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DIFFERENTIABLE EQUISINGULARITY OF
HOLOMORPHIC FOLIATIONS

ROGÉRIO MOL AND RUDY ROSAS

Abstract. We prove that a C∞ equivalence between germs of holomorphic foliations at
(C2, 0) establishes a bijection between the sets of formal separatrices preserving equisingularity
classes. As a consequence, if one of the foliations is of second type, so is the other and they
are equisingular.

1. Introduction

A celebrated theorem of Zariski [13] asserts that two topological equivalent germs of curves
at (C2, 0) are necessarily equisingular, that is, their desingularization by blow-ups are combi-
natorially isomorphic. In [1], the authors prove the following analogous result for holomorphic
foliations at (C2, 0), valid for the generic class of generalized curve foliations:

Theorem A. Let F and F ′ be topologically equivalent germs of holomorphic foliations at (C2, 0).
Suppose that F is a generalized curve foliation. Then F ′ is also a generalized curve foliation.
Besides, F and F ′ have isomorphic desingularizations.

The proof of this theorem is based upon the following result, also proved in [1]:

Theorem B. Let F be a generalized curve foliation at (C2, 0) and let Sep(F) be its set of
separatrices. Then, a desingularization of Sep(F) is also a desingularization of F .

In fact, if F is topologically equivalent to F ′, we have that Sep(F) and Sep(F ′) are also
topological equivalent, since the separatrices of a generalized curve foliation are convergent.
Therefore, Theorem A follows from Theorem B and Zariski’s Theorem. In general, the validity of
Theorem A outside the class of generalized curve foliations is a difficult open problem. Actually,
such a result would imply the topological invariance of the algebraic multiplicity of a holomorphic
foliation, which is also an open problem (see [9, 10, 11]). The desingularization of a germ
of foliation F is closely related to the desingularization of its set of separatrices Sep(F) —
including the purely formal ones —, although the conclusion of Theorem B is not always true
if the hypothesis of generalized curve is removed. Another serious difficulty is the fact that
the topological equivalence does not naturally map purely formal separatrices of F into purely
formal separatrices of F ′, as in the case of convergent separatrices.

If the equivalence between F and F ′ is supposed to be C∞, a correspondence among formal
separatrices of both foliations can be established. Let Φ be such a C∞ equivalence and consider
its Taylor series Φ̂ as a real formal diffeomorphism of (C2, 0). Let S be a possibly formal
separatrix of F , which can be seen as a parametrized two-dimensional real formal surface at
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(C2, 0). Then the formal composition Φ̂(S) is a parametrized two-dimensional real formal surface
at (C2, 0). In this setting, we have:

Theorem I. Let Φ be a C∞ equivalence between two germs F and F ′ of singular holomorphic
foliations at (C2, 0). Let S be a separatrix of F , considered as a parametrized two-dimensional
real formal surface at (C2, 0). Then the following properties hold:

(1) The real formal surface Φ̂(S) is a real formal reparametrization of some separatrix S′ of
F ′, denoted by S′ = Φ∗(S).

(2) Let S be the reduced curve defined as the union of a finite collection S1, . . . , Sm of separa-
trices of F . Denote by S ′ the reduced curve defined as the union of Φ∗(S1), . . . ,Φ∗(Sm).
Then S and S ′ are equisingular.

As a consequence of Theorem I, if F and F ′ are C∞ equivalent foliations, then the sets of
separatrices Sep(F) and Sep(F ′) have isomorphic desingularizations. Taking into account that
the property described in Theorem B is valid for the larger class of second type foliations (see
[7]), we obtain the following equidesingularization result for C∞ equivalent foliations:

Theorem II. Let F and F ′ be two germs of holomorphic foliations at (C2, 0) equivalent by
a germ of C∞ diffeomorphism. If F is a foliation of second type, then F ′ is of second type.
Moreover, F and F ′ are equisingular.

This paper is structured in the following way. In sections 2 and 3 we present basic definitions
and some properties of second type foliations. Next, in sections 4 and 5, we introduce the
notion of characteristic curves for germs of holomorphic foliations. These are one-dimensional
real curves intrinsically associated to separatrices — both convergent and formal. Characteristic
curves are invariant by C∞ equivalences and enable us to establish a one to one correspondence
among separatrices of two C∞ equivalent foliations. This is done in section 6. Next, in section 7,
we introduce the concept of formal real equivalence of formal complex curves and we show that
this notion implies equisingularity (Theorem 7.2). In section 8, we present the proof of Theorem
I. Finally, in section 9, we accomplish the proof of Theorem II.

2. Foliations, separatrices and desingularization

A germ of singular holomorphic foliation F at (C2, 0) is the object defined by an equation
of the form ω = 0, where ω is a 1−form ω = P (u, v)du + Q(u, v)dv — or, equivalently, by
the orbits of the germ of holomorphic vector field v = −Q(u, v)∂/∂u + P (u, v)∂/∂v —, where
P,Q ∈ C{u, v} are relatively prime, defining what we call a reduced equation. Two reduced
1−forms ω and ω̃ define the same foliation if and only if ω = u ω̃ for some unity u ∈ C{u, v}. In
general, we can assume that a 1−form ω = P (u, v)du + Q(u, v)dv defines a foliation by taking
as reduced equation ω/R = 0, where R = gcd(P,Q).

A considerable amount of information on the local topology and dynamics of a foliation is
given by their separatrices. A separatrix for a foliation F is an invariant irreducible formal
curve. Algebraically, it is defined by an irreducible formal series f ∈ C[[u, v]], with f(0, 0) = 0,
satisfying

ω ∧ df = fhdu ∧ dv
for some formal series h ∈ C[[u, v]]. If f can be taken in C{u, v}, the separatrix is said to be
analytic or convergent. We denote by Sep(F) the set of separatrices of F at 0 ∈ C2.

The singularity 0 ∈ C2 for F is said to be simple if the linear part Dv(0) of a vector field v
inducing F has eigenvalues λ1, λ2 ∈ C meeting one of the following conditions:
Case 1: λ1λ2 6= 0 and λ1/λ2 6∈ Q+. We say that 0 ∈ C2 is non-degenerate or complex hyperbolic.
The set of separatrices Sep(F) is formed by two transversal branches, both of them analytic.
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Case 2: λ1 6= 0 and λ2 = 0. This is called a saddle-node singularity, for which there are formal
coordinates (u, v) such that F is induced by

(2.1) ω = v(1 + λuk)du+ uk+1dv,

where λ ∈ C and k ∈ Z>0. The curve {u = 0}, corresponding to the tangent direction defined by
the non-zero eigenvalue, defines an analytic separatrix, called strong, whereas {v = 0} is tangent
to a possibly formal separatrix, called weak or central. The integer k + 1 > 1 is called tangency
index of F with respect to the weak separatrix, or simply weak index, and will be denoted by
Indw0 (F).

A global foliation G on a holomorphic surface M corresponds to the assignment, for each
p ∈ M , of compatible local foliations Gp. For instance, a holomorphic 1−form ω on M defines
a foliation G by taking Gp as the local foliation defined by the germification of ω at p. Let
F be a local foliation at (C2, 0) defined by the 1−form ω and let π : (M,E) → (C2, 0) be a
sequence of punctual blow-ups starting at 0 ∈ C2. The pull-back 1−form π∗ω defines a foliation
F̃ = π∗F with isolated singularities on (M,E) called the strict transform of F by π. We have
the definition:

Definition 2.1. Let G be a foliation on (M,E), where E is a normal crossings divisor. With
respect to the pair (G, E), we say that p ∈ E is

(1) a regular point, if there are local analytic coordinates (u, v) at p such that Ep ⊂ {uv = 0},
where Ep denotes the germ of E at p, and G : du = 0;

(2) a simple singularity, if p is a simple singularity for G and Ep ⊂ Sepp(G).

This allows us to present the notion of reduction of singularities of a foliation with respect to
a normal crossings divisor:

Definition 2.2. Let G be a foliation on (M,E), where E is a normal crossings divisor. We say
that (G, E) is reduced or desingularized if all points p ∈ E are either regular or simple singularities
for the pair (G, E). A reduction of singularities or desingularization for a germ of foliation F at
(C2, 0) is a morphism π : (M,E)→ (C2, 0), formed by a composition of punctual blow-ups, such
that (π∗F , E) is reduced.

For a local foliation F at (C2, 0), there always exists a reduction of singularities (see [12]
and [1]). Besides, there exists a minimal one, in the sense that it factorizes, by an additional
sequence of blow-ups, any other reduction of singularities of F . In the sequel, whenever we refer
to a reduction of singularities, we mean a minimal one.

