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Proceedings of the international conference
“Geometric and Algebraic Singularity Theory”

In honor of Goo Ishikawa on the occasion

of his 60th Birthday

In 2017, from September 10*" to September 16", the conference “Geometric and
Algebraic Singularity Theory” was held at the Banach Center, Bedlewo, Poland.
This conference was organized especially to celebrate the 60" Birthday of Profes-
sor Goo Ishikawa. There we brought together specialists of various domains, who
represent, algebraic, geometric and analytic approaches to numerous topics related
to Singularity Theory; including, e.g.,

- Singularities of smooth maps and differential forms

- Lagrangian and Legendrian singularities

- Differential geometry of frontals and wavefronts

- Symplectic and contact geometry

- Subanalytic and semialgebraic sets

- Algebraic curves, moduli and resolutions

- Applications to physical systems, dynamics and control theory
- Global topology of smooth maps and their singularities.

We had 38 talks and 7 poster presentations, and nearly 60 participants did exchange
fruitful discussions during the conference.

In these proceedings we have collected several research papers mainly from the
participants of the conference. All the papers have been refereed and are presented
in the final form. We hope that this volume will give a wide range of readers,
including graduate students and researchers in different fields, an opportunity to
encounter deep and attractive aspects of the marvelous field of Singularities.

Finally, we would like to express our sincere gratitude to the Banach Center,
Polish Academy of Science and Japan Society for the Promotion of Science for
their support, to all contributors for the proceedings, and to all the participants
and local organizers of the conference. We also thank the referees for helping us
with the review process and the editors of the Journal of Singularities for making
this special issue possible.

Osamu Saeki, Fukuoka
Toru Ohmoto, Sapporo
Wojciech Domitrz, Warsaw
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T. Ohmoto

A note on Goo Ishikawa

Goo (Go-o) Ishikawa is a well known Japanese member of the international community of
Singularity Theory. Over three decades, he has been running on the top front in his research
fields, especially with focusing on geometry of singular mappings equipped with certain differ-
ential systems. It creates a new bridge between Singularity Theory and Differential Geometry
(and its various applications).

He was born on November 2, 1957 in Fukushima, Japan, and grew up there. Afterwards, he
entered Kyoto University and there he was fascinated by the beauty of mathematics. Around
1980, he began to study Singularity Theory of Mappings, which was one of the most hottest
topics in that time — first he met J. Mather’s fundamental papers and V. I. Arnol’d’s attractive
works related to symplectic/contact geometry, and perhaps those must have been merged into a
‘kernel’ of Goo’s mathematics later. His advisor was Masahisa Adachi, who regularly organized
“Differential Topology Seminar” at Kyoto University, and Goo was a main contributor. Many
people gathered for this seminar, e.g., Shyuichi Izumiya, Masahiro Shiota, Shuzo Izumi, Satoshi
Koike and Isao Nakai. In 1985, he got PhD at Kyoto University and began his first career at
Nara Women’s University. Three years after, he moved to Hokkaido University. Since then, he
has been working surrounded by the beautiful nature of the northern earth.

When he was a PhD student, his handwriting seminar note on Hilbert’s 1 problem was
widely circulated in topology community in Japan, and actually this became the theme of his
PhD thesis, “The number of singular points in a pencil of real plane algebraic curves” (1985).
On the other hand, he also worked on sheaves of C°°-rings, influenced by works of Malgrange,
Tougeron and others — his first original paper, Families of functions dominated by distributions of
C-classes of mappings, has been published in Ann. Inst. Fourier (1983), in which he introduced the
notion of ramification modules. This notion took an important role at Goo’s long-term project.
He then started to explore singularities of tangent developables of curves in R™ in relation
with the theory of singular Lagrange and Legendre singularities; here a typical singularity is of
type open swallowtail. Also he studied, with his own techniques, singular Lagrange immersions
having typical singularities named open Whitney umbrellas. The theory of opening of map-
germs, introduced later by Goo himself, provides a unified method for characterizing those
new important classes of singularities arising in various geometric applications. Indeed, Goo’s
attempt was to establish a Mather-type framework for a new classification theory of map-germs
having integrability on certain differential systems. That is truly his own original theory and it
has been quite successful — for example, its application has matured into the theory of frontals
and tangential mappings. As for such kinds of classification problems, Goo produced several
joint works especially with S. Janeczko, and also with I. Bogaevsky, A. Davydov, L. Wilson, H.
Brodersen, etc. and with Japanese co-workers. For instance, Goo and Janeczko established a
symplectic classification of plane curves, and Goo together with Y. Machida and M. Takahashi
studied tangent surfaces in detail from the viewpoint of special geometry, e.g., D4-geometry,
and so on. Besides, in an earlier period (1987), Goo and Takuo Fukuda published a joint paper
which provides a new algebraic formula for counting the number of cusps appearing in a generic
perturbation of a given finite real and complex plane-to-plane map-germ. That was influential
in two-folded ways; their formula in complex case was soon generalized by several authors into
the case of higher dimension for Thom-Boardman singularities, and real enumerations using the
Eeisenbud-Levine theorem attracted several younger people to find a new research direction.

