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ON BOTT-MORSE FOLIATIONS AND THEIR POISSON STRUCTURES IN

DIMENSION THREE

M. EVANGELISTA-ALVARADO, P. SUÁREZ-SERRATO, J. TORRES OROZCO, AND R. VERA

Abstract. We show that a Bott-Morse foliation in dimension 3 admits a linear, singular,
Poisson structure of rank 2 with Bott-Morse singularities. We provide the Poisson bivectors

for each type of singular component, and compute the symplectic forms of the characteristic

distribution.

1. Introduction

The study of foliations on 3-manifolds has had considerable influence on the direction of low
dimensional topology. Early on Lickorish [17], and independently Novikov [19], and Zieschang,
showed that every 3-manifold admits a codimension-one foliation. The relevance of foliations
has been comprehensively presented by Calegari [4]. The relationship between foliation theory
and other topics of 3-manifolds is still being explored (e.g. [2, 7, 10, 24]). Various analytic, geo-
metric, and topological complications arise when singularities are allowed to exist in a foliation.
In this note we investigate foliations with exclusively Bott-Morse singularities in the context
of Poisson geometry, continuing the foundational work in this direction by Scárdua and Seade
[20, 21]. These foliations have singularities that are modeled locally by Bott-Morse functions.

Example 1: On the unit sphere S3 inside R4 let f be a Morse function defined using a height
function with respect to an axis. The level sets of f form a foliation of S3, with leaves that are
2-spheres and two singular polar points. This is one of the prototypes of a Bott-Morse foliation.

It has been suggested that it would be interesting to comprehend the Poisson manifolds
equipped with these kinds of singularities (see Example 4 [20]). We contribute to this circle of
ideas with:

Theorem 1.1. Let M be a closed, orientable, connected smooth manifold of dimension 3 equipped
with a codimension-one foliation F with Bott-Morse singularities. Then there exists a Poisson
structure on M of maximal rank 2 supported on F which vanishes precisely at the Bott-Morse
singularities. The associated bivectors are linear and can be found in Table 3. The induced
symplectic forms on the leaves are given by:

x1

k
√
x2

1 + x2
2

ωarea(q)

Here k is a non-vanishing function (see §6), ωarea denotes the canonical area form of the Eu-
clidean plane, and (x1, x2) are coordinates on the leaves of F . If F is compact, then the Poisson
structure obtained is complete.

Notice that this result provides a conformal family of Poisson structures, as the function k
varies. When such a foliation on M with Bott-Morse singularities is transversally orientable and
has no saddle-connections (see definition 2.4), then its Poisson bivector vanishes only on two
points or two circles, corresponding exactly to the singularities of the foliation. In the proof
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we combine methods to determine the bivectors and symplectic forms of a Poisson structure for
which the associated Casimir functions can be described explicitly together with a gluing con-
struction that collects all the possible local Poisson structures into a global one. This involves
using the work of the second and fourth named authors [12], as we rely on certain S1-invariant
Poisson structures of dimension 4 in our arguments. Restricting these to 3-dimensional slices we
find the Poisson structures associated to the original Bott-Morse foliation.

Example 2: The abundance of foliations with Bott-Morse singularities in dimension 3 can be
seen with the help of Heegard splittings. A 3–manifold that admits a genus–g Heegard splitting
for g > 0 supports closed Bott–Morse foliations with 2g non-isolated center components, 2g − 2
isolated saddles, and leaves of genus in the range 1, . . . , g (see §2.1 of [21]). Furthermore, recall
that a 3–manifold with a genus–g Heegard splitting also admits Heegard splittings for all genera
g′ greater than g. Therefore it supports Bott–Morse foliations with genus–g′ leaves for all g′ > g
as well.

Let us mention a few relevant relationships to put our result into the context of Poisson geom-
etry. It was shown by Ibort and Mart́ınez-Torres that every 3–manifold admits a regular Poisson
structure of rank 2 [15]. The two examples described above illustrate how every 3–manifold
admits a foliation with Bott-Morse singularities. As a consequence, our main result allows us to
find an associated singular Poisson structure of generic rank 2. Moreover, our result provides a
quantitative perspective as we provide explicit formulæ for the local forms. Poisson structures
related to local fibrations have also been of recent interest, see for example Avendaño-Vorobiev
[1]. As the structures we find are linear, there are Lie algebras associated to some of them,
which can be compared to, for example, the descriptions of Lie-Poisson structures of Ginzburg-
Weinstein [13]. In particular, the celebrated linearization result of Conn [5] is superseded by
our linear normal forms (see also Crainic-Fernandes [6]). The equivalence classes of the Poisson
structures described here can be understood in terms of weak Morita equivalence. As the genus
of the Heegard splitting in example 2 increases, the fundamental groups of the leaves of the
associated Poisson structure change, and therefore they are Morita inequivalent in the sense of
Bursztyn-Weinstein [3].

