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ON THE TOPOLOGY OF A RESOLUTION OF ISOLATED

SINGULARITIES, II

VINCENZO DI GENNARO AND DAVIDE FRANCO

Abstract. Let Y be a complex projective variety of dimension n with isolated singularities,
π : X → Y a resolution of singularities, G := π−1 (Sing(Y)) the exceptional locus. From the

Decomposition Theorem one knows that the map Hk−1(G) → Hk(Y, Y \Sing(Y )) vanishes

for k > n. It is also known that, conversely, assuming this vanishing one can prove the
Decomposition Theorem for π in few pages. The purpose of the present paper is to exhibit a

direct proof of the vanishing. As a consequence, it follows a complete and short proof of the
Decomposition Theorem for π, involving only ordinary cohomology.

1. Introduction

Consider an n-dimensional integral complex projective variety Y with isolated singularities.
Fix a resolution of singularities π : X → Y of Y . This means that X is an irreducible
and smooth projective variety, and π is a birational morphism inducing an isomorphism
X\π−1(Sing(Y )) ∼= Y \Sing(Y ). In this case, the celebrated Decomposition Theorem of Deligne,
Gabber, Beilinson, and Bernstein [1], assumes the following form:

Theorem 1.1 (The Decomposition Theorem for varieties with isolated singularities). In Db(Y ),
we have a decomposition

Rπ∗QX ∼= IC•Y [−n]⊕H•,
where H• is quasi isomorphic to a skyscraper complex on Sing(Y ). Furthermore, we have

(1) Hk(H•) ∼= Hk(G), for all k ≥ n,
(2) Hk(H•) ∼= H2n−k(G), for all k < n,

where G := π−1(Sing(Y )), and Hk(G) and H2n−k(G) have Q-coefficients.

In [6] Goresky and MacPherson remarked that from previous theorem one deduces the fol-
lowing vanishing, concerning ordinary cohomology (compare also with [13, (1.11) Theorem], and
with Notations, (ii), below):

(1) Hk−1(G)→ Hk(Y, Y \Sing(Y )) vanishes for k > n.

More recently, in [3] we observed that, conversely, assuming the vanishing (1) one can prove
Theorem 1.1 in few pages [3, Theorem 3.1].

Continuing [3], in the present paper we give a direct proof of the vanishing (1), without using
Theorem 1.1. Therefore, combining with [3, Theorem 3.1], it follows a complete and short proof
of the Decomposition Theorem for π, involving only ordinary cohomology.

Our proof of the vanishing (1) relies on an argument similar to that developed by Navarro in
[8, (5.1) Proposition]. First, using certain preliminary results we already stated in [3, Lemma 4.1
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and Lemma 4.2], we reduce to the case the exceptional locusG = π−1(Sing(Y )) is a simple normal
crossing divisor [7, p. 240], and X admits an ample line bundle of the form π∗(L) ⊗ OX(D),
where L is an ample line bundle on Y , and D a divisor supported on G (see Lemma 3.1 and
Lemma 3.2 below). Next, we conclude using again [3, Lemma 4.1], general properties of mixed
Hodge Theory, and a slight generalization of a Lemma of Steenbrink appearing in [8, p. 288]
(see Lemma 3.4, Lemma 3.5 and Lemma 3.6 below).

Our strategy has some points of contact with that of de Cataldo and Migliorini [2, pp. 572-
575], but also some important differences. Indeed, in both approaches the main point consists
in proving that the map εi : Hn+i(G) → Hn+i(G) is an isomorphism for all i ≥ 0 (see (3) and
Remark 3.3 below). However, in order to accomplish this, de Cataldo and Migliorini reduce to
the semismall case, where they crucially prove that the Hodge-Riemann bilinear relations hold
true for a divisor on X which is the pull-back of an ample divisor on Y . Instead, we reduce to
the divisorial case, and lean on the classical Hodge-Riemann bilinear relations for an ample line
bundle on X (see the proof of Lemma 3.6 below).