6th
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As known, Goo and his elder colleague and old friend, Shyuichi Izumiya, created “Sapporo
School” in Singularity Theory — they have organized many conferences, raised many students, and
especially, in 1998, they published a graduate course textbook entitled with Applied Singularity
Theory (Ohyo-Tokuiten-ron), which was the first comprehensive book written in Japanese on
Lagrange and Legendre singularity theory and applications. In 1994-1995, Goo visited the
University of Liverpool as his sabbatical hosted by C.T.C. Wall. This experience has led to a deep
and widespread development of his own research, resulting in many international collaborative
researches and warmest friendships with foreign researchers. Since then, he has organized several
international symposiums together with Shyuichi, including the 12" International Research
Institute of the Mathematical Society of Japan “Singularity Theory and Its Application” at
Sapporo (2003), “Japanese-Polish working days” with S. Janeczko, Japanese-Russia bilateral
project with A. Davidov and I. Bogaevsky, and so on. Also he has frequently been invited
to Scientific Committees and to give keynote/plenary talks at many international conferences
around the world.

On a broad range of topics, Goo Ishikawa has supervised more than five PhD students, e.g., T.
Yamamoto, T. Fukunaga, W. Yukuno, A. Tsuchida, T. Yamashita, and has had 73 publications
together with 26 co-authors (according to MathSciNet). He has written totally 13 books so far —
there is one lecture note in English, Singularities of Curves and Surfaces in Various Geometric
Problems, CAS Lecture Notes 10, Exact Sciences (2015), and three advanced textbooks were
written in Japanese with several co-authors, e.g., Applied Singularity Theory mentioned above.
There are five textbooks for undergraduate courses on linear algebra, calculus, sets and logic,
topology, and four enlightenment booklets for general public readers, one of which is a lovely
collection of his witty answers to students’ funny questions on mathematics and life (this booklet
has received positive ratings in reviews on amazon !).

Goo is still quite active on researches in mathematics. We wish you a happy birthday Goo,
sincerely from all your friends and colleagues, and look forward to working with you for many
years to come !
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THE FLAT GEOMETRY OF THE I; SINGULARITY: (z,y) — (z, 7y, v%)

P. BENEDINI RIUL, R. OSET SINHA

ABSTRACT. We study the flat geometry of the least degenerate singularity of a singular sur-
face in R, the I singularity parametrised by (x,v) — (z, zy,y?,v>). This singularity appears
generically when projecting a regular surface in R® orthogonally to R* along a tangent direc-
tion. We obtain a generic normal form for I invariant under diffeomorphisms in the source
and isometries in the target. We then consider the contact with hyperplanes by classifying
submersions which preserve the image of I7. The main tool is the study of the singularities
of the height function.

1. INTRODUCTION

Singularity theory has played an important role on recent results on the differential geometry
of singular surfaces. The geometry of the cross-cap (or Whitney umbrella), for instance, has
been studied in depth: [5, 7, 8, 10, 11, 22, 24]. Also, the cuspidal edge, the most simple type of
wave front, appears in many papers: [11, 14, 17, 18, 21, 25, 28|.