After reviewing the definitions and background needed for our arguments in §2 and §3, we
proceed to describe the Poisson bivectors in §4 and symplectic forms associated to Bott-Morse
foliations in §5. These data come together in §6 to complete the global Poisson structure and the
proof our main result. We include in §7 some restrictions to the existence of compatible Poisson
structures on Bott-Morse foliations in higher dimensions, pointing to potential extensions of this
line of research. We end with a remark in §8 about the Poisson cohomology of these structures
in the case of homogenous linear and quadratic coefficients, presented in Tables 6 and 7.

Acknowledgements: PSS acknowledges & thanks support from UNAM-DGAPA-PAPIIT-
IN102716 and UC-MEXUS CN-16-43. RV thanks UNAM-DGAPA and the partial support by
the FWO under EOS project G0H4518N. JTO thanks support from FORDECyT 265667 and
CONACYT CB2016/283960.

2. Bott-Morse foliations

This section follows notations used in [20] and [21], where Bott-Morse foliations on dimension
3 were described.
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Let Mm be a closed, orientable, smooth manifold of dimension m, for m ≥ 3. Let F be a
codimension-one smooth foliation with singularities on M . Denote by Sing(F) the set of singular
points of F .

Definition 2.1. A smooth function f : M → R is said to be a Bott-Morse function if the
following conditions hold:

i) The critical set of f is a disjoint union of closed, connected embedded folds Nj:

Crit(f) = tsj=1Nj .

Such submanifolds are referred to as the critical components of the Bott-Morse function.
ii) The function f is non-degenerate when restricted to any critical component.

The non-degeneracy condition for a Bott-Morse function means that for each p ∈ Nj and a
small disc Σp transversal to Nj , of complementary dimension, the restriction f |Σp is a Morse
function with p a Morse singularity.

Definition 2.2. The singularities of the foliation F are called Bott-Morse singularities if:

i) The singularity set can be decomposed as:

Sing(F) = ttj=1Nj

Here Nj is a closed, connected submanifold of M with codim(Nj) ≤ 2.
ii) In a neighborhood of each singular point, F is defined by a Bott-Morse function.

Let p ∈ Nj be a Bott-Morse singularity and nj be the dimension of the critical component
Nj . Then there exist a neighborhood Vp ⊂ M and a foliation G, such that the restriction of F
to Vp is a product foliation P × G, for some disc P ⊂ Rnj . The foliation G is defined on a disc
D ⊂ Rm−nj whose fibers are given by a Morse function. This implies the existence of a local
diffeomorphism ϕ : Vp → P ×D. Said otherwise, we have that:

• Sing(F) ∩ Vp = Nj ∩ Vp.
• ϕ(Nj ∩ Vp) = P × {0} ⊂ Rnj ×Rm−nj .
• There exist local coordinates (x̄, x) = (x̄1, ..., x̄nj , x1, ..., xm−nj ) ∈ Vp such that Nj ∩ Vp

is defined by {(x1, ..., xm−nj ) = 0} and F|Vp is given by the level sets of a Morse function

JNj (x̄, x) = Σ
m−nj
j=1 λjx

2
j , where λj = ±1.

The discs Σp = ϕ−1(x(p × D)) are transverse to Nj , outside Sing(F). Denote by
G(Nj) = F|Σp , the transverse type of F along Nj . It is a codimension-one foliation on Σp
with an ordinary Morse singularity at {p} = Nj ∩ Σp. The Morse index is constant in Nj .

Definition 2.3. A critical component Nj ⊂ Sing(F) is called:

(1) A Center if the transverse type F|Σp of F along Nj is a center, that is, the Morse
singularity p has Morse index 0 or m− nj.

(2) A Saddle if the transverse type F|Σp is a saddle, that is, if the Morse singularity has
Morse index different from 0 or m− nj.

Given a saddle component Nj ⊂ Sing(F), a separatrix of Nj is a leaf L of the foliation F such

that its closure L̄ contains Nj . This means that L meets each small disc Σ in R(m−nj), which
is transversal to Nj in a separatrix of F|Σ. In a neighborhood of Nj , the separatrices through p
are given by the relation: x2

1 + ...+ x2
r = x2

r+1 + ...+ x2
nj 6= 0, where r is the Morse index. In a

neighborhood of a center component the leaves of F are diffeomorphic to spheres S(m−(nj+1)).
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We say that F has a saddle-connection if there exist saddle components N1, N2, N1 6= N2,
and a leaf L of F which is simultaneously a separatrix of N1 and N2. If a leaf L is a separatrix
of F through N and L meets some transversal disc Σ in two distinct separatrices of F|Σ then
we say L is a self-saddle-connection of F .