It is known that the Decomposition Theorem generalizes to the case Y is the germ of an
isolated singularity [2, p. 551], [10], [11], [12]. We do not know whether our approach can be
used also in this case. In fact, it does not seem to us completely local in nature, in view of the
crucial role played by the Hodge-Riemann bilinear relations for X. We have in mind to return
on this question in a future paper.

2. Notations

(i) For a function f : A→ B we denote by =(f) the image of f , i.e., =(f) = f(A).

(ii) We recall how the map Hk−1(G)→ Hk(Y, Y \Sing(Y )) appearing in (1) is defined (com-
pare with [3, p. 198, (iv)]). Embed Y in some projective space PN . For all y ∈ Sing(Y ) choose a
small closed ball Sy ⊂ PN around y, and set By := Sy ∩Y , Dy := π−1(By), B :=

⋃
y∈Sing(Y )By,

and D := π−1(B). By is homeomorphic to the cone over the link ∂By of the singularity y ∈ Y ,
with vertex at y. By is contractible, by excision we have

Hk(Y, Y \Sing(Y )) ∼= Hk(B,B\Sing(Y )) ∼= Hk(B, ∂B)

for all k, and from the cohomology long exact sequence of the pair (B, ∂B), we get

Hk(Y, Y \Sing(Y )) ∼= Hk−1(∂B)

for all k ≥ 2. Since ∂D ∼= ∂B via π, we deduce

Hk(Y, Y \Sing(Y )) ∼= Hk−1(∂D)

for all k ≥ 2. On the other hand, G is homotopy equivalent to D. Therefore, we also have

Hk−1(G) ∼= Hk−1(D).

It follows that we may identify the restriction map Hk−1(D)→ Hk−1(∂D) with a map

Hk−1(G)→ Hk(Y, Y \Sing(Y )).

3. The proof of the vanishing

We need the following two lemmas. The first one is certainly well known, but we prove it for
lack of a suitable reference.



ON THE TOPOLOGY OF A RESOLUTION OF ISOLATED SINGULARITIES, II 97

Lemma 3.1. Let π : X → Y be a resolution of singularities of Y . Then there exists a resolution
of singularities p : Z → Y of Y satisfying the following conditions:

(1) there is a morphism πX : Z → X such that p = π ◦ πX ;

(2) Γ := p−1(Sing(Y )) is a simple normal crossing divisor (s.n.c.) on Z;

(3) for every ample line bundle L on Y , there are integers a, a1, . . . , ar (a > 0) such that
p∗(L⊗a)⊗OZ (

∑r
i=1 aiΓi) is an ample line bundle on Z, the sum being taken over the components

of Γ.

Proof. Let π1 : X1 → Y be a resolution of singularities verifying condition (2), i.e. such that
π−11 (Sing(Y )) is a s.n.c. divisor [7, Theorem 4.1.3]. One can construct π1 : X1 → Y via a
sequence X1 = Bh → Bh−1 → · · · → B1 = Y of blowings-up along smooth centers supported in
the singular locus of Y [7, loc. cit.]. Fix an ample line bundle L on Y , and an integer h > 0
such that L⊗h is very ample, corresponding to a closed immersion i : Y ⊂ P of Y in some
projective space P (L⊗h = i∗(OP(1))). Each element Bj of this sequence is contained in an
element Cj of a sequence Ch → Ch−1 → · · · → C1 = P of blowings-up along the same smooth
centers, starting from P. By [5, Proposition 6.7, (e)], we know that the Picard group of each Cj
is generated by the pull-back of the hyperplane class of P, and certain divisor classes supported
in the singular locus of Y . Therefore, an ample line bundleM on Ch is necessarily the pull-back
of a positive power of OP(1), tensored with a line bundle like OCh

(E), with E divisor supported
in the singular locus of Y . Restricting such ample bundle M on X1, we get a line bundle as in
(3). This proves that there exists a resolution π1 : X1 → Y satisfying conditions (2) and (3).