In [16] the authors investigate the second order geometry of corank 1 surfaces in R3. Also,
singular surfaces in R* have been taken into account in [1], where corank 1 surfaces are the
main object of study. In that paper, the curvature parabola is defined, inspired by the curvature
parabola for corank 1 surfaces in R? ([16]) and the curvature ellipse for regular surfaces in R*
([15]). This curve is a plane curve that may degenerate into a half-line, a line or even a point
and whose trace lies in the normal hyperplane of the surface. This special curve carries all the
second order information of the surface at the singular point. Singular surfaces in R* appear
naturally as projections of regular surfaces in R® along tangent directions. In this context, the
authors associate to a regular surface N C R® a corank 1 surface M C R* and a regular surface
S Cc R*. Furthermore, they compare the geometry of both surfaces M and S. An invariant
called umbilic curvature (invariant under the action of R? x O(4), the subgroup of 2-jets of
diffeomorphisms in the source and linear isometries in the target) is defined as well and used to
study the singularities of the height function of corank 1 surfaces in R*.

In [13], the authors give a classification of all A-simple map germs f : (R?,0) — (R*,0). The
singularity I, given by (x,y) — (z,2y,%%,y***t1), k > 1 is the first singular germ to appear
in this classification. In [1], it is shown that this singularity is the only one whose curvature
parabola is a non degenerate parabola. Also, when we consider k = 1, the singularity I; has an
interesting geometric property. In [27], the authors show that given a regular surface N C R%, a
tangent direction u, in a point whose second fundamental form has maximal rank, is asymptotic
if and only if the projection of N along u to a transverse 4-space has a A-singularity worse than
I,. In a way, I; is to singular surfaces in R* what the cross-cap is to singular surfaces in R3.

In this paper, we investigate the flat geometry of the singularity I;, using its height function
and providing geometric conditions for each possible singularity. Sections 2 and 3 are an overview

2000 Mathematics Subject Classification. Primary 57R45; Secondary 53A05, 58K05.
Key words and phrases. singular surface in 4-space, flat geometry, height function.
Work of P. Benedini Riul supported by CAPES - PVE 88887.122685/2016-00.
Work of R. Oset Sinha partially supported by DGICYT Grant MTM2015-64013—P.
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of the differential geometry of regular surfaces in R* and of the geometry of corank 1 surfaces
in R*, respectively. We bring all the definitions and results from [1] that are going to be used
throughout the paper.

The last section presents our results regarding the flat geometry of a surface whose local
parametrisation is A-equivalent to the singularity I;. We classify submersions (R*,0) — (R, 0)
up to changes of coordinates in the source that preserve the model surface X parametrised by Iy
(Theorem 4.7). Such changes of coordinates form a geometric subgroup R(X) of the Mather group
R (see [3, 6]). Moreover, we study the singularities of the height function of a singular surface
whose parametrisation is given by a generic normal form obtained by changes of coordinates in
the source and isometries in the target (Theorem 4.8). These singularities are modeled by the
ones of the submersions obtained before. Finally, we provide geometrical characterisations for
each type of singularity of the height function.

Aknowledgements: the authors would like to thank M. A. S. Ruas and the referee for a careful
reading of the paper and valuable suggestions.

2. THE GEOMETRY OF REGULAR SURFACES IN R*

In this section we present some aspects of regular surfaces in R*. For more details, see [12].
Little, in [15], studied the second order geometry of submanifolds immersed in Euclidean spaces,
in particular of immersed surfaces in R*. This paper has inspired a lot of research on the subject
(see [2, 4,9, 19, 20, 22, 24, 26], amongst others). Given a smooth surface S C R* and f : U — R*
a local parametrisation of S with U C R? an open subset, let {e;, ez, e3,e4} be an orthonormal
frame of R such that at any u € U, {e1(u),ex2(u)} is a basis for 7,S and {es(u),es(u)} is a
basis for N,S at p = f(u). The second fundamental form of S at p is the vector valued quadratic
form I, : T,S — N,S given by

II,(w) = (llwf + 2miwiwy + nlwg)eg + (lgwf + 2mowiwy + nzwg)e47

where l; = (foz, €i12), Mi = (fay, €ix2) and n; = (fyy, €i+2) for i = 1,2 are called the coefficients
of the second fundamental form with respect to the frame above and w = wie; + waes € T,5.
The matrix of the second fundamental form with respect to the orthonormal frame above is

given by
< ll mp Nnq )
o= .
la ma mo

The resultant of the quadratic forms is a scalar invariant of the surface defined by Little in

[15], given by

0= %(4(l1m2 — m1TZ2)(m1’rL2 — nlmg) — (l1n2 — n112)2).
A point p € S is hyperbolic or elliptic according to whether §(p) is negative or positive, respec-
tively. If 6(p) is equal to zero, the point is parabolic or an inflection, according to the rank of «:
p is parabolic if the rank is 2 and an inflection if it is less than 2.