Let π : (M,E) → (C2, 0) be a reduction of singularities for F and denote F̃ = π∗F . The
divisor E = π−1(0) is a finite union of components which are embedded projective lines, crossing
normally at corners. The regular points of E are called trace points. A component D ⊂ E can
be:

(1) non-dicritical, if D is F̃-invariant. In this case, D contains a finite number of simple sin-
gularities. Each trace singularity carries a separatrix transversal to E, whose projection
by π is a branch in Sep(F).

(2) dicritical, if D is not F̃-invariant. The definition of desingularization gives that D may
intersect only non-dicritical components and that F̃ is everywhere transverse do D. The
π-image of a local leaf of F̃ at each trace point of D belongs to Sep(F).

For each B ∈ Sep(F) we associate the trace point τE(B) ∈ E given by π∗B ∩ E, where π∗B
denotes the strict transform of B. We define Sep(D) = {B ∈ Sep(F); τE(B) ∈ D} as the set of
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branches attached to the component D ⊂ E. We thus have a decomposition

Sep(F) = Iso(F) ∪Dic(F),

where
Iso(F) =

⋃
D non−dicritical

Sep(D) and Dic(F) =
⋃

D dicritical

Sep(D).

Separatrices in Iso(F), known as isolated, can be additionally classified in two types. A branch
B ∈ Iso(F) is strong or of Briot and Bouquet type if either τE(B) is a non-degenerate singularity
or if τE(B) is a saddle-node singularity with π∗B as its strong separatrix. On the other hand,
B ∈ Iso(F) is weak if τE(B) is a saddle-node singularity whose weak separatrix is π∗B. This
classification engenders the decomposition Iso(F) = Isos(F) ∪ Isow(F), where notation is self-
evident. Note that Iso(F) is a finite set and all purely formal separatrices of F are contained in
Isow(F).

On the other hand, if non-empty, Dic(F) is an infinite set of analytic separatrices, called
dicritical. A foliation F may be classified either as non-dicritical — when Sep(F) is finite, which
happens when Dic(F) = ∅ — or as dicritical, otherwise.

Let F be a foliation at (C2, 0) with reduction of singularities π : (M,E) → (C2, 0). The
dual tree associated to F is the acyclic, double weighted, directed graph A∗(F) defined in the
following way:

(1) to each component D ⊂ E we associate a vertex v(D);
(2) to v(D) we associate weights n1(D) ∈ Z<0 and n2(D) ∈ N∪ {∞}, where n1(D) = D ·D

is the self-intersection number of D in M and n2(D) = #Sep(D);
(3) there is an arrow from v(D2) to v(D1) if and only if D2 ∩D1 6= ∅ and D2 results from a

blow-up at a point in D1.
The valence of a component D ⊂ E is the number Val(D) of arrows of A∗(F) touching v(D). In
other words, it is the total number of components of E intersecting D other from D itself.

Definition 2.3. Two foliations F and F ′ are said to be equisingular or equireducible if
A∗(F) = A∗(F ′).

Let F be a foliation at (C2, 0). A sequence of blow-ups π : (M,E) → (C2, 0) desingularizes
Sep(F) if the transforms π∗S of branches S ∈ Sep(F) are all disjoint and transverse to the
regular part of E. We call this map, which is supposed to be minimal, an S-desingularization
or S-reduction for F . Following the same procedure as in the construction of A∗(F), we define
the S-dual tree of F , denoted as A∗S(F), as the dual tree associated to the S-desingularization
of F . In this case, n2(D) is the number of components of Sep(F) whose strict transforms by π
pass through a component D ⊂ E. With this at hand, we have the following definitions:

Definition 2.4. A germ of foliation F is S-desingularizable or S-reducible if A∗S(F) = A∗(F),
that is, an S-desingularization actually is a desingularization for F .

Definition 2.5. Two germs of foliations F and F ′ at (C2, 0) are S-equisingular or S-equireducible
if A∗S(F) = A∗S(F ′), that is, if their sets of separatrices have equivalent desingularizations.

3. Second type foliations

We keep the notation π : (M,E)→ (C2, 0) for the reduction of singularities of F and F̃ = π∗F
for the strict transform foliation. We say that a saddle-node singularity for F̃ is tangent if its
weak separatrix is contained in E. Non-tangent saddle-nodes are also known as well-oriented.
The following definition is due to J.-F. Mattei and E. Salem (see [7] and also [2], [4] [5]):
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Definition 3.1. A foliation F at (C2, 0) is of second type if there are no tangent saddle-nodes
in its reduction of singularities.

The main property of second type foliations to be used in this article is the following result,
which already appeared in [7, Th. 3.1.9] in the non-dicritical case:

Proposition 3.2. Second type foliations are S-desingularizable.

Proof. We first remark that the same proof of Lemma 1 in [1] applies to the following more general
statement: a second type foliation with exactly two smooth transversal formal separatrices is
simple. The result then follows by the same arguments as in the proof of [1, Th. 2]. �

We establish the following definition:

Definition 3.3. Two germs of foliations F and F ′ at (C2, 0) are topologically (respectively, C∞)
equivalent if there is a germ of homeomorphism (respectively, C∞ diffeomorphism)
Φ : (C2, 0)→ (C2, 0) which sends leaves of F on leaves of F ′.

The family of second type foliations contains the subclass of generalized curve foliations,
characterized by the absence saddle-nodes in the desingularization. The property of being a
generalized curve foliation is a topological invariant and topological equivalent generalized curves
are equisingular. This is the main result in [1]. Indeed, the topology of a generalized curve
foliation is closely related to its separatrix set, entirely formed by convergent curves. Our aim
in Theorem II is to prove the equisingularity property for the family of second type foliations. If
all separatrices of two second type foliations are convergent, then their topological equivalence
implies equisingularity. Actually, there is a correspondence between homeomorphic separatrices
for both foliations and the result follows from Zariski’s equisingularity for curves in conjunction
with the fact that a second type foliation is S-desingularizable. However, in principle, a merely
continuous equivalence map does not track purely formal separatrices. For this reason, in the
statement of Theorem II, the regularity hypothesis on the equivalence map is strengthened and
we ask for C∞ equivalences.

The following object was defined in [4]. A more thorough study on its properties is found in
[5]. Again, F is a germ of foliation at (C2, 0) with reduction process π : (M,E)→ (C2, 0).

Definition 3.4. A balanced equation of separatrices for F is a formal meromorphic function F̂
whose associated divisor is

(3.1) (F̂ )0 − (F̂ )∞ =
∑

S∈Iso(F)

(S) +
∑

S∈Dic(F)

aS(S),

where the coefficients aS ∈ Z are non-zero only for finitely many S ∈ Dic(F), and, for each
dicritical component D ⊂ E, the following equality holds:

(3.2)
∑

S∈Sep(D)

aS = 2−Val(D).

Note that if F is non-dicritical, then a balanced equation is an equation for the set of separatrices.

We recall that the multiplicity ρ(D) of a component D ⊂ E is defined as the algebraic
multiplicity of a curve γ at (C2, 0) such that π∗γ is transversal to D outside a corner of E. We
have the following definition:

Definition 3.5. The tangency excess of F along E is the number

(3.3) τ0(F) =
∑

q∈SN(F)

ρ(Dq)(Indwq (F̃)− 1),
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where SN(F) ⊂ E denotes the set of all tangent saddle-nodes, Dq is the component of E
containing the weak separatrix of F̃ at q ∈ SN(F) and Indwq (F̃) > 1 is the weak index.

Note that τ0(F) ≥ 0 and, by definition, τ0(F) = 0 if and only if SN(F) = ∅, that is, if and
only if F is of second type.

The algebraic multiplicity of a foliation F having ω = Pdx+Qdy = 0 as a reduced equation is
the integer ν0(F) = min(ν0(P ), ν0(Q)). The tangency excess measures the extent that a balanced
equation of separatrices computes the algebraic multiplicity of a foliation. This is expressed in
the following fact, whose proof is found in [4]:

Proposition 3.6. Let F be a foliation on (C2, 0) with F̂ as a balanced equation of separatrices.
Denote by ν0(F) and ν0(F̂ ) their algebraic multiplicities. Then

ν0(F) = ν0(F̂ )− 1 + τ0(F).

We have, as a consequence:

Corollary 3.7. With the above notation,

ν0(F) = ν0(F̂ )− 1

if and only if F is a second type foliation.

4. Pseudo-analytic curves

We begin with a definition:

Definition 4.1. Consider γ : [0, ε)→ Rk (k ∈ N) with γ(0) = 0. We say that the series

γ̂ =

∞∑
j=1

ajt
j (aj ∈ Rk)

is the Taylor series of γ at 0 ∈ R if, for each n ∈ N, there is a function γn : [0, ε) → Rk with
||γn(t)|| = o(tn) and such that

(4.1) γ(t) =

n∑
j=1

ajt
j + γn(t) = pn(t) + γn(t).