Definition 2.4. [21] A foliation F is a Bott-Morse foliation if:

(1) The singularities of F are of Bott-Morse type,
(2) F is transversally orientable, and
(3) F has no saddle-connections on M .

If M has dimension 3, then the dimension of Nj can be 0 or 1. If dim(Nj) = 0 there are two
possible center singularities and two saddle singularities. If dim(Nj) = 1 there are two possible
center singularities and one possible saddle singularity.

Remark 2.5. A foliation F is said to be compact if every leaf is compact. In this case there
are no saddle components [Proposition 1, [20]]. If every leaf of F is closed off Sing(F), then F
is said to be closed.

3. Poisson structures

We will now include the facts needed to understand the construction of Poisson structures
with Bott-Morse singularities. The Schouten-Nijenhuis bracket is an operation which extends
the Lie derivative on multi-vector fields [·, ·]SN : Xp(M) × Xq(M) → Xp+q−1(M). Among its
numerous applications, it plays a fundamental role in Poisson Geomety.

Definition 3.1. A Poisson bivector, or a Poisson structure on M is a bivector field
π ∈ Γ(Λ2TM) = X2(M) satisfying [π, π]SN = 0.

Note that every manifold M admits a trivial Poisson structure by defining π = 0 at every
point p ∈ M . A class of non-trivial Poisson structures are symplectic manifolds. A Poisson
structure can also be defined in terms of a bracket {, } on C∞(M). It satisfies a derivation rule,
and it endows C∞(M) with a Lie algebra structure. It follows that the bracket {g, h} depends
solely on the first derivatives of the functions g and h. The Poisson bivector and the bracket are
related by

{g, h} = π(dg, dh).

The Poisson bivector satisfies the properties of bilinearity, skew-symmetry, and the Leibniz
identity, which are defined by the bracket. The vanishing of the Schouten-Nijenhuis bracket of
the bivector π with itself corresponds to the Jacobi identity of the Poisson bracket. Nevertheless,
in this paper we will only use the description of a Poisson structure through a bivector field.

A Poisson bivector π can be described locally, for coordinates (x1, . . . , xn);

π(x) =
1

2

n∑
i,j=1

πij(x)
∂

∂xi
∧ ∂

∂xj
.

Here πij(x) = π(dxi, dxj) = −π(dxj , dxi).

Given a bivector π on M , a point q ∈M , and αq ∈ T ∗qM it is possible to define a bundle map
B : T ∗M → TM given by:

(1) Bq(αq)(·) = πq(·, αq)
The rank of π at q ∈ M to be equal to the rank of Bq : T ∗qM → TqM . This is also the rank of

the matrix πij(x). If π is a Poisson bivector and h ∈ C∞(M) is a smooth function we define the
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Hamiltonian vector field Xh by Xh = B(dh).

For a point xo ∈M define the linear subspace:

Γxo(M) = {v ∈ Txo(M) | ∃ f ∈ C∞(M), Xf (xo) = v}

Note that, Γxo(M) = Im(Bxo). The set Γ(M) = {Γxo(M)} is a differentiable distribution called
the characteristic distribution of the Poisson structure. If the rank of Γ(M) is constant, we call
it a regular distribution; else, it is called a singular distribution.

Theorem 3.2 (Symplectic Stratification Theorem [9]). The induced characteristic distribution
Γ(M) of the Poisson manifold (M,π) is completely integrable, and the Poisson structure induces
symplectic structures on the leaves Γxo . This foliation is integrable in the sense of Stefan-
Sussman.

The set Γq, the symplectic leaf of M through the point q, is also the collection of points that
may be joined via piecewise smooth integral curves of Hamiltonian vector fields. Write ωΓq for
the symplectic form on Γq. Observe that TqΓq is exactly the characteristic distribution of π
through q. Therefore, given uq, vq ∈ TqΓq there exist αq, βq ∈ T ∗qM that under Bq go to uq and
vq. Using this we can describe ωΓq :

(2) ωΓq (q)(uq, vq) = πq(αq, βq) = 〈αq, vq〉 = −〈βq, uq〉.

As the rank varies, so do the dimensions of the symplectic leaves of the foliation.

Definition 3.3. A Poisson manifold M is said to be complete if every Hamiltonian vector field
on M is complete.

Notice that M is complete if and only if every symplectic leaf is bounded in the sense that
its closure is compact.

Definition 3.4. Let M be a Poisson manifold. A function h ∈ C∞(M) is called a Casimir if
B(dh) = 0.