A non zero tangent direction u € T,,S is an asymptotic direction if there is a non zero vector
v € N, S such that

(II(u,w),v) =0, VweT,>S.
Furthermore, v € N, S is a binormal direction.

One can obtain a lot of geometrical information of a regular surface S C R*, by studying the
generic contact of the surface with hyperplanes. Such contact is measured by the singularities of
the height function of S. Let f : U — R* be a local parametrisation of S. The family of height
functions is given by

H:UxS* =R, H(u,v)=(f(u),v).



THE FLAT GEOMETRY OF THE I; SINGULARITY 3

Fixing v € S?, the height function h, of S is given by h,(u) = H(u,v) and has the following
property: a normal direction v at p = f(u) € S is a binormal direction if and only if any tangent
direction lying in the kernel of the Hessian of h, at u is an asymptotic direction of S at p.

Definition 2.1. The canal hypersurface of the surface S C R?* is the 3-manifold
CS(e)={p+eveR pecSandve (N,S)}
where (N,S)1 denotes the unit sphere in N,S and ¢ is a small positive real number.

It is possible to consider (N,S); as a subset of S* and as a consequence, identify (p,v) and
p+ev.

We shall denote the family of height functions on CS(¢) by H : CS(e) x S* — R. So,
given w € S?, the height function of C'S(g) along w is given by h, : CS(¢) — R, where
hy(p,v) = H((p,v),w). Given a point p € M, it is a singular point of h, if and only if
(p,v) € CS(e) is a singular point of h,.

The Gauss map of the canal hypersurface CS(g), G : CS(e) — S3, is given by G(p,v) = v.
Let K. : CS(e) — R be the Gauss-Kronecker curvature function of C'S(g). Then, the singular
set of GG is the parabolic set

K;*0) = {p+ev e CS(e)| h, has a degenerate singularity at p}

of CS(e), which is a regular surface except at a finite number of singular points corresponding
to the Df—singularities oh h,. The regular part has regular curves corresponding to the cuspidal
edge points of G and those curves may have special isolated points which are the swallowtail
points of G.

One can characterise geometrically the degenerate singularities of generic height functions.
Denote by « the normal section of the surface S tangent to the asymptotic direction € at p
associated to the binormal direction v.

Theorem 2.2. [12] Let p be a hyperbolic point on a height function generic surface M C R*.
Then,

(i) p is an Ay singularity of h, if and only if v has non vanishing torsion at p.
(ii) p is an As singularity of h, if and only if v has a vanishing torsion at p and the direction
0 is transversal to the curve of cuspidal edge points of the Gauss map G at p.

A characterisation of the singularities of the height functions at a parabolic point can also be
done.

Theorem 2.3. [12] Let M be a height function generic surface in R* and p € M. Suppose p is
a parabolic point, but not an inflection point. Then,
(i) p is an As-singularity of h, if and only if 0 is transversal to the parabolic curve.
(ii) p is an Az-singularity of h, if and only if 6 is tangent to the parabolic curve with first
order contact at p.

3. CORANK 1 SURFACES IN R*

3.1. The curvature parabola. Here we present a brief study of the differential geometry of
corank 1 surfaces in R* which can be found in [1]. Let M be a corank 1 surface in R* at p.
We take M as the image of a smooth map g : M — R*, where M is a smooth regular surface
and ¢ € M is a corank 1 point of g such that g(q) = p. Also, we consider ¢ : U — R? a local
coordinate system defined in an open neighbourhood U of ¢ at M, and by doing this we may
consider a local parametrisation f = go ¢~! of M at p (see the diagram below).
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R2< UcM—2sMCR4

w

The tangent line of M at p, T,M, is given by Im dg,, where dg, : T,M — T,R* is the
differential map of g at ¢q. Hence, the normal hyperplane of M at p, N,M, is the subspace
satisfying T,M & N,M = T,R*.