Now consider the fibred product X×Y X1. It contains U := Y \Sing(Y ). Let U be the closure
of U in X ×Y X1. Applying [7, loc. cit.] to the blowing-up of U along U\U , we may construct a
resolution of singularities ϕ : Z → U of U , inducing an isomorphism ϕ−1(U) ∼= U , and such that
Γ := ϕ−1(U\U) is a s.n.c. divisor on Z. Composing ϕ : Z → U with the inclusion U ⊂ X×Y X1,
and the projections X×Y X1 → X and X×Y X1 → X1, we get maps πX1

: Z → X1, πX : Z → X
and p : Z → Y , with p = π1 ◦ πX1 = π ◦ πX :

Z

X1 X

Y

πX1

p

πX

π1 π

The morphism p : Z → Y is the map we are looking for. In fact, p : Z → Y is a resolution
of singularities of Y . Moreover, it satisfies conditions (1) and (2) because p = π ◦ πX and
Γ = ϕ−1(U\U) = p−1(Sing(Y )) is a s.n.c. divisor. It remains to check condition (3) for p.

To this aim, fix an ample line bundle L on Y . Since π1 : X1 → Y satisfies condition (3), there
exists an integer a > 0 and a divisor E1 on X1, supported in the singular locus of Y , such that
L1 := π∗1(L⊗a) ⊗ OX1

(E1) is an ample line bundle on X1. Since πX1
: Z → X1 is a birational

morphism between smooth projective varieties, by [7, Corollary 4.1.4 and Remark 4.1.5] we know
that there exists an integer b > 0 and a divisor E2 on Z, supported in the singular locus of Y ,
such that π∗X1

(L⊗b1 )⊗OZ(E2) is an ample line bundle on Z. Since p = π1 ◦ πX1 , it follows that
also p : Z → Y satisfies condition (3). �

Lemma 3.2. Let π : X → Y and p : Z → Y be resolutions of singularities of Y . Set
U := Y \Sing(Y ), G := π−1(Sing(Y )) and Γ := p−1(Sing(Y )). Assume there is a morphism
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πX : Z → X such that p = π ◦ πX . Fix an integer k > n. If the map Hk−1(Γ) → Hk(Y,U)
vanishes, then also the map Hk−1(G)→ Hk(Y,U) vanishes.

Proof. Consider the following commutative diagram given by the pull-back:

Hk−1(Y ) Hk−1(X) Hk−1(Z)

Hk−1(U).

α∗k−1

π∗ π∗X

β∗k−1
γ∗k−1

If the map Hk−1(Γ) → Hk(Y, U) vanishes, from [3, Lemma 4.1 and 4.2], it follows that
=(α∗k−1) = =(γ∗k−1). Since previous diagram commutes, we also have

=(α∗k−1) ⊆ =(β∗k−1) ⊆ =(γ∗k−1).

Therefore we get =(α∗k−1) = =(β∗k−1). Again from [3, loc. cit.], it follows that the map

Hk−1(G)→ Hk(Y, U) vanishes. �

By previous Lemma 3.1 and Lemma 3.2, in order to prove the vanishing (1) we may assume
that G is a s.n.c. divisor, and that there exists a very ample line bundle L on Y , and integers
a1, . . . , ar, such that

(2) M := π∗(L)⊗OX

 r∑
j=1

ajGj


is a very ample line bundle on X, the sum being taken over the components of G. Denote by
[M] ∈ H2(X) its cohomology class, and by µ ∈ H2(G) its restriction to G. Denote by

ηi : Hn−i(G)→ Hn+i(G),

the map obtained composing the pull-back Hn+i(X)→ Hn+i(G), with the isomorphism induced
by Poincaré duality Hn−i(X) → Hn+i(X), and the push-forward Hn−i(G) → Hn−i(X). By
[3, (3) p. 198] and [14, Lemma 14, p. 351] we see that, for a fixed i ≥ 0, to prove the vanishing
of the map Hn+i(G)→ Hn+i+1(Y,U) (U := Y \Sing(Y )) is equivalent to prove that the map ηi
is onto. Now consider the map

(3) εi : Hn+i(G)→ Hn+i(G)

obtained composing ηi : Hn−i(G)→ Hn+i(G) with the cap-product Hn+i(G)
µi∩ ·−→ Hn−i(G):

Hn+i(G) Hn+i(G)

Hn−i(G).
µi∩·

εi

ηi

In order to prove that the map ηi : Hn−i(G) → Hn+i(G) is onto, it suffices to prove that the
map εi is an isomorphism. Summing up, in order to prove the vanishing (1), it suffices to prove
that the map εi : Hn+i(G)→ Hn+i(G) is an isomorphism for all i ≥ 0.