The following was shown in [12]:

Theorem 3.5. Let M be an orientable n-manifold, N an orientable (n − 2)-manifold, and
f : M → N a smooth map. Let µ and Ω be orientations of M and N respectively. The bivector
π on M defined by

(3) π(dg, dh)µ = k dg ∧ dh ∧ f∗Ω

for any g, h ∈ C∞(M), where k is any non-vanishing function on M is Poisson. Moreover, its
symplectic leaves are

(i) the 2-dimensional leaves f−1(s) where s ∈ N is a regular value of f ,
(ii) the 2-dimensional leaves f−1(s) \ {Critical Points of f} where s ∈ N is a singular value

of f .
(iii) the 0-dimensional leaves corresponding to each critical point.

Equation (3) is known as the Flaschka-Ratiu formula. It provides a way to construct Poisson
manifolds with prescribed Casimirs.
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4. Local expressions for the Poisson structures

In this section we give an explicit Poisson local structure in a neighborhood of the singularities
of fibrations F : M3×S1 → R×S1, where F |M3 is a Bott-Morse function. It defines a foliation
F with Bott-Morse singularities on M . We will describe the general strategy to find Poisson
local bivectors:

Step 1: Consider as Casimirs for the Poisson structure that we will find the functions C1 and C2

that describe locally the singularity of the fibration.
Step 2: Calculate the differentials of the functions C1 and C2.
Step 3: Use the Flaschka-Ratiu formula (3) to calculate the skew-symmetric matrix Π with

matrix entries Πij = dxi ∧ dxj ∧ dC1 ∧ dC2. Each Πij is equal to the determinant
det(ei, ej , dC1, dC2), where {ei}4i=1 is the canonical basis of R4, and they are considered
as column vectors.

The bivector Π is the matrix of the endomorphism B associated with the Poisson struc-
ture, with C1 and C2 Casimirs. Then Π annihilate the differentials dC1 and dC2.

Step 4: Write the Poisson bivector using the matrix found in the previous step.

4.1. Local expressions near a Bott-Morse singularity. Let (p, t) ∈ M3 × S1, for
p ∈ Nj ⊂ Sing(F), since Σp is transversal to Nj . The following table (1) contains the Casimirs
in consideration, according to each component Nj , arranged according to the dimension of the
component, their type, and their Morse index.

dim(Nj) = 0
Type Morse Index Casimirs

Center
0

C1(x1, x2, x3, t) = x2
1 + x2

2 + x2
3

C2(x1, x2, x3, t) = t

3
C1(x1, x2, x3, t) = −x2

1 − x2
2 − x2

3

C2(x1, x2, x3, t) = t

Saddle
1

C1(x1, x2, x3, t) = −x2
1 + x2

2 + x2
3

C2(x1, x2, x3, t) = t

2
C1(x1, x2, x3, t) = −x2

1 − x2
2 + x2

3

C2(x1, x2, x3, t) = t
dim(Nj) = 1

Center
0

C1(x1, x2, x3, t) = x2
1 + x2

2

C2(x1, x2, x3, t) = t

2
C1(x1, x2, x3, t) = −x2

1 − x2
2

C2(x1, x2, x3, t) = t

Saddle 1
C1(x1, x2, x3, t) = −x2

1 + x2
2

C2(x1, x2, x3, t) = t

Table 1. Casimirs for each Nj .

Then the corresponding differentials dC1 and dC2, for each case are found in the following table
(2):
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dim(Nj) = 0
Type Morse Index Differentials

Center
0

dC1(x1, x2, x3, t) = (2x1, 2x2, 2x3, 0)
dC2(x1, x2, x3, t) = (0, 0, 0, 1)

3
dC1(x1, x2, x3, t) = (−2x1,−2x2,−2x3, 0)
dC2(x1, x2, x3, t) = (0, 0, 0, 1)

Saddle
1

dC1(x1, x2, x3, t) = (−2x1, 2x2, 2x3, 0)
dC2(x1, x2, x3, t) = (0, 0, 0, 1)

2
dC1(x1, x2, x3, t) = (−2x1,−2x2, 2x3, 0)
dC2(x1, x2, x3, t) = (0, 0, 0, 1)

dim(Nj) = 1

Center
0

dC1(x1, x2, x3, t) = (2x1, 2x2, 0, 0)
dC2(x1, x2, x3, t) = (0, 0, 0, 1)

2
dC1(x1, x2, x3, t) = (−2x1,−2x2, 0, 0)
dC2(x1, x2, x3, t) = (0, 0, 0, 1)

Saddle 1
dC1(x1, x2, x3, t) = (−2x1, 2x2, 0, 0)
dC2(x1, x2, x3, t) = (0, 0, 0, 1)

Table 2. Differentials of the Casimirs considered in table 1.