Consider the orthogonal projection L: T,R* — N,M, w ~ wt. The first fundamental form
of M at p, I :T,M x T,M — R is given by

I(u,v) = (dgy(n),dg,(v)), Y u,veT,M.

Since the map g has corank 1 at g € Tq]\Zf , the first fundamental form is not a Riemannian metric

on TqM , but a pseudometric. Considering the local parametrisation of M at p, f = go ¢! and
the basis {9, 0y} of T, M, the coefficients of the first fundamental form with respect to ¢ are:

E(q) = 1(0x,0:) = (fo, f2)(0(q)), F(q) = 1(0,0y) = (fe, fy)(#(q)),
G(q) = 1(9y,0y) = (fy, fy)(0(q))-
Taking u = ad, + 89, = (a, B) € T,M, we write I(u,u) = o*>E(q) + 2a8F(q) + 3>G(q).
With the same conditions as above, the second fundamental form of M at p,
IT:T,M x T,M — N,M
in the basis {d,,d,} of T,M is given by
I1(02,0x) = [22(6(a)), 11(0:,8y) = f3,(¢(a)). 11(9y,8y) = f;,((a))

and we extend it to the whole space in a unique way as a symmetric bilinear map. It is possible
to show that the second fundamental form does not depend on the choice of local coordinates
on M.

For each normal vector v € N, M, the second fundamental form along v, I1, : TqMXTqM - R
is given by II,(u,v) = (II(u,v),v), for all u,v € TqM. The coefficients of 11, with respect to

the basis {9, 0y} of T,M are
L(q) = (faz, V)(0(0), mu(q) = (fz,,v)((q)),
n,(q) = (f,v)(8(q))-
Fixing an orthonormal frame {vy, v, v3} of N, M,

II(uyu) =1II,(u,w)v + I, (u,u)vs + I, (u,u)vs
3
= Z(a2lui (Q) + ZOL/Bmu,y (q) + /anu,: (Q))Via
i=1

Moreover, the second fundamental form is represented by the matrix of coefficients

ly, my, 1Ny,
luy, My, Ny,
ly, My, N

Definition 3.1. [1] Let C;; C T,M be the subset of unit tangent vectors and let 7, : C;, — N, M
be the map given by n,(u) = II(u,u). The curvature parabola of M at p, denoted by A,, is the
image of ng, that is, 14(Cy).

The curvature parabola is a plane curve whose trace lies in the normal hyperplane of the
surface. Also, this curve may degenerate into a half-line, a line or even a point.
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Example 3.2. Consider M = R? and the singular surface M locally parametrised by the
I-singularity f(x,y) = (2, 2y, y? y°). Taking coordinates (X,Y,Z, W) in R* ¢ = (0,0) and
p = (0,0,0,0), the tangent line T,M is the X-axis and NpyM is the Y ZW-hyperplane. The
coefficients of the first fundamental form are given by F(q) =1 and F(q) = G(q) = 0. Hence, if
u=(o,3) € T,R?, I(u,u) = o and C, = {(£1,y) : y € R}. The matrix of coefficients of the
second fundamental form is

010
0 0 2
0 0 0

when we consider the orthonormal frame {e;, €3, e3,e4}. Therefore, for u = («, ),
II(u,u) = (0,2a3,25%,0)

and the curvature parabola A, is a non-degenerate parabola which can be parametrised by
77(3/) = (07 2y, 2y2, 0)'

3.2. Second order properties. Given a regular surface N C R®, we consider the corank 1
surface M at p obtained by the projection of IV in a tangent direction, via the map

E:NCR®>— M.

The regular surface N C R® can be taken, locally, as the image of an immersion ¢ : M — N C R®,
where M is the regular surface from the construction done before.

The points of N can be characterized according to the rank of its fundamental form at that
point. Inspired by this classification, we have the following;:

Definition 3.3. Given a corank 1 surface M C R*, we define the subset
M,; ={p € M : pis singular and rank(II,) =i}, i =0,1,2,3.