We say that γ̂ is non-degenerate if aj 6= 0 for some j ∈ N.

Observe that we are considering a Taylor series for γ at t = 0, even though we do not ask it
to be of class C∞ in [0, ε) . However, for γ as above,

Dγ(0) = lim
t→0

γ(t)/t = lim
t→0

(a1 + γ1(t)/t) = a1.

This gives, in particular, that γ is continuous at t = 0. It is also easy to see that, when γ
is non-degenerate, γ(t) 6= 0 for all t 6= 0 sufficiently small. Functions with Taylor series as in
Definition 4.1 are stable under composition by diffeomorphisms. The proof of this fact, that we
present below for the sake of completeness, is literally the same as that for the analogous result
in the C∞ category.

Proposition 4.2. Suppose that γ : [0, ε) → Rk has a non-degenerate Taylor series γ̂ at 0 ∈ R.
Let U and U ′ be neighborhoods of 0 ∈ Rk such that U contains the image of γ. Let Φ : U → U ′

be a C∞ diffeomorphism with Φ(0) = 0. Then the curve Φ◦γ has a non-degenerate Taylor series
at 0 ∈ Rk which is given by the formal composition Φ̂ ◦ γ̂, where Φ̂ is the Taylor series of Φ at
0 ∈ Rk.
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Proof. For a fixed n ∈ N, we write the Taylor formula of order n for Φ at 0 ∈ Rk:

Φ(h) = Φ′(0) · h+
1

2
Φ′′(0) · h(2) + · · ·+ 1

n!
Φ(n)(0) · h(n) + r(h) = Pn(h) + r(h),

where Φ(j) ∈ Lj(Rk,Rk) denotes the j-th derivative of Φ, h(j) = (h, . . . , h) ∈ (Rk)j , and
r : U ⊂ Rk → Rk is a map such that limh→0 r(h)/||h||n = 0. Inserting (4.1), we find an ex-
pression of the form

Φ ◦ γ(t) = Pn ◦ pn(t) + Ln(t) · γn(t) + r ◦ γ(t),

where Ln : [0, ε) → L1(Rk,Rk) is a map such that limt→0 Ln(t) = Ln(0) = Φ′(0). Denote
by p∗n(t) the truncation of Pn ◦ pn(t) in degree n and by q∗n(t) the remaining terms, all of
them of degree at least n + 1. We then have a decomposition Φ ◦ γ(t) = p∗n(t) + γ∗n(t), where
γ∗n(t) = q∗n(t) + Ln(t) · γn(t) + r ◦ γ(t). In order to prove the proposition, we have to check
that limt→0 γ

∗
n(t)/tn = 0, which reduces to showing that limt→0 r ◦ γ(t)/tn = 0. But, since γ is

non-degenerate, we can write

lim
t→0

r ◦ γ(t)

tn
= lim
t→0

r(γ(t))

||γ(t)||n

∥∥∥∥γ(t)

t

∥∥∥∥n = 0,

which holds since limt→0 γ(t)/t = a1. �

This proposition allows us to establish the following definition:

Definition 4.3. Let M be a C∞ manifold of dimension k ∈ N and consider the C∞ curve
γ : [0, ε) → M with γ(0) = p ∈ M . We say that γ is pseudo-analytic at p ∈ M if, for some C∞
chart ψ with ψ(p) = 0 ∈ Rk, the curve ψ ◦ γ has a non-degenerate Taylor series at 0 ∈ Rk.

As a direct consequence of Proposition 4.2 we have:

Proposition 4.4. Let M and M ′ be C∞ manifolds of dimension k ∈ N and let Φ : M → M ′

be a C∞ diffeomorphism with Φ(p) = p′. Suppose that γ : [0, ε) → M is pseudo-analytic at
p = γ(0). Then Φ ◦ γ is pseudo-analytic at p′ ∈M ′.

The advantage of defining pseudo-analytic curves in the more general setting of curves with
Taylor series is that we gain their stability under real blow-ups and, as a consequence, the iterated
tangents property as defined in [3]. This is formalized in the following:

Proposition 4.5. Suppose that γ : [0, ε) → M is injective and pseudo-analytic at p = γ(0).
Let π : M̃ → M be the punctual real blow-up at p ∈ M . Then there exists p̃ ∈ π−1(p) such the
curve γ̃ = π−1 ◦ γ : (0, ε) → M̃ can be continuously extended by defining γ̃(0) = p̃. Moreover,
the extended curve γ̃ : [0, ε)→ M̃ is injective and pseudo-analytic at p̃. Clearly, this proposition
holds if π is any finite composition of real blow-ups at p ∈M .

Proof. Take C∞ coordinates (x1, . . . , xk) at p ∈M . Then γ = (γ1, . . . , γk) has a Taylor series ∞∑
j=ν

aj1t
j , . . . ,

∞∑
j=ν

ajkt
j


with (aν1 , . . . , a

ν
k) 6= 0. Of course we can assume that aν1 6= 0. If aν2 6= 0, define the diffeomorphism

ψ : (x1, . . . , xk) 7→ (x1, x2 −
aν2
aν1
x1, x3, . . . , xk)

and consider
ψ ◦ γ(t) = (γ̃1(t), γ̃2(t), . . . , γ̃k(t)).
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Then it is easy to see that ord( ˆ̃γ2) > ν, where ˆ̃γ2 is the Taylor series of γ̃2 . Therefore, by
changing coordinates if necessary we can assume that aν1 6= 0 and aνj = 0 for j = 2, . . . , k. Thus,
for t > 0 small we have

π−1 ◦ γ(t) =

(
γ1(t),

γ2(t)

γ1(t)
, . . . ,

γk(t)

γ1(t)

)
,

which clearly tends to (0, . . . , 0) as t→ 0. Since γ1 has a non-degenerate Taylor series, it suffices
to show that γj(t)

γ1(t) has a Taylor series for j = 2, . . . , k. We will show that the formal quotient
∞∑
j=0

qjt
j of

∞∑
j=ν

aj2t
j by

∞∑
j=ν

aj1t
j is the Taylor series of γ2γ1 at t = 0; the other cases are equal. Fix

n ∈ N. It is sufficient to show that

R :=
γ2(t)

γ1(t)
−

n∑
j=0

qjt
j = o(tn).

We can express

γ1(t) =

ν+n∑
j=ν

aj1t
j + f1(t),

γ2(t) =

ν+n∑
j=ν

aj2t
j + f2(t),

where f1(t), f2(t) = o(tν+n). Then

R

tn
=

γ2(t)− γ1(t)
n∑
j=0

qjt
j

tnγ1(t)
(4.2)

=

(∑ν+n
j=ν a

j
2t
j + f2(t)

)
−
(∑ν+n

j=ν a
j
1t
j + f1(t)

) n∑
j=0

qjt
j

tnγ1(t)
(4.3)

=
o(tν+n)

tnγ1(t)
=
o(tν+n)

tν+n

1

γ1(t)/tν
→ 0 as t→ 0.(4.4)

�

5. Pseudo-analytic curves in complex surfaces

Let V be a regular complex surface and consider a curve γ : [0, ε) → V pseudo-analytic at
p = γ(0) ∈ V . In local holomorphic coordinates at p the Taylor series of γ is given as

γ̂ = (

∞∑
j=1

ajt
j + i

∞∑
j=1

bjt
j ,

∞∑
j=1

cjt
j + i

∞∑
j=1

djt
j),

where aj , bj , cj , dj ∈ R. Then, if we set αj = aj + ibj and βj = cj + idj , we can write

γ̂ = (

∞∑
j=1

αjt
j ,

∞∑
j=1

βjt
j).

Thus, converting the real variable t ∈ R into a complex variable z ∈ C, we can view the Taylor
series of γ at p ∈ V as the formal complex parametrized curve

(

∞∑
j=1

αjz
j ,

∞∑
j=1

βjz
j).
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Definition 5.1. Let γ be a pseudo-analytic curve at p ∈ V and let C be a formal parametrized
complex curve at p ∈ V . We say that γ is asymptotic to C at p ∈ V if γ̂ is a formal reparametriza-

tion of C, that is, if there exists a formal invertible complex series ψ̂ =
∞∑
j=1

σjw
j such that

γ̂ = C ◦ ψ̂.

In particular, by taking ψ̂ as the identity in the definition, we trivially have that a pseudo
analytic curve γ is always asymptotic to the formal parametrized curve defined by its Taylor
series γ̂. The next result shows that a pseudo analytic curve in a complex surface has the complex
iterated tangents property:

Proposition 5.2. Let γ be an injective pseudo-analytic curve at p ∈ V , which is asymptotic to
a formal complex curve C at p ∈ V . Let π : Ṽ → V be the punctual complex blow-up at p ∈ V .
Then there exists p̃ ∈ π−1(p) such that the curve γ̃ = π−1 ◦ γ : (0, ε) → Ṽ can be continuously
extended by defining γ̃(0) = p̃. Moreover:

(1) the extended curve γ̃ : [0, ε)→ Ṽ is injective and pseudo-analytic at p̃;
(2) γ̃ is asymptotic at p̃ to the strict transform of C by π.