Each bivector has rank 2 and annihilates dC1 and dC2. For simplicity we reduce our notation
of bivector fields by ∂ij := ∂i ∧ ∂j for i < j. The corresponding bivectors are given by the
expressions in Table 3:

dim(Nj) = 0
Type Morse Index Bivector

Center
0

π = k (x3∂12 − x2∂13 + x1∂23) (1)
3

Saddle
1 π = k (−x3∂12 + x2∂13 + x1∂23) (2)

2 π = k (−x3∂12 − x2∂13 + x1∂23) (3)

dim(Nj) = 1

Center
0

π = k (−x2∂13 + x1∂23) (4)
2

Saddle 1 π = k (x2∂13 + x1∂23) (5)

Table 3. Bivector π associated with the matrix Π.

Here k = k(x1, x2, x3, t) is a non-zero smooth function on M × S1.

If π presents one of the forms as in the Table 3, then the above tensor can be interpreted
as multiple of a linear Poisson structure in R3. Hence, up to the factor k, it is dual to the Lie
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algebra structure of real dimension three possessing commutation relations between the basis
elements e1, e2 and e3 that we will show below.

(1) If π is of the form (1), then

[e1, e2] = e3, [e1, e3] = −e2, [e2, e3] = e1.

This Lie algebra is isomorphic to so3(R).
(2) If π is of the form (2), then

[e1, e2] = −e3, [e1, e3] = e2, [e2, e3] = e1.

This Lie algebra is isomorphic to sl2(R).
(3) If π is of the form (3), then

[e1, e2] = 0, [e1, e3] = −e2, [e2, e3] = e1.

This Lie algebra is isomorphic to e(2).

Remark 4.1. The Poisson structure constructed on M3×S1 does not depend on t ∈ S1. Then,
the Poisson structure on M3 is just the restriction of Π to M3. Notice that each and every one
of the Poisson structures we found depend on a smooth non-vanishing function k. That is, we
actually found a family of Poisson structures that changes with k.

5. Symplectic forms on the leaves near singularities

In the next section we describe the leaves of the characteristic distribution of the Poisson
structures found in the previous Section 4.1. We will present the symplectic forms for each
component of the singularity set of a Bott-Morse foliation. First, let us explain the general
procedure that we will follow.

Step 1; Obtain the tangent vectors uq and vq to the symplectic leaf Γq at q ∈M by computing
the null space of the differentials dC1 and dC2.

Step 2; Use the local expressions of the Poisson bivectors, so one can find αq such that
Bq(αq) = uq, similarly find βq such that Bq(βq) = vq, for the bundle map (1.)

Step 3; Calculate the symplectic form using equation (2):

ωΓq (q)(uq, vq) = 〈αq, vq〉 = −〈βq, uq〉

Proposition 5.1. Let q = (x1, x2, x3, t) ∈ B3 × S1 and π one of the bivectors of the Table 3.
The symplectic form induced by π on the symplectic leaf Γq through at the point q is given by:

(4)
x1

k(x1, x2, x3, t)
√
x2

1 + x2
2

ωarea(q)

Here ωarea is the area form on Γq induced by the euclidean metric on B3 × S1.

Proof. First assume x2
1 + x2

2 6= 0 and recall that the Casimirs for π depending on each case are
shown in the Table 1.

The following table (4) contains the vectors uq, vq tangent to each fiber Γq, for the different
components:
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dim(Nj) = 0
Type Morse Index uq vp

Center
0

1√
x2
1+x2

2

(−x2∂1 + x1∂2) −1
x2
1+x2

2
(x2

1x3∂1 + x1x2x3∂2) + x1∂3

3

Saddle
1

1√
x2
1+x2

2

(x2∂1 + x1∂2) −1
x2
1+x2

2
(x2

1x3∂1 − x1x2x3∂2) + x1∂3

2
1√

x2
1+x2

2

(−x2∂1 + x1∂2) −1
x2
1+x2

2
(x2

1x3∂1 + x1x2x3∂2) + x1∂3

dim(Nj) = 1

Center
0

1√
x2
1+x2

2

(−x2∂1 + x1∂2)

x1∂32

Saddle 1
1√

x2
1+x2

2

(x2∂1 + x1∂2)

Table 4. Tangent vectors to the fibers.

Notice that they are annihilated by dC1(q) and dC2(q). Moreover, we have chosen them to be
orthogonal with respect to the euclidean metric dx2

1 + dx2
2 + dx3

3 + dt2.

For each case, using the local expression of π, it is straightforward to check that Bq(αq) = uq,
for αq. �

6. Global Poisson structure

We will now extend the local expressions of the Poisson bivectors defined on the neighborhood
of the singularity set to a global Poisson structure Π on X = M3×S1, whose symplectic foliation
is related to the fibration F : X → R× S1. Recall that F |M3 is given by a Bott-Morse function
f : M3 → R. The rank of Π is 2 everywhere on X except at the singularities of f , where the
rank drops down to zero. The regular fibers of F are 2-dimensional symplectic leaves of Π. If
p ∈ X is a critical point of f contained in the singular fiber Fp, then Fp \ {p} is a 2-dimensional
symplectic leaf of Π. The following construction of Π completes the proof of Theorem 1.1.