Definition 3.4. The minimal affine space which contains the curvature parabola is denoted
by Affp,. The plane denoted by E, is the vector space: parallel to Aff, when A, is a non
degenerate parabola, the plane through p that contains Af f, when A, is a non radial half-line
or a non radial line and any plane through p that contains Af f, when A, is a radial half-line,
a radial line or a point.

Let S C R* be the regular surface locally obtained by projecting N C R® via the map 7 into
the four space given by Te—1(,) N @& £ (E),) (see the following diagram).

N CR5
R2 <2 1295 0 R S C R

W
Using the previous construction, one can relate the corank 1 singular surface M C R* and
the regular surface S C R*.
Definition 3.5. A non zero direction u € TqM is called asymptotic if there is a non zero vector
v € E, such that
I1,(u,v) = (II(u,v),v) =0 Vv & T,M.

Moreover, in such case, we say that v is a binormal direction.
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The normal vectors v € N,M satisfying the condition II,(u,v) = 0 are called degenerate
directions, but only those in E, are binormal directions. When p € M; U My, the choice of E,
does not change the number of binormal directions. Furthermore, all directions u € T, qM are
asymptotic.

Definition 3.6. Given a binormal direction v € E,, the hyperplane through p and orthogonal
to v is called an osculating hyperplane to M at p.

Definition 3.7. Given a surface M C R* with corank 1 singularity at p € M. The point p is
called:

(i) elliptic if there are no asymptotic directions at p;
(ii) hyperbolic if there are two asymptotic directions at p;
(iii) parabolic if there is one asymptotic direction at p;
(iv) inflection if there are an infinite number of asymptotic directions at p.

The next result compares the geometry of a corank 1 surface in R* with the geometry of the
associated regular surface S C R* obtained.

Theorem 3.8. [1] Let M C R* be a surface with corank 1 singularity at p € M and S C R* the
reqular surface associated to M.
(i) A direction u € TqM is an asymptotic direction of M if and only if it is also an asymp-
totic direction of the associated regular surface S C R*;
(ii) A direction v € N,M is a binormal direction of M if and only if mo& *(v) € Niog-1(p)S
is a binormal direction of S.

(iii) The point p is an elliptic/hyperbolic/parabolic/inflection point if and only if mo€~1(p) € S

is an elliptic/hyperbolic/parabolic/inflection point, respectively.

The singularity I, k > 1, given by the A-normal form (z,y) — (z,zy,y? y***!) has an
interesting property: every map germ A-equivalent to it prarametrises a corank 1 surface in R*
whose curvature parabola is a non degenerate parabola. Moreover, I}, are the only singularities
having this property. Hence, every map germ A-equivalent to I is R? x O(4)-equivalent to the
normal form f : (R%,0) — (R*,0) where

fl@,y) = (@, 2y + p(z,y), baox® + brizy + booy® + q(x,y), c202® + 1(z,y))
with bg2 > 0 and p, q,7 € M3. The proof of this assertion can be found in [1].
Proposition 3.9. [1] Consider the R? x O(4) normal form of the singularity I, given above.

Then, the singularity I is hyperbolic, parabolic or elliptic if and only if by is positive, zero or
negative, respectively.

For corank 1 surfaces in R* we have the following:

Definition 3.10. The non-negative number

ku(p) = d(p, Af fp)
is called the umbilic curvature of M at p.

The authors in [1] present explicit formulas of this invariant as well as geometric interpreta-
tions of it. Here, however, we shall restrict our study to the case where A, is a non degenerate
parabola.

Proposition 3.11. [1] Let {v1,va,v3} be an othonormal frame of NyM such that E, = {v1,v2}
and E- = {vs}. Then the following holds:
()

Ty = Prodn(®)| = l{n(). va)]

Ku(p)
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for any u € TqM, where 1) is a parametrisation of Ap.

4. FLAT GEOMETRY

In this section we study the contact of a singular surface M C R* locally given by the A-
normal form (x,y) + (z, zy, y?,y>) with hyperplanes. One can summarize the modus operandi in
the following way: we fix a model of the singularity I; and study the contact with the zero fibres
of submersions. We then associate the singularities of the height functions with the geometry
studied in the previous section.

4.1. Functions on I;. In this section, we classify germs of functions on X C R*, where X
is the germ of the model surface locally parametrised by the I; singularity. This technique
was introduced in [5], where the authors study the contact between the Whitney umbrella (or
crosscap) with planes. More recently, the same was done in [25] and [23] but this time the
surfaces were the cuspidal edge and the cuspidal S} singularities, respectively.