Clearly, this proposition holds if π is any finite composition of complex blow-ups at p ∈ V .

Proof. Take holomorphic coordinates (z1, z2) at p ∈ V . Then γ = (γ1, γ2) has a Taylor series ∞∑
j=ν

aj1t
j ,

∞∑
j=ν

aj2t
j


with aj1, a

j
2 ∈ C and (aν1 , a

ν
2) 6= 0. Of course we can assume that aν1 6= 0. Moreover, as in the

proof of Proposition 4.5, by changing coordinates if necessary we can assume that aν2 = 0. Thus,
for t > 0 small we have

π−1 ◦ γ(t) =

(
γ1(t),

γ2(t)

γ1(t)

)
,

which clearly tends to (0, 0) as t → 0. Since γ1 has a non-degenerate Taylor series, in order to
prove item (1) it suffices to show that γ2(t)

γ1(t) has a Taylor series at t = 0. In fact, proceeding

as in Proposition 4.5, we show that the Taylor series of γ2(t)
γ1(t) is given by the formal quotient of

∞∑
j=ν

aj2t
j by

∞∑
j=ν

aj1t
j and this also implies item (2). �

The iterated application of Proposition 5.2 allows us to associate to γ a sequence of infinitely
near points {pn}n≥0, with p0 = p, which coincides with the sequence of infinitely near points of
the formal parametrized complex curve C to which it is asymptotic.

Definition 5.3. Let F be a one-dimensional holomorphic foliation on a regular complex surface
V , with a singularity at p ∈ V . Consider a C∞ curve γ : [0, ε)→ V with γ(0) = p. We say that
γ is a characteristic curve of F at p if the following properties hold:

(1) γ is injective and pseudo-analytic at p ∈ V ;
(2) γ((0, ε)) is contained in a leaf of F .

We emphasize that, in the above definition, the pseudo-analytic curve is required to be C∞.
The following is a simple exercise: if γ : [0, ε)→ Rk is a C∞ pseudo-analytic curve having Taylor
series γ̂(t), then its curve of derivatives Dγ : [0, ε) → Rk is C∞ and has the formal derivative
Dγ̂(t) as Taylor series. This is used next in order to prove that a characteristic curve of a
foliation is canonically asymptotic to a separatrix:
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Proposition 5.4. Let F be a one-dimensional holomorphic foliation on a complex regular sur-
face V , with a singularity at p ∈ V . If γ : [0, ε)→ V is a characteristic curve of F at p, then γ̂
is a parametrized formal separatrix of F .

Proof. Let ω be a holomorphic 1−form defining F near p ∈ V . We work in holomorphic coordi-
nates at p ∈ V and consider the curve of derivatives Dγ : [0, ε)→ V whose Taylor series is Dγ̂.
Since γ(t) is contained in a leaf of F for t ∈ (0, ε), we have that

ω(γ(t)) ·Dγ(t) = 0 for all t ∈ [0, ε).

Then the Taylor series of ω(γ(t)) ·Dγ(t) at t = 0 is null, that is,

ω̂(γ̂) ·Dγ̂ = 0.

�

We finish this section by providing, in three examples, an analysis of characteristic curves
according to the types of separatrices to which they are asymptotic.

Example 5.5. Characteristic curves asymptotic to a dicritical separatrix. Let γ be a character-
istic curve asymptotic to a dicritical separatrix S of a foliation F . After the desingularization of
F , the strict transforms of S and γ tend to a trace point in a dicritical component. Thus, the
only possibility is that γ is a curve contained in S.

Example 5.6. Characteristic curves asymptotic to a strong separatrix. Let γ be a characteristic
curve asymptotic to a strong separatrix S of a foliation F . Let π : (M,E) → (C2, 0) be the
desingularization of F and denote by F̃ = π∗F the strict transform of F . Then the strict
transform S̃ = π∗S is a separatrix of some reduced singularity p ∈ E of F̃ . Since the separatrix
S is strong, by doing one more blow-up at p if it were a saddle-node, we can assume that
the singularity at p is non-degenerate. Moreover, by performing some additional blow-ups if
necessary, we can assume that the ratio of eigenvalues of the singularity at p has a negative real
part. Thus, we can take holomorphic local coordinates (u, v) at p such that:

(1) the foliation F̃ at p is generated by a 1-form

ω = udv − vQ(u, v)du,

where Q(u, v) = λ+ . . ., Re(λ) < 0;
(2) E is given by {u = 0};
(3) S̃ is given by {v = 0}.

Let γ̃ be the strict transform of γ by π. By Proposition 5.2, γ̃ is a characteristic curve of F̃
asymptotic to S̃. We will prove that γ̃ is contained in S̃. If we express γ̃(t) = (u(t), v(t)),
t ∈ [0, ε), since γ̃ is tangent to the foliation F̃ , we have that

u(t)v′(t)− v(t)Q
(
u(t), v(t)

)
u′(t) = 0.

Then, if we define r(t) = |v(t)|2, a straightforward computation gives us that

r′ = 2|v|2Re
(u′
u
Q
)
.

Since γ̃ has a non-zero Taylor series and γ̃ is asymptotic to {v = 0}, we see that u(t) has a
non-zero Taylor series û(t) =

∑
j≥n

ajt
j , aj ∈ C, an 6= 0, n ∈ N. From this we easily obtain that

u′(t)

u(t)
=

1

t

(
n+ o(t)

)
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and therefore
r′ = 2|v|2 1

t
Re
((
n+ o(t)

)
Q
)

for all t ∈ (0, ε). Suppose that γ̃ is not contained in S̃. Then we have |v(t)| > 0 for all t ∈ (0, ε).
Thus, since

Re
((
n+ o(t)

)
Q
)
→ nRe(λ) < 0,

for t > 0 small enough we have that r′(t) < 0. But this is a contradiction, since that r(0) = 0
and r(t) > 0 for t ∈ (0, ε). Therefore, we conclude that a strong separatrix contains all its
asymptotic characteristic curves.

Example 5.7. Characteristic curves asymptotic to a weak separatrix. Consider a saddle-node
foliation F at 0 ∈ C2 whose strong separatrix is contained in {(u, v) : u = 0}. Then there is a
formal series ŝ(u) =

∑∞
j=1 cju

j such that the weak separatrix S of F is given by v = ŝ(u). It is
known that there exists a constant ϑ > 0 depending only on the analytic type of the saddle-node
such that, given η ∈ C∗, we can find a holomorphic function f defined on a sector of the form

V = {reiθη ∈ C : 0 < r < ε, −ϑ < θ < ϑ} (ε > 0)

such that:
(1) the graph {(u, f(u)) : u ∈ V } is contained in a leaf of the foliation F ;
(2) the function f has the series

∞∑
j=1

cju
j as asymptotic expansion at 0 ∈ C.

Define
γ(t) = (ηt, f(ηt))

for t ≥ 0 small and observe that the Taylor series of γ at t = 0 is given by (ηt, ŝ(ηt)). Therefore
γ is a characteristic curve of F asymptotic to the separatrix S. We remark that the function
f above can be non-unique, for example if η corresponds to a “node” direction of the saddle-
node. Thus, even if the weak separatrix is convergent, it does not contain all its asymptotic
characteristic curves.

6. Correspondence of separatrices by a C∞ equivalence

The main result of this section is the following:

Theorem 6.1. Let Φ be a C∞ equivalence between two germs F and F ′ of singular holomorphic
foliations at (C2, 0). Then, given a formal separatrix S of F , there exists a unique formal
separatrix S′ of F ′, denoted by S′ = Φ∗(S), such that for any characteristic curve γ of F
asymptotic to S we have that γ′ = Φ(γ) is a characteristic curve of F ′ asymptotic to S′.