The idea of the construction is to use the local models of the Poisson structures around
the different singularities described in Section 4 as the building blocks for Π. These bivectors
together with a regular Poisson structure coming from the area forms on the 2–dimensional
leaves of the regular part of F will endow X with a global Poisson structure. We will need to
do a smooth interpolation between the singular and the regular Poisson structures. For this we
will use the following lemmata (2.8 and 2.9 in [12]).

Lemma 6.1. Let (M,π) be a regular rank 2 Poisson manifold and g ∈ C∞(M) be any non-
vanishing function. Then (M, gπ) is a regular rank 2 Poisson manifold and the leaves of its
symplectic foliation coincide with the leaves of the symplectic foliation of (M,π).
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Figure 1. Schematic representation of the gluing process around a singular
point p ∈ S.

Lemma 6.2. Let π1 and π2 be bivectors that define regular rank 2 Poisson structures on the
manifold M . Assume that the symplectic foliations of π1 and π2 coincide. Then there exists a
non-vanishing function g ∈ C∞(M) such that π1 = gπ2.

Remark 6.3. Let F : X → R × S1 be a Bott-Morse foliation with singular set S as described
above. There exists an open set W ⊂ X that does not contain any critical points of F , and a
regular rank 2 Poisson structure πF defined on W such that the symplectic leaves of πF coincide
with the intersection of the fibers of f with W . Moreover, the region W satisfies

X = W ∪ US .

Here US is the tubular neighborhood of the singularity set.

Recall that the Poisson structures of Table 3, were defined in the neighborhoods of the sin-
gularities. The elements of the singularity set can be assumed to be disjoint. To ease the gluing
construction we denote by πS the Poisson bivector defined on the neighborhoods of the compo-
nents of the singularity set S. That is, πS ∈ Γ(Λ2TX) is locally defined by one of the seven
local expressions described above and is zero everywhere else. The definition of the open subset
W ⊂ X in Remark 6.3 is in terms of the open sets VS satisfying

C ⊂ VS ⊂ US with C ∈ S.

We define

Π(p) =

{
πF (p) if p ∈W \ US ,
πS(p) if p ∈ VS .

This defines Π on the complement of the set W ∩US . The set US is composed of the collection
of open sets defined around each of the seven types of singularities. That is, US = US1∪· · ·∪US7 .
Hence, we have that W ∩US = (W ∩US1)∪ (W ∩US2)∪ · · · ∪ (W ∩US7). We shall now define Π
on each of the open sets forming the above union. Since the neighborhoods USi , i ∈ {1, . . . , 7}
are disjoint, the gluing process from the local Poisson structure around the singularities to a
regular Poisson structure is the same for all neighborhoods USi . Thus, it is enough to show the
construction for one singularity, and we simplify this by considering just US . The reader might
find it useful to refer to figure (1) during the following construction, taking into account that
the sets τj are open and τj 6⊂ τj+1 for j = 1, ..., 4.
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In order to define Π on each connected component of W ∩ US start by noticing that both
bivectors πF and πS were already defined on this set as shown in Section 4.1 and remark 6.3.
Moreover, when restricted to this open set, both bivectors define regular rank two Poisson
structures possessing the same symplectic foliation. Hence, by Lemma 6.2, there exists a non-
vanishing C∞ function g such that

πS = gπF

on the component of W ∩ US that we are working with. By changing πS to −πS if necessary,
we can assume that g is positive.

Consider a partition of unity, defined by two non-negative auxiliary smooth cut-off functions
σ and ρ on a small neighborhood Z around our connected component of W ∩ US that satisfy:

σ(p) =

{
0 if p /∈ US
1 if p /∈W

ρ(p) =

{
1 if p /∈ US
0 if p /∈W

We can now extend Π to W ∩ US as

Π(p) = (g(p)σ(p) + ρ(p))πF (p), for p ∈W ∩ S.

This is a smooth interpolation between the definitions of Π on VS and on W \ (US). Indeed,
as a point p ∈ W ∩ US approaches VS , the bivector Π(p) approaches πS . Similarly, as a point
p ∈W ∩ US leaves US the bivector Π(p) approximates to πF . Notice that Π as defined above is
a Poisson structure (satisfies the Jacobi identity) on W ∩ US in virtue of Lemma 6.1.

As the function gσ+ρ is non-negative, we conclude that the symplectic leaves of Π on W ∩US
coincide with the symplectic leaves of πF . By Proposition 6.3 these are the pieces of the fibers
of F that lie within W ∩ US .

Therefore, we have produced a Poisson structure with the claimed properties. If the closure
of every symplectic leaf in our construction is compact, then the Poisson structure we obtain is
complete. This concludes the proof of Theorem (1.1).