We denote by &, the local ring of germs of functions f : (R™,0) — R and by M,, its maximal
ideal. Let (X,0) C (R™,0) be a germ of a reduced analytic subvariety of R™ at 0 defined by an
ideal I of &,. A diffeomorphism % : (R™,0) — (R™,0) is said to preserve X if (k(X,0)) = (X,0).
The group of such diffeomorphisms is a subgroup of the group R and is denoted by R(X). This
is one of Damon’s “geometrical subgroups” of A (see [3, 6]).

Consider the A-normal form of the I; singularity: f(z,y) = (z,zy,y?,v3). Our aim is to
classify germs of submersions g : (R*,0) — (R, 0) using the R(X) equivalence, where X = f(R?,0)
is our model surface. The ideal I <1 &4 of irreducible polynomials defining X is given by

I=(Y?-X?2Z W?-23 XW -YZ, YW — XZ?).

We shall denote by O(X) the £4,-module of vector fields tangent to X (Derlog(X) in other texts).
Hence, we have
£ € 0X) e th(x) =dhy(E(x)) €1, Vhel.
Proposition 4.1. O(X) is generated by:
=X +Y2, bo=X22 +2V 2 +3XZ 5,

— [¢) o) o) — 1o} 9
E=Y 2 +222 +3W0, &=Y % +X22,

&=25% +Wap, 6= XZ5 +2W 5 +32°%,
& =W + 2*%, &= (Y- X22)5%,
bo=YZ-XW)z, Go=XWE +27222 +32W 52,
511:(YW7XZ2)%, 512:(W27Z3)%,

b3 =(W?—2%)4.

Proof. For notation purposes we write (X,Y, Z, W) = (X1, Xo, X3, Xy). Let h;, i =1,...,4 be
the functions which generate the ideal I in the order in which they appear in the definition of
I. We are looking for vector fields £ = Z?zl fiaixi on R* such that for each j = 1,...,4 there
exist functions a;(Xy,..., X4) such that

iy &
Cimyr = ) iy
2 &gy, ~ 2
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Consider, for j =1,...,4, the map &, : &S — R given by
4

Oh;,
;&) = Z&a)é - Z%’hi,
i =1

where & = (&1,...,&4) € & and o = (a1,...,aq) € EL. Let Aj = ker @;. Let 7 : E§ — £} be the
canonical projection given by 7(§, o) =&. Let B; = w(A;). Then

4
ox) =B
j=1

In order to obtain the A; we use syzygies in the computer package Singular. It can be checked
that all the vector fields obtained by this method are, in fact, liftable, i.e. there exists a vector
field n on R? such that dh(n) = £ o h, and are therefore tangent to X. O

The idea for classifying analytic function germs g : (R*,0) — (R, 0) up to R(X)-equivalence is
to use generalisations of the standard results for the group R, that is, when X = (). Since R(X)
is one of the Damon’s “geometrical subgroups” of A, there are versions of the unfolding and
determinacy theorems. In this classification, the orbits are obtained inductively on the jet level
and the complete transversal method is also adapted for our action.

We define ©4(X) = {¢£ € O(X) : j'¢ = 0}. Hence, from Proposition 4.1,

01(X) = My A&, &} + Ea{8s, -, 13}
For each f € &, O(X) - f = {&(f) : £ € O(X)}. A similar definition is made for ©1(X) - f.
Furthermore, we define the tangent spaces to the R(X)-orbit of f:
LR1(X) - f =01(X) - f, LR(X) - f = LRe(X) - f =O(X) - f.

The R(X)-codimension is given by d(f, R(X)) = dimg(E4/LR(X) - f).

Proposition 4.2. [5] Let f : (R*,0) — (R,0) be a smooth germ and hy, ..., h, be homogeneous
polynomials of degree k + 1 with the property that

ML C LRy(X) - f + sp{ha, ..., h} + MEH2
Then any germ g with j* f(0) = j¥g(0) is Ri(X)-equivalent to a germ of the form

f+zuihi+¢a

i=1

where ¢ € MZ”. The wvector subspace sp{hi,