If S ∈ Sep(F) and γ is a characteristic curve of F asymptotic to S, it is straightforward from
the definitions that γ′ = Φ(γ) is a characteristic curve of F ′. Thus, by Proposition 5.4, the formal
series γ̂′ is a separatrix of F ′. However, it is not immediately clear that the element defined by
γ̂′ in Sep(F ′) is independent of γ. It is worth remarking that Theorem 6.1 depends heavily on
the fact that the real diffeomorphism Φ is an equivalence between holomorphic foliations. For
instance, let Φ be any real linear diffeomorphism of C2 such that Φ(x + iy, 0) = (x, y) ∈ C2,
x, y ∈ R. Then the curves γa(t) = (t+ati, 0), with a ∈ R, are all asymptotic to the first complex
axis. However, their images by Φ are the curves γ′a(t) = (t, at), which are asymptotic to complex
lines in a non-constant family. As we will see, the statement of Theorem 6.1 is non-trivial only
when S is a weak separatrix. In this case, the main point in its proof is to show that the map
γ 7→ γ̂′ = Φ̂(γ), defined in the family of characteristic curves of F asymptotic to S and taking
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values in the finite set Iso(F ′) of isolated separatrices of F ′, is continuous and, hence, constant.
Before passing to the proof of the theorem, we state two preliminary results:

Lemma 6.2. Fix ν ∈ N. Then, for each j ∈ N there exists a complex polynomial Pj in 2j + 1
variables such that, if

Ŝ = (

∞∑
j=ν

ajz
j ,

∞∑
j=ν

bjz
j)

is a parametrized formal complex curve with aν = cν , c 6= 0, and we set

σj = Pj(c,
1

c
, aν+1, . . . , aν+j−1, bν , . . . , bν+j−1),

then S can be reparametrized as

(xν ,

∞∑
j=ν

σjx
j),

that is, there is an invertible series ψ̂(x) such that Ŝ(ψ̂(x)) = (xν ,
∞∑
j=ν

σjx
j).

Proof. This lemma is only a Puiseux’s Parametrization, putting in evidence the dependence of
the final coefficients in terms of the initial ones. �

Proposition 6.3. Let Φ be a C∞ equivalence between two holomorphic foliations with isolated
singularity at 0 ∈ C2 and let J : C2 → C2 be the complex conjugation. Then either DΦ(0) or
DΦ(0) ◦ J is a C-linear isomorphism of C2.

Proof. See [10, Lemma 4.3].
�

Proof of Theorem 6.1. Let γ be a characteristic curve of F asymptotic to S ∈ Sep(F). As we
commented above, Φ(γ) is a characteristic curve of F ′ asymptotic to the formal separatrix given
by its Taylor series. If S is convergent, standard arguments prove that Φ(S) is also a convergent
separatrix. Hence, if we take S′ = Φ(S), the proof of the theorem will be easy in the following
cases:

(1) S is a dicritical separatrix;
(2) S is a strong separatrix.

In both cases, if γ is a characteristic curve asymptotic to S, by examples 5.5 and 5.6 we have
that γ ⊂ S. Since Φ(γ) is contained in S′, then Φ(γ) is a characteristic curve asymptotic to S′.

We begin the proof of the remaining case. Let π : (M,E) → (C2, 0) be the reduction of
singularities of F . Then, the strict transform S̃ = π∗S is the weak separatrix of a saddle-node
singularity at some trace point p ∈ E. Clearly the strong separatrix at p is contained in E. Let
(u, v) be local holomorphic coordinates at p ∈ E such that:

• p ' (0, 0);
• E is given by {u = 0}.

Then there exists a formal series ŝ(u) =
∑∞
j=1 cju

j such that S̃ is given by v = ŝ(u). Let γ be
a characteristic curve asymptotic to S and let γ̃(t) = (u(t), v(t)) be the strict transform of γ by
π. Then γ̃ has a non-degenerate Taylor series given by

(û, v̂) =

 ∞∑
j=1

ujt
j ,

∞∑
j=1

vjt
j

 , where uj , vj ∈ C.
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Since γ̃ is asymptotic to S̃ at p — which means that γ̃ is a formal reparametrization of S̃ — we
deduce that u1 6= 0 and v̂ = ŝ ◦ û. Let π̂ = π̂ν + π̂ν+1 + . . . be the Taylor series of π at p in the
coordinates (u, v), where the π̂ν is the initial part of π. It is easy to see that the initial part of
ˆ̃γ = (û, ŝ ◦ û) is given by ˆ̃γ1 = (u1t, c1u1t). Then the initial part of γ̂ = π̂ ◦ ˆ̃γ is π̂ν(u1, c1u1)tν .
Since Φ is a diffeomorphism, its initial part Φ̂1 is an isomorphism, so

Φ̂1 ◦ π̂ν(u1, c1u1) 6= 0.

Then the initial part of γ̂′ = Φ̂ ◦ γ̂ is

γ̂′ν = Φ̂1 ◦ π̂ν(u1, c1u1)tν .

Thus, we can write

(6.1) γ̂′ = (

∞∑
j=ν

ajt
j ,

∞∑
j=ν

bjt
j),

where the coefficients aj and bj are polynomials in the coefficients of Re(û) and Im(û) and
(aν , bν) 6= 0. If J : C2 → C2 is the complex conjugation, by Proposition 6.3 we have that either
Φ1 or Φ1 ◦ J is a C-linear isomorphism. Then there is (a, b) ∈ C2\{0} such that

• (aν , bν) = (auν1 , bu
ν
1), or

• (aν , bν) = (aū1
ν , bū1

ν).
Both cases are similar, so we only deal with the first one. Of course we can suppose that a 6= 0,
so aν 6= 0 for all u1 ∈ C∗. Since γ′ is a characteristic curve of F ′, by Proposition 5.4, the formal
curve

γ̂′ = (

∞∑
j=ν

ajz
j ,

∞∑
j=ν

bjz
j)

is a parametrization of a formal separatrix S′û of F ′. Moreover, S′û is an isolated separatrix,
otherwise γ′ should be contained in a dicritical separatrix of F ′. We can apply Lemma 6.2 in
order to obtain a parametrization

S′û = (xν ,

∞∑
j=ν

σjx
j),

where the coefficients σj are polynomials in 1/u1 and in the coefficients of Re(û) and Im(û).
Consider the map

φ : û 7→ (σν , σν+1, . . .),

whose domain consists of all formal series û obtained as above. Clearly we can identify the set
of formal complex series in one variable with CN. Then the function φ is defined in some subset
Û of C∗ × CN and takes values in the set

Σ = {(σν , σν+1, . . .) ∈ CN : (xν ,

∞∑
j=ν

σjx
j) ∈ Iso(F ′)},

where Iso(F ′) is the set of isolated separatrices of F ′. Observe that the set Σ is finite and φ

is continuous if we consider the product topology in CN. Then it is sufficient to prove that Û
is connected, because in this case the map φ is constant and we can define S′ = S′û for any
û ∈ Û . We will prove that Û is path connected. From Example 5.7, for any u1 ∈ C∗ there
exists a characteristic curve of F whose strict transform by π has a Taylor series at p ∈ M
given by (u1t, ŝ(u1t)). This shows that C∗ := C∗ × {0}N is contained in Û . Since this set is
path connected, it suffices to show that any û ∈ Û can be connected to some point in C∗ by a
continuous path. Fix û = (u1, . . .) ∈ Û . Then there exists a characteristic curve γ of F such
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that its strict transform γ̃ = (u(t), v(t)) by π has (û, ŝ ◦ û) as its Taylor series at p ∈M . We can
assume that the image of u(t) is contained in a sector of the form

V = {reiθ ∈ C : 0 < r < ε, a < θ < b} (ε, a, b > 0)

such that there exists a function f ∈ O(V ) with the following properties:
• the graph {(u, f(u)) : u ∈ V } is contained in a leaf of the foliation;

• the function f has the series ŝ =
∞∑
j=1

cju
j as asymptotic expansion at 0 ∈ C.

Consider γ̃0(t) = (u(t), f(u(t))) and γ̃1(t) = (u1t, f(u1t)) and observe the following:
• γ̃0 and γ̃1 are the strict transforms by π of characteristic curves of F asymptotic to S;
• γ̃0 has (û, ŝ ◦ û) as its Taylor series;
• If û1 := (u1, 0, . . .) ∈ C∗, then γ̃1 has (û1, ŝ ◦ û1) as its Taylor series.

Define the family of curves

Γs(t) =
(

(1− s)u(t) + su1t, f
(
(1− s)u(t) + su1t

))
, s ∈ [0, 1].

It is easy to see that
• Γ0 = γ̃0 and Γ1 = γ̃1;
• each Γs is the strict transform of a characteristic curve asymptotic to S;

• Γ̂s = (ûs, ŝ ◦ ûs), where ûs = u1 +
∞∑
j=2

(1− s)ujtj .