7. Obstructions to Poisson structures on Bott-Morse foliations

If we keep the codimension-one hypothesis, then the next dimension where Poisson structures
supported on Bott-Morse foliations could be found is dimension 5, with 4-dimensional leaves.

Example 3: Consider S4 canonically embedded as the unit sphere in R5. Let h be a height
function, defined by projecting S4 onto a closed interval on an axis. Then −∇h is a Morse
function from S4 to a closed interval I. It has two types of level sets. One type is diffeomorphic
to S3, coming from preimages of the interior points of the interval. The others are two points,
corresponding to ∂I. We now define a Bott-Morse foliation on the smooth 5-manifold S4×S1 as
follows. Set the leaves of the foliation to be given by (−∇h)−1(t)×S1, for t in I. There are two
kinds of leaves, corresponding to the two kinds of level sets of −∇h. The first kind is diffeomor-
phic to S3×S1, the second kind is diffeomorphic to a circle. As the singular components of this
foliation are locally modelled by a Morse function, it is an example of a Bott-Morse foliation.
Observe that, as S3 × S1 has trivial second cohomology it can not be symplectic. Therefore,
this Bott-Morse foliation on S4 × S1 does not admit a compatible Poisson structure. This can
be seen as a special case of Example 2.6 in [21].

This example leads to the next:
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Question: Does a codimension-one Bott-Morse foliation F with symplectic leaves admit a
Poisson structure supported on F ?

In higher dimensions there is the further complexity of inequivalent symplectic structures.

Example 4: As in the previous example, a codimension-one Bott-Morse foliation may be
defined on S3 × S2 with the help of a Morse function on S3. Consider a height function with
respect to the standard embedding so that the inverse images are now 2-spheres. The foliation
thus defined on S3×S2 has leaves diffeomorphic to S2×S2, and two singular components whose
points as a set are homeomorphic to S2. Let ω be an area form for S2. Notice that S2 × S2

may be given symplectic forms ω + λω, which are known to produce symplectic structures that
are not equivalent when the value of λ changes enough [14]. Here we face a different situation,
as the foliation itself is not enough to determine the Poisson structure. There are potentially
countably many different Poisson structures that could be associated to the underlying Bott-
Morse foliation, coming from the diversity of equivalence classes of symplectic structures on the
leaves.

Given the classification results obtained in [20, 21] there are cohomological restrictions to the
existence of Poisson structures on Bott-Morse foliations with singularities of center type. In
order for the leaves of the symplectic foliation to be even dimensional, the total space M for the
Bott-Morse foliation would have to have dimension 2n+1, for n ∈ N. A second restriction comes
from the topology of the leaves L, which are Sn-bundles over Nj . For L to admit a symplectic
structure, the codimension of Nj can only be 2 or 3, so that the associated sphere bundles are
either S1- or S2-bundles. These cases present the possibility to build a compatible symplectic
form. In any other case the Sk–bundles do not admit symplectic structures.

On one hand if codim(Nj) = 2, it is not clear that the total space L of the bundle can
admit a symplectic structure when dim(M) ≥ 7. In the case dim(M) = 5 there are examples
of S1–bundles that admit symplectic structures (see, for example, McMullen-Taubes [18] or
Friedl-Vidussi [11]).

On the other hand if codim(Nj) = 3, that is when L is an S2–bundle, it might be possible
to extend our methods but only a rank 2 Poisson structure could be constructed following our
arguments in this paper. A general construction of Thurston provides conditions for total spaces
of certain surface bundles to admit symplectic structures via symplectic fibrations [22]. One of
the requirements is that the base of the fibration is symplectic, so an additional obstruction is
that Nj admits a symplectic form. Hence, for dim(M) = 5, codim(Nj) = 3, it is possible to
apply our construction to find new examples of Bott-Morse foliations with center singularities
and compatible Poisson structures.

Moreover, another possible extension of this last idea could involve Lefschetz fibrations with
genus 0 fibers, which are well known to admit symplectic structures on their total spaces. The
work of Donaldson on Lefschetz pencils [8] asserts that for a suitable cohomology class in the
second de Rham cohomology of L, there is a symplectic structure on L with symplectic fibers.
As Lefschetz pencils are defined over S2, the possibility of constructing a singular Poisson struc-
ture that is symplectic on the complement the Bott-Morse singularities would only hold in
dim(M) = 5.

