.002

I. Luengo and G. Pfister, Normal forms and moduli spaces of curve singularities with semigroup (2p, 2q, 2pq+
d), Compositio Math. 76 (1990), no. 1-2, 247-264, Algebraic geometry (Berlin, 1988). DOI: 10.1007/978-94-
009-0685-3_12

B. Malgrange, Le polynéme de Bernstein d’une singularité isolée, Fourier integral operators and partial
differential equations (Colloq. Internat., Univ. Nice, Nice, 1974), Springer, Berlin, 1975, pp. 98-119. Lecture
Notes in Math., Vol. 459. DOI: 10.1007/BFb0074194

J. Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton
University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968.

M. Saito, On the structure of Brieskorn lattice, Ann. Inst. Fourier (Grenoble) 39 (1989), no. 1, 27-72.
DOI: 10.5802/aif.1157

M. Saito, On microlocal b-function, Bull. Soc. Math. France 122 (1994), no. 2, 163-184.
DOI: 10.24033/bsmf.2227

J.H.M. Steenbrink, Mized Hodge structure on the wvanishing cohomology, Real and complex singularities
(Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff and Noordhoff, Alphen
aan den Rijn, 1977, pp. 525-563.

The Sage Developers, Sagemath, the Sage Mathematics Software System (Version 8.1), 2017,
http://www.sagemath.org.

A.N. Varcenko, Gauss-Manin connection of isolated singular point and Bernstein polynomial, Bull. Sci.
Math. (2) 104 (1980), no. 2, 205-223.

A.N. Var¢enko, The complex singularity index does not change along the stratum p = const, Funktsional.
Anal. i Prilozhen. 16 (1982), no. 1, 1-12, 96.


https://doi.org/10.4171/PRIMS/53-1-7
https://doi.org/10.4310/MAA.2017.v24.n2.a2
https://doi.org/10.1007/BF01077645
https://doi.org/10.1007/BFb0090385
https://doi.org/10.24033/bsmf.2178
https://doi.org/10.5802/aif.1177
https://doi.org/10.5802/aif.2281
https://doi.org/10.1007/BF01155695
https://doi.org/10.5802/aif.1067
https://doi.org/10.1016/0022-314X(86)90002-8
https://doi.org/10.1007/BF02941372
https://doi.org/10.1017/CBO9780511623653
http://www.singular.uni-kl.de
https://doi.org/10.1007/BF01390168
https://doi.org/10.1016/j.jalgebra.2011.12.002
https://doi.org/10.1007/978-94-009-0685-3_12
https://doi.org/10.1007/978-94-009-0685-3_12
https://doi.org/10.1007/BFb0074194
https://doi.org/10.5802/aif.1157
https://doi.org/10.24033/bsmf.2227

ON THE b-EXPONENTS OF GENERIC ISOLATED PLANE CURVE SINGULARITIES 49

[26] C.T.C. Wall, Singular points of plane curves, London Mathematical Society Student Texts, vol. 63, Cam-
bridge University Press, Cambridge, 2004. DOI: 10.1017/CB09780511617560

[27] T. Yano, Ezponents of singularities of plane irreducible curves, Sci. Rep. Saitama Univ. Ser. A 10 (1982),
no. 2, 21-28.

E. ARTAL BARTOLO, DEPARTAMENTO DE MATEMATICAS-IUMA, UNIVERSIDAD DE ZARAGOZA, ¢/ PEDRO CER-
BUNA 12, 50009 ZARAGOZA, SPAIN
Email address: artal@unizar.es

P1. CASsOU-NOGUES, INSTITUT DE MATHEMATIQUES DE BORDEAUX, UNIVERSITE DE BORDEAUX, 350, COURS
DE LA LIBERATION, 33405, TALENCE CEDEX 05, FRANCE
Email address: Pierrette.Cassou-nogues@math.u-bordeaux.fr

1. LueNGo, ICMAT (CSIC-UAM-UC3M-UCM), DPTO. DE ALGEBRA, GEOMETRIA Y TOPOLOGIA, UNIVERSI-
DAD COMPLUTENSE DE MADRID, PLAZA DE LAS CIENCIAS S/N, CIUDAD UNIVERSITARIA, 28040 MADRID, SPAIN
Email address: iluengo@ucm.es

A. MELLE-HERNANDEZ, INSTITUTO DE MATEMATICA INTERDISCIPLINAR (IMI), DPTO. DE AvGeBrA, GE-
OMETR{A Y TOPOLOGIA, UNIVERSIDAD COMPLUTENSE DE MADRID, PLAZA DE LAS CIENCIAS S/N, CIUDAD UNI-
VERSITARIA, 28040 MADRID, SPAIN

Email address: amelle@ucm.es


https://doi.org/10.1017/CBO9780511617560

	Introduction
	1. Extended Yano's problem
	1.1. The original Yano's conjecture: the irreducible case
	1.2. Yano's conjecture for isolated germs of plane curves
	1.3. Singularities with non-degenerated principal part and commode

	2. Improper integrals
	3. Partial proof of the conjecture
	4. Computations on examples with multiple eigenvalues
	References