Then ûs defines a continuous path connecting û to û1 ∈ C∗. �

7. Formal real equivalence and equisingularity for curves

Let Φ be a C∞ germ of diffeomorphism of (C2, 0). In the previous section, we dealt with the
correspondence between formal real parametrized curves at (C2, 0) given by γ̂ 7→ γ̂′ = Φ ◦ γ̂,
which determines a correspondence between formal complex parametrized curves simply by the
formal replacement of the real parameter by a complex one. In full generality, this procedure
does not preserve equisingularity classes. For instance, the germ of diffeomorphism defined by

Φ(x1 + iy1, x2 + iy2) = (x1 + iy2, y1 + ix2)

induces, in the above way, a correspondence between the non-equisingular complex parametrized
curves γ̂(z) = ((1 + i)z2, (1 + i)z3) and γ̂′(z) = (z2 + iz3, z2 + iz3) (which is z → (z, z), after
reparametrization). However, when Φ is a C∞ equivalence between two germs of holomorphic
foliations F and F ′, the correspondence Φ∗ between separatrices provided by Theorem 6.1 pre-
serves equisingularity classes. In order to prove this, we first introduce the concept of formal real
equivalence for formal complex curves and prove, in Theorem 7.2 below, that this notion implies
the equisingularity property. Eventually, in Theorem 8.1 of the next section, we achieve our goal
by proving that separatrices which corresponds by Φ∗ are actually formally real equivalent.

We first set a definition: a formal parametrized real surface at (C2, 0) is a non-zero series in
two variables of the form

(7.1)
∑
j,k∈N

ajkx
jyk,

where ajk ∈ C2 for all j, k ∈ N. When x, y are real coordinates and the series is convergent,
this object can be interpreted as the map (x, y) ∈ R2 7→

∑
j,k∈N ajkx

jyk ∈ C2, which defines a
parametrized real analytic surface. Naturally, a formal parametrized complex curve

∑
j∈N αjz

j

(αj ∈ C2) is also a formal parametrized real surface if we do the substitution z = x + iy.
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A formal real reparametrization of the surface (7.1) is any series obtained by a substitution
(x, y) = Ψ(x̄, ȳ), where Ψ is a formal diffeomorphism of (R2, 0).

Definition 7.1. Let Φ̂ be a formal diffeomorphism of (R4, 0). Let σ(z) =
∑
j∈N σjz

j and
σ′(z) =

∑
j∈N σ

′
jz
j be two formal parametrized irreducible complex curves at (C2, 0). We say

that Φ̂ is a formal real equivalence between σ and σ′ if the formal parametrized real surface
Φ̂ ◦ σ is a formal real reparametrization of σ′. In this situation we also say that σ and σ′ are
formally real equivalent by Φ̂. In general, we say that Φ̂ is a formal real equivalence between two
reduced formal complex curves C and C ′ at (C2, 0) if there is a bijection between the irreducible
components of C with the irreducible components of C ′ such that each pair of corresponding
irreducible components are formally real equivalent by Φ̂.

Theorem 7.2. Let Φ̂ be a formal real equivalence between two germs of reduced formal complex
curves C and C ′ at (C2, 0). Then C and C ′ are equisingular.

Proof. Let ξ1, . . . , ξm and ξ′1, . . . , ξ′m be the irreducible components of C and C ′ respectively
and assume that Φ̂ maps ξk to ξ′k for k = 1, . . . ,m. Let

σk(z) =
∑
j≥1

aj(k)zj , aj(k) ∈ C2

be a formal parametrization of ξk. Then Φ̂◦σk is a real formal parametrization of the irreducible
component ξ′k of C ′, that is, there exists a real formal diffeomorphism ψk : (C, 0)→ (C, 0) such
that Φ̂◦σk ◦ψk(z) is a complex formal parametrization of ξ′k. Given n ∈ N, let ξkn and ξ′kn be the
complex curves defined by the n-jets of σk(z) and Φ̂◦σk◦ψk(z) respectively. Let Cn and C ′n be the
reduced curves whose irreducible components are {ξkn : k = 1, . . . ,m} and {ξ′kn : k = 1, . . . ,m},
respectively. We know that for n large enough:

(1) C and Cn are equisingular;
(2) C ′ and C ′n are equisingular.

Then it is sufficient to prove that the analytic curves Cn and C ′n are topologically equivalent for
n large enough. For the sake of simplicity we denote ξ1, ξ′1, ξ1

n, ξ′
1
n, σ1 and ψ1 by ξ, ξ′, ξn,

ξ′n, σ and ψ, respectively. Then Φ̂ ◦ σ ◦ ψ(z) is a complex formal parametrization of ξ′ and ξn
is defined by the n-jet σn of σ. Since the curves ξn and ξ′n are analytic, we will use the same
notation for the sets defined by these curves. If Φn is the n-jet of Φ, the singular real surface
S given by Φn(ξn) is asymptotic to Φ̂ ◦ σ ◦ ψ(z) up to order n. In fact, if we consider the n-jet
ψn of ψ, the real parametrization Φn ◦ σn ◦ ψn(z) of Φn(ξn) has a Taylor series coinciding with
the Taylor series of Φ̂ ◦ σ ◦ ψ(z) up to order n. After a finite sequence of complex blow-ups
π : (M,E) → (C2, 0), the strict transform ξ̃′ of ξ′ is a regular formal curve transverse to the
exceptional divisor E at a point p. Let (u, v) be holomorphic coordinates on a neighborhood of
p such that:

• p ' (0, 0);
• the exceptional divisor E is given by {u = 0};
• the curve ξ̃′ is given by a formal equation v =

∑
j≥1

cju
j .

The following properties hold for n large enough:
• the strict transform ξ̃′n of ξ′n by π intersects E at the point p and is given by an analytic

equation of the form v = ζ(u) = c1u+ o(u) near p;
• the strict transform S̃ of S by π intersects E at the point p and is given by a C∞

equation of the form v = f(u) = c1u+ o(u) near p.
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Given ε > 0, there is a set D = {|u| ≤ a, |v| ≤ b}, with 0 < a, b < ε, such that
• ξ̃′n ∩D = {v = ζ(u); |u| ≤ a};
• S̃ ∩D = {v = f(u); |u| ≤ a};
• |ζ(u)|, |f(u)| < b for all |u| ≤ a.

We have the following:
Claim. There is a homeomorphism h̃ : D → D satisfying h̃(S̃ ∩ D) = ξ̃′n ∩ D such that
h̃(u, v) = (u, v) if |v| = b.

Proof. Without loss of generality, we can suppose that ζ(u) = 0 for all |u| ≤ a. For each u,
with |u| ≤ a, consider the complex disc Du = {(u, v) ∈ C2; |v| ≤ b}. It suffices to produce a
continuous family of homeomorphisms hu : Du → Du such that hu(f(u)) = 0 and hu(v) = v

if |v| = b. We then have our claim by setting h̃(u, v) = (u, hu(v)). In order to produce this
family, fix b′ < b such that |f(u)| ≤ b′ for all u and take a bump function ρ : [0,∞) → R such
that ρ ≡ 1 in [0, b′), ρ > 0 in [0, b) and ρ = 0 in [b,∞). Define a (real) vector field on Du by
~Xu(v) = −ρ(|v|)f(u). We can take hu as the flow of this vector field at time t = 1. �

The above homeomorphism is extended as a homeomorphism between two neighborhoods of
E by setting h̃ = id outsideD, where id stands for the identity map. Then the map h = π◦h̃◦π−1

defines a homeomorphism between two neighborhoods U1 and U2 of 0 ∈ C2 such that:
• h(S ∩ U1) = ξ′n ∩ U2;
• h(π(D)) = π(D) and h = id outside π(D).

Thus, the map h = h ◦ Φn is a topological equivalence between ξn and ξ′n. Moreover, since h
coincides with Φn outside π(D), a similar construction as above can be successively made in an
infinitesimal neighborhood of each irreducible component of C in order to obtain, for n large
enough, a topological equivalence h between C and C ′. �

We close this section by establishing a kind of “factorization” theorem for a real parametri-
zation of an irreducible complex curve. In more precise terms, suppose that ξ is an irreducible
curve at (C2, 0) defined by the formal equation F (u, v) = 0. Let

Γ = (f(x, y), g(x, y))

be a formal parametrized real surface at (C2, 0) whose “image” is contained in ξ, that is, such
that F (f, g) = 0. Then, Lemma 7.3 asserts that Γ is a formal real reparametrization of a
Puiseux parametrization of ξ. This result and its Corollary 7.4 will be important in the proof of
Theorem I.

Lemma 7.3. Let F be an irreducible element in A = C[[x, y]] and let σ ∈ C[[z]], n ∈ N be such
that (zn, σ(z)) is a Puiseux parametrization for the formal curve F = 0. Let f, g ∈ A be such
that F (f, g) = 0. Then there exists a series ψ ∈ A such that

(f, g) =
(
ψn, σ(ψ)

)
.

Proof. We will first show that it is sufficient to prove that f has an nth root in A. Suppose that
there exists φ ∈ A such that φn = f . By Puiseux’s Theorem we have that

(7.2) F (tn, y) = U
∏
ξn=1

(
y − σ(ξt)

)
,

where U is a unit in C[[t, y]]. Since F (φn, g) = F (f, g) = 0, we conclude from equation (7.2)
that g = σ(ξφ) for some ξ such that ξn = 1. Therefore it suffices to take ψ = ξφ.