8. A remark on Poisson Cohomology

Poisson cohomology displays interesting global characteristics of the geometry of Poisson
structures. It reveals information about deformations of Poisson structures, which becomes
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relevant in deformation theory. In general, calculating Poisson cohomology is very hard as the
cohomology groups can be infinite dimensional, and there is no general method to compute
them. However, it is known in certain cases. For instance, for symplectic manifolds, the Poisson
cohomology is isomorphic to its de Rham cohomology H∗π(M) ' H∗dR(M). For a compact
Lie algebra g with corresponding Lie-Poisson structure W on g∗, denote by Hk

Lie(g∗) the Lie
algebra cohomology of g and by Cas(g∗,W ) the space of Casimirs of (g∗,W ). In this case
Hk
π(g∗,W ) = Hk

Lie(g∗)⊗ Cas(g∗,W ).
Next we will describe the Poisson cohomology for the structures described in this work, but

first we recall its definition. Consider the space of multivector fields X∗(M) = Γ(Λ∗TM) and

· · · −→ Xk−1(M)
dπ−→ Xk(M)

dπ−→ Xk+1(M)
dπ−→ . . .

The operator dπ : X•(M) −→ X•+1(M), dπ(X) = [π,X]SN is a differential of the exterior algebra
X(M) = ⊕kXk(M) and, due to the Poisson condition, it satisfies d2

π = 0. The pair (X(M), dπ)
is called the Poisson or Lichnerowicz-Poisson cochain complex, and

Hk
π(M) :=

ker
(
dπ : Xk(M)→ Xk+1(M)

)
Im (dπ : Xk−1(M)→ Xk(M))

with k ∈ N0 are called the Poisson cohomology spaces of (M,π).
Let us comment briefly on the interpretation of the Poisson cohomology groups. The zeroeth

Poisson cohomology group H0
π(M) is generated by Casimir functions, whereas H1

π(M) measures
the Poisson vector fields that are not Hamiltonian. The cohomology group H2

π(M) is the quotient
of infinitesimal deformations of π over trivial deformations, and H3

π(M) reflects the obstructions
to formal deformations of π.

The Tables 5, 6, and 7 summarize the Poisson cohomology of the structures associated to Bott-
Morse foliations in dimension 3. The first table presents the cases where the Poisson cohomology
is isomorphic to the Lie algebra cohomology. This is a consequence of the defined Lie algebras
being compact of semi-simple type ([9], p. 49). There are three cases where this does not apply.
When dim(Nj) = 1 and the Morse index is 0 or 2, its corresponding Lie algebra is e(2) and
this is not semisimple. For dim(Nj) = 0 with Morse index 2 and dim(Nj) = 1 with Morse
index 1 it is not known to us what are the corresponding Lie algebras. Direct computations
with linear coefficients give a partial result on H∗π(M), and we describe the dimensions of the
cohomology groups and its generators. In the Tables 5, 6, and 7, we use the simplified notation
∂ik := ∂

∂xi
∧ ∂
∂xk

to describe the bivector fields.

dim(Nj) = 0

Morse Index Poisson Bivector Lie Algebra
Poisson Cohomology
H•π(M) ∼= H•LA(g)

H0
π(M) Hk

π(M) for k ≥ 1

0

x3∂12 − x2∂13 + x1∂23 so(3)

' R,
0generated by

〈x2
1 + x2

2 + x2
3〉

3
' R,

0generated by
〈−x2

1 − x2
2 − x2

3〉

1 −x3∂12 + x2∂13 + x1∂23 sl(2,R)
' R

0generated by
〈−x2

1 + x2
2 + x2

3〉
Table 5. Lie algebra and Poisson Cohomology of corresponding Poisson Structures.
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dim(Nj) = 0

Morse Index Poisson Bivector
Poisson cohomology with linear coefficients

H0
π(M) H1

π(M) H2
π(M) H3

π(M)

2 −x3∂12 − x2∂13 + x1∂23

' R
generated by 0 0 0
〈−x2

1 − x2
2 + x2

3〉
dim(Nj) = 1

0

−x2∂13 + x1∂23 ' R, ' R ' R ' R

generated by generated by generated by generated by

〈−x2
1 + x2

2〉 〈x1∂1 + x2∂2〉 〈x3∂12〉 〈x3∂123〉

2

1 x2∂13 + x1∂23

Table 6. Poisson Cohomology with linear coefficients associated to the Poisson structures.

dim(Nj) = 0

Morse Index Poisson Bivector
Poisson cohomology with quadratic coefficients

H0
π(M) H1

π(M) H2
π(M) H3

π(M)

2 −x3∂12 − x2∂13 + x1∂23

' R
generated by 0 0 0
〈−x2

1 − x2
2 + x2

3〉
dim(Nj) = 1

0

−x2∂13 + x1∂23 ' R, ' R2 ' R ' R

generated by generated by generated by generated by

〈−x2
1 + x2

2〉 〈ax2
1∂3, bx

2
2∂3〉, a 6= b 〈x2

3∂12〉 〈x2
3∂123〉

2

1 x2∂13 + x1∂23

Table 7. Poisson Cohomology with quadratic coefficients associated to the
Poisson structures.
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