Remark 3.3. For all y ∈ Sing(Y ), set Gy := π−1(y). By [8, (1.4) Corollaire] we see that, for
1 ≤ i < n,

pH−i(Rπ∗QX [n])y ∼= Hn+i(Gy) and pHi(Rπ∗QX [n])y ∼= Hn+i(Gy).
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Therefore, to prove that the map εi : Hn+i(G) → Hn+i(G) is an isomorphism for i ≥ 1,
is equivalent to prove perverse Hard-Lefschetz Theorem for π and M [8, (6.1) Proposition],
[2, Theorem 3.3.1., p. 573], [4, Theorem 5.4.8, p. 160].

Now we are going to prove that the map εi is an isomorphism for all i ≥ 0.

To this purpose, let G̃ → G be the normalization of G. And consider the following commu-
tative diagram:

Hn+i(G̃) Hn+i(G)

Hn+i(X)

Hn+i(G̃) Hn+i(G),

a

γ

β

b

εi

ρ c

d

where:

• the maps a, b and γ are the push-forward, and d is the pull-back;

• the map c is the composition of the pull-back Hn+i(X)→ Hn+i(G), with the cup-product

Hn−i(X)
[M]i ∪·−→ Hn+i(X), and the isomorphism PD−1 : Hn+i(X) → Hn−i(X) induced by

Poincaré Duality;

• the map ρ is the composition of the pull-back Hn+i(X)→ Hn+i(G̃), with the cup-product

Hn−i(X)
[M]i ∪·−→ Hn+i(X), and the isomorphism PD−1 : Hn+i(X) → Hn−i(X) induced by

Poincaré Duality;

• β := ρ ◦ γ.

We need the following lemmas. We prove them in a moment.

Lemma 3.4. The push-forward map b : Hn+i(G)→ Hn+i(X) is injective.

Lemma 3.5. The push-forward map a : Hn+i(G̃)→ Hn+i(G) is onto.

Lemma 3.6. kerβ ⊆ ker γ.

Taking into account previous lemmas, a simple diagram chase proves that εi is injective, hence an
isomorphism because Hn+i(G) and Hn+i(G) have the same dimension. In fact, assume εi(x) = 0.

Let y ∈ Hn+i(G̃) such that a(y) = x. Then d(εi(a(y))) = 0, i.e. β(y) = 0. Then γ(y) = 0, and
therefore b(a(y)) = 0. It follows that a(y) = 0, i.e. x = 0.

To conclude, we are going to prove previous lemmas. We only prove Lemma 3.5 and Lemma
3.6 because Lemma 3.4 follows from [3, Lemma 4.1]. We may assume all cohomology and
homology groups are with C-coefficients.

Proof of Lemma 3.5. Since X is smooth, by [9, Proposition 4.20, p. 102], we know that Hn+i(X)
has no weights of order n+ i− 1, i.e. Wn+i−1H

n+i(X) = 0. Since the pull-back

Hn+i(X)→ Hn+i(G)

is onto [3, Lemma 4.1], and is a morphism of mixed Hodge structure, it follows that also Hn+i(G)
has no weights of order n+ i−1, i.e. Wn+i−1H

n+i(G) = 0 [9, Corollary 3.6, p. 65, and Theorem
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5.33, (iii), p. 126]. On the other hand, since G̃→ G is a resolution (and G̃ and G are projective),
we have

Wn+i−1H
n+i(G) = ker(Hn+i(G)→ Hn+i(G̃))

[9, Corollary 5.42, p. 133, and Remark 5.15, 1), p. 119]. Therefore, the pull-back

Hn+i(G)→ Hn+i(G̃)

is injective. This is equivalent to saying that the push-forward map Hn+i(G̃) → Hn+i(G) is
onto. �

Proof of Lemma 3.6. Since G is a s.n.c. divisor, its irreducible components G1, . . . , Gr are

smooth, and G̃ is simply the disjoint union of them. Via Poincaré Duality on each components

of G, and on X, we may identify Hn+i(G̃) with Hn−i−2(G̃), Hn+i(X) with Hn−i(X), and the

push-forward γ : Hn+i(G̃) → Hn+i(X) with a Gysin map γ′ : Hn−i−2(G̃) → Hn−i(X). Hence,
to prove that kerβ ⊆ ker γ is equivalent to prove that

kerβ′ ⊆ ker γ′,

where β′ := ρ′ ◦ γ′, and ρ′ denotes the composition of the pull-back Hn+i(X)→ Hn+i(G̃), with

the cup-product Hn−i(X)
[M]i ∪·−→ Hn+i(X):

Hn−i−2(G̃)

Hn−i(X)

Hn+i(G̃).

β′

γ′

ρ′

Let v ∈ kerβ′.

Since the Gysin map and the pull-back are morphisms of Hodge structures [9, Corollary 1.13,

p. 17, and Lemma 1.19, p.19], we may assume that v ∈ Hp,q(G̃), with p+ q = n− i− 2. Set:

λ : Hn−i(X)→ Hn+i+2(X), λ(x) := x ∪ [M]i+1,

ε : Hn−i(X)→ Hn+i+2(X), ε(x) := x ∪

[M]i+1 −

OX
 r∑
j=1

ajGj

i+1
 ,

δ : Hn−i(X)→ Hn+i+2(X), δ(x) := x ∪

OX
 r∑
j=1

ajGj

i+1

,

γj : Hn+i(Gj)→ Hn+i+2(X), γj := the Gysin map.

We have:

(4) λ(γ′(v)) = (ε+ δ)(γ′(v)) = ε(γ′(v)) + δ(γ′(v)).

Notice that, since the singular locus of Y is finite, we have:

(5) [π∗(L)] ∪ [OX(Gj)] = 0 ∈ H4(X)
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for every component Gj of G. Hence (compare with (2)):

(6) [M]i+1 = [π∗(L)]i+1 +

OX
 r∑
j=1

ajGj

i+1

.

Taking into account (5), (6), and the projection formula [9, p. 424], it follows that:

ε(γ′(v)) = γ′(v) ∪ [π∗(L)]i+1 = 0.

Continuing previous computation (4), and using again (5) and (6) as before, we get:

λ(γ′(v)) = δ(γ′(v)) =

 r∑
j=1

ajγj

 ◦ ρ′ ◦ γ′
 (v) =

 r∑
j=1

ajγj

 ◦ β′
 (v) = 0.

This proves that, if v ∈ kerβ′, then γ′(v) is a primitive cohomology class [9, p. 25 and 26].

Now denote by fj : Gj → X the inclusion, that we may see as the composition of the

natural map G̃ → X, with the inclusion lj : Gj → G̃. Denote by v1, . . . , vr the components of

v ∈ Hn−i−2(G̃) = ⊕rj=1H
n−i−2(Gj). We have:

γ′(v) ∪ γ′(v) ∪ [M]i = γ′(v) ∪ γ′(v) ∪ [M]i =

r∑
j=1

γ′(vj) ∪ γ′(v) ∪ [M]i.

By the projection formula we may write:

γ′(vj) ∪
(
γ′(v) ∪ [M]i

)
= vj ∪

(
f∗j (γ′(v) ∪ [M]i)

)
.

Since

f∗j (γ′(v) ∪ [M]i) = (l∗j ◦ ρ′ ◦ γ′)(v) = (l∗j ◦ β′)(v) = 0 ∈ Hn+i(Gj),

we deduce

vj ∪
(
f∗j (γ′(v) ∪ [M]i)

)
= 0 ∈ H2n−2(Gj) ∼= C,

and so

γ′(v) ∪ γ′(v) ∪ [M]i = 0 ∈ H2n(X) ∼= C.
Summing up, γ′(v) lies in Hp+1,q+1(X), is primitive, and γ′(v) ∪ γ′(v) ∪ [M]i = 0. By the
Hodge-Riemann bilinear relations it follows that γ′(v) = 0. �
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