Let us prove that f has an nth root in A. We exclude the trivial case n = 1 and suppose by
contradiction that f has no nth root in A. Denote by Q the field of fractions of A. At first we will
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show that, without loss of generality, we can assume that the polynomial zn− f is irreducible in
Q[z]. Let d ∈ N be the greatest divisor of n such that f has a dth root in A. Then there exists
f̃ ∈ A such that f = f̃d. Since F (f̃d, g) = 0, for some irreducible factor F̃ of F (xd, y) we have
F̃ (f̃ , g) = 0. If we set ñ = n

d , since f = f̃d has no nth root in A, we have that f̃ has no ñth root
in A. Therefore, we have that F̃ , f̃ and g satisfy the hypothesis of the lemma and f̃ has no ñth

root in A. Moreover, from the maximality of d we see that, for any divisor k 6= 1 of ñ, the series
f̃ has no kth root in A. Thus, without loss of generality we can assume that f has no kth root
in A for any divisor k 6= 1 of n. This implies that, for any divisor k 6= 1 of n, the element f has
no kth root in the field Q of fractions of A. From this we conclude that the polynomial zn − f
is irreducible in Q[z] (see, for instance, [6, Ch. VI.9]).

Given any h ∈ A, define h∗(t, x) = h(x, tx). If we write h =
∑∞
j=0 hj , where hj is a homoge-

neous polynomial of degree j in C[x, y], we obtain that

h∗(t, x) =
∞∑
j=0

hj(1, t)x
j .

Notice that hj(1, t) is a polynomial of degree at most j, so that the map h 7→ h∗ defines an
isomorphism from A into a ring A∗ contained in the ring K[[x]] of formal power series with
coefficients in the field K = C(t) of complex rational functions in the variable t. In particular,
if f =

∑
j≥ν

fj with fν 6= 0, we obtain that

f∗ =

∞∑
j≥ν

fj(1, t)x
j , fν(1, t) 6= 0.

If K̄ is the algebraic closure of K, we know that the series f∗ has an nth root ψ in K̄[[x]]. Then
ψ is a root of the polynomial zn − f∗ ∈ A∗[z]. Since the polynomial zn − f is irreducible in
Q[z], it follows that n is the minimum degree of a non-zero polynomial in A∗[z] having ψ as a
root. Since C ⊂ K̄, we will consider F as an element in K̄[[x, y]]. Then, since F (f∗, g∗) = 0 and
f∗ = ψn, it follows from Puiseux’s Theorem in K̄[[x, y]] that g∗ = σ(ξψ) for some ξ, ξn = 1.
Without loss of generality we can assume that ξ = 1. If we do the substitution ψn = f∗ in the
equation g∗ = σ(ψ), for some series σ1, . . . , σn−1 ∈ C[[z]] we obtain an equation of the form

− g∗ + σ1(f∗)ψ + . . .+ σn−1(f∗)ψn−1 = 0.

Thus, since σj(f∗) =
(
σj(f)

)∗ ∈ A∗, we have that ψ is a root of the polynomial

P = −g∗ + σ1(f∗)z + . . .+ σn−1(f∗)zn−1 ∈ A∗[z].

Then, since n is the minimum degree of a polynomial in A∗[z] vanishing on ψ, we conclude that
P = 0. Then g = 0 and consequently we have the equation F (f, 0) = 0. Therefore, if we express

F (x, y) =
∑
j≥0

sj(x)yj

with sj(x) ∈ C[[x]], we obtain that s0(f) = 0. This implies that s0 = 0, because f 6= 0. Then,
since F is irreducible, we have that F = Uy for some unit U ∈ A. But this implies that n = 1,
which is a contradiction. �

Let F be an irreducible element in C[[x, y]]. We say that a formal parametrized complex curve

Γ(z) =
∑
j∈N

ajz
j , aj ∈ C2
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is a complex parametrization of the curve F = 0 if Γ 6= 0 and we have F (Γ(z)) = 0. We say that
the complex parametrization Γ is reducible if there exist another formal parametrized complex
curve Γ̃ and an element ϕ ∈ C[[z]]] with ord(ϕ) > 1 such that Γ(z) = Γ̃(ϕ(z)). Otherwise we say
that Γ is an irreducible complex parametrization of F = 0. As a consequence of Lemma 7.3, we
have:

Corollary 7.4. Let F be an irreducible element in C[[x, y]] and let σ ∈ C[[z]], n ∈ N be such
that (zn, σ(z)) is a Puiseux parametrization for the formal curve F = 0. Let Γ be any irreducible
complex parametrization of F = 0. Then there exists a formal complex diffeomorphism ϕ ∈ C[[z]]
such that

Γ =
(
ϕn, σ(ϕ)

)
.

Proof. Let Γ = (f, g), where f, g ∈ C[[z]]. Since F (f, g) = 0 and (f, g) can be considered as a
formal real surface, by Lemma 7.3 there exists ψ ∈ C[[x, y]] such that

(f, g) =
(
ψn, σ(ψ)

)
.

Since (zn, σ(z)) is a Puiseux parametrization for the curve F = 0, this curve is different from
the y-axis and therefore f 6= 0. Then ψ 6= 0 and, since

ψn = f ∈ C[[z]],

we deduce that ψ is in fact a non-null complex series: there exists ϕ ∈ C[[z]], ϕ 6= 0 such that

ψ(x, y) = ϕ(x+ iy).

Then we have that
Γ =

(
ϕn, σ(ϕ)

)
and, since Γ is an irreducible complex parametrization, we conclude that ord(ϕ) = 1 and therefore
ϕ is a formal complex diffeomorphism.

�

8. C∞ equivalences of foliations and equisingularity of the set of separatrices

This section is devoted to prove Theorem I.

Theorem 8.1. Let Φ be a C∞ equivalence between two germs F and F ′ of singular holomorphic
foliations at (C2, 0). Let S be a formal separatrix of F and let S′ = Φ∗(S) be the corresponding
separatrix of F ′ according to Theorem 6.1. Then Φ̂ is a formal real equivalence between S and
S′.

Proof. Take coordinates (z, w) in (C2, 0) an suppose that S′ is defined by a formal equation
F = 0, where F ∈ C[[z, w]] is irreducible. As a first step, considering S as a formal real surface,
we will prove that F ◦ Φ̂ ◦ S = 0. Since this is obvious if S is convergent, we assume that S is
a weak separatrix. Let π : (M,E) → (C2, 0) be the reduction of singularities of F . Then, the
strict transform S̃ = π∗S is the weak separatrix of a saddle-node singularity at some p ∈ E. Let
(u, v) be local holomorphic coordinates at p ∈ E such that:

(1) p ' (0, 0);
(2) E is given by {u = 0}.

There exists a formal series ŝ(u) =
∞∑
j=1

cju
j such that S̃ is given by v = ŝ(u), hence the separatrix

S(u) = π
(
u, ŝ(u)

)
is parametrized as a real surface by

S(x, y) = π(x+ iy, ŝ(x+ iy)).
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In order to prove that F ◦ Φ̂ ◦ S = 0 it is sufficient to show that, if α, β ∈ R∗ are arbitrarily
chosen, then the series

f(t) := F ◦ Φ̂ ◦ S(αt, βt)

is null. If we set η = α+ iβ, the series f can be expressed as

f = F ◦ Φ̂ ◦ S(ηt).

As we have seen in Example 5.7, we know that S(ηt) is the Taylor series of a characteristic curve
γ of F asymptotic to S. Then, since γ′ := Φ(γ) is a characteristic curve of F ′ asymptotic to S′,
we deduce that γ̂′ = Φ̂ ◦ S(ηt) is a complex formal parametrization of S′ and therefore

f = F ◦ Φ̂ ◦ S(ηt) = F ◦ γ̂′ = 0.

Without loss of generality we can assume that both curves S and S′ are tangent to the z axis,
which implies the following properties:

(1) S has a Puiseux parametrization (Tn, σ(T )), where n is the multiplicity of the curve S
and σ ∈ C[[T ]], ord(σ) > n;

(2) S′ has a Puiseux parametrization (Tn
′
, σ′(T )), where n′ is the multiplicity of the curve

S′ and σ′ ∈ C[[T ]], ord(σ′) > n′.

By Proposition 6.3 and without loss of generality — the other case is similar — we can assume
that Φ̂(z, w) has a complex linear part

(8.1) Φ̂1(z, w) = (az + bw, cz + dw), ad− bc 6= 0.

Suppose that

(8.2) S(u) =
(∑
j≥n̄

αju
j ,
∑
j≥n̄

βju
j
)
, (αn̄, βn̄) 6= (0, 0).

Since it is an irreducible parametrization, by Corollary 7.4 there exists a formal diffeomorphism
ϕ ∈ C[[u]] such that S =

(
ϕn, σ(ϕ)

)
, hence n̄ = n and βn = 0. Therefore, from (8.1) and (8.2)

above we have that the initial part of Φ̂ ◦ S is complex and is given by(
Φ̂ ◦ S

)
1

=
(
aαnu

n, cαnu
n
)
.

Since S′ is tangent to the z axis, we have that F has an initial part of the form FN = µyN ,
µ 6= 0, N ∈ N. Then, since F ◦ Φ̂ ◦ S = 0 implies FN ◦

(
Φ̂ ◦ S

)
1

= 0, we deduce that c = 0 and
consequently a 6= 0. By Lemma 7.3, since F

(
Φ̂ ◦ S

)
= 0, there exists ψ ∈ C[[x, y]] such that

Φ̂ ◦ S(x+ iy) =
(
ψn

′
, σ′(ψ)

)
.

Then, since (
Φ̂ ◦ S

)
1

=
(
aαnu

n, 0
)
,

the initial part ψν , ν ∈ N, of ψ satisfies the equality aαnun = ψn
′

ν . Then n = n′ν and therefore
n′ ≤ n. A similar argument using the inverse diffeomorphism Φ−1 allows us to conclude that
n = n′, ν = 1 and, consequently, ψ has a linear part of the form n

√
aαn(x + iy). Thus ψ is a

formal real diffeomorphism and therefore Φ̂ ◦ S is a formal real reparametrization of S′. �

Proof of Theorem I. It is a direct consequence of Theorems 8.1 and 7.2. �
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9. The proof of Theorem II

Let F and F ′ be germs of foliations, equivalent by a germ of C∞ diffeomorphism

Φ : (C2, 0)→ (C2, 0).

Let S ∈ Sep(F) be a branch of separatrix and S′ = Φ∗S ∈ Sep(F ′) be the corresponding
separatrix given by Theorem I. This result also asserts that, if S = ∪ki=1Si is a reduced curve
formed by the union of a finite number of branches in Sep(F), setting S ′ = Φ∗S = ∪ki=1Φ∗Si,
then S and S ′ are equisingular. As a consequence, we have that S ∈ Iso(F) if and only if
S′ ∈ Iso(F ′) and S ∈ Dic(F) if and only if S′ ∈ Dic(F ′). We have clearly the following more
general fact:

Proposition 9.1. F and F ′ are S-equisingular.

Suppose now that F̂ is a balanced equation of separatrices for F , whose divisor is as in (3.1).
We define F̂ ′ = Φ∗F̂ as any formal meromorphic function corresponding to the following divisor

(F̂ ′)0 − (F̂ ′)∞ =
∑

S∈Iso(F)

(S′) +
∑

S∈Dic(F)

aS(S′).

Lemma 9.2. Let F and F ′ be germs of foliations, equivalent by a germ of C∞ diffeomorphism
Φ : (C2, 0) → (C2, 0). Let S ∈ Dic(F) and S′ = Φ∗S ∈ Dic(F ′) be corresponding separatri-
ces, attached to dicritical components D and D′ of the desingularizations of F and F ′. Then
Val(D) = Val(D′).

Proof. This is a consequence of Proposition 9.1 and of the following fact: if π : (M,E)→ (C2, 0)
is the reduction of singularities for F and D ⊂ E is the union of all dicritical components, then
each connected component of E \ D carries a separatrix of F (see [8, Prop. 4]). �

This lemma allows us to prove the following:

Proposition 9.3. Let F and F ′ be germs of foliations, equivalent by a germ of C∞ diffeomor-
phism Φ : (C2, 0)→ (C2, 0). If F̂ is a balanced equation of separatrices for F , then F̂ ′ = Φ∗F̂ is
a balanced equation of separatrices for F ′. Besides, ν0(F̂ ) = ν0(F̂ ′).

Proof. The isolated separatrices of F and F ′ are in correspondence by Φ, so that they appear in
the zero divisor of both balanced equations with coefficient 1. Similarly, there is a correspondence
between dicritical separatrices of F and F ′, which, by Lemma 9.2, are attached to dicritical
components having the same valences. Therefore, F̂ ′ is a balanced equation for F ′. Finally,
the equality of the algebraic multiplicities follows from the equisingularity property given by
Theorem I. �

The final ingredient for the proof of Theorem II is the following result of [10]:

Theorem 9.4. Let F and F ′ be germs at (Cn, 0) of C1 equivalent one dimensional foliations.
Then ν0(F) = ν0(F ′).

This enables to prove the following:

Proposition 9.5. The tangency excess τ0(F) is a C∞ invariant.

Proof. Let Φ be a C∞ equivalence between F and F ′. We have ν0(F) = ν0(F ′) by the previous
theorem. Moreover, Proposition 9.3 gives that if F̂ is a balanced equation of separatrices for F ,
then F̂ ′ = Φ∗F̂ is a balanced equation of separatrices for F ′ and ν0(F̂ ) = ν0(F̂ ′). The result
then follows from Proposition 3.6. �
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We are now ready to complete the proof of Theorem II:

Proof of Theorem II. Let F and F ′ be C∞ equivalent foliations. Being F of second type, it holds
τ0(F) = 0. Consequently, by Proposition 9.5, τ0(F ′) = 0 and F ′ is also of second type. Hence,
both F and F ′ are S-desingularizable by Proposition 3.2. The proof is accomplished by using
the fact that C∞ equivalent foliations are S-equisingular (Proposition 9.1). �

References

[1] C. Camacho, A. Lins Neto, and P. Sad. Topological invariants and equidesingularization for holomorphic
vector fields. J. Differential Geom., 20(1):143–174, 1984. DOI: 10.4310/jdg/1214438995

[2] F. Cano, N. Corral, and R. Mol. Local polar invariants for plane singular foliations. To appear: Expositiones
Mathematicae, 2019. DOI: 10.1016/j.exmath.2018.01.003

[3] F. Cano, R. Moussu, and F. Sanz. Oscillation, spiralement, tourbillonnement. Comment. Math. Helv.,
75(2):284–318, 2000. DOI: 10.1007/s000140050127

[4] Y. Genzmer. Rigidity for dicritical germ of foliation in C2. Int. Math. Res. Not. IMRN, (19):1073–7928,
2007. DOI: 10.1093/imrn/rnm072

[5] Y. Genzmer and R. Mol. Local polar invariants and the Poincaré problem in the dicritical case. J. Math.
Soc. Japan, 70(4):1419–1451, 2018. DOI: 10.2969/jmsj/76227622

[6] S. Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag, New York, third edition,
2002.

[7] J.-F. Mattei and E. Salem. Modules formels locaux de feuilletages holomorphes, 2004. arχiv: math/0402256
[8] R. Mol. Meromorphic first integrals: some extension results. Tohoku Math. J. (2), 54(1):85–104, 2002.

DOI: 10.2748/tmj/1113247181
[9] R. Rosas. The differentiable-invariance of the algebraic multiplicity of a holomorphic vector field. J. Differ-

ential Geom., 83(2):337–376, 2009.
[10] R. Rosas. The C1 invariance of the algebraic multiplicity of a holomorphic vector field. Ann. Inst. Fourier

(Grenoble), 60(6):2115–2135, 2010.
[11] R. Rosas. Bilipchitz invariants for holomorphic foliations. Int. Math. Res. Not. IMRN, (11):3425–3472, 2016.

DOI: 10.1093/imrn/rnv246
[12] A. Seidenberg. Reduction of singularities of the differential equation Ady = B dx. Amer. J. Math., 90:248–

269, 1968.
[13] O. Zariski. On the Topology of Algebroid Singularities. Amer. J. Math., 54(3):453–465, 1932.

Rogério Mol, Departamento de Matemática, Universidade Federal de Minas Gerais, Av. An-
tônio Carlos, 6627 C.P. 702, 30123-970 – Belo Horizonte – MG, Brasil

Email address: rmol@ufmg.br

Rudy Rosas, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima, Peru
Email address: rudy.rosas@pucp.edu.pe

https://doi.org/10.4310/jdg/1214438995
https://doi.org/10.1016/j.exmath.2018.01.003
https://doi.org/10.1007/s000140050127
https://doi.org/10.1093/imrn/rnm072
https://doi.org/10.2969/jmsj/76227622
http://arxiv.org/abs/math/0402256
https://doi.org/10.2748/tmj/1113247181
https://doi.org/10.1093/imrn/rnv246

	1. Introduction
	2. Foliations, separatrices and desingularization
	3. Second type foliations
	4. Pseudo-analytic curves
	5. Pseudo-analytic curves in complex surfaces 
	6. Correspondence of separatrices by a C equivalence
	7. Formal real equivalence and equisingularity for curves
	8. C equivalences of foliations and equisingularity of the set of separatrices
	9. The proof of Theorem II
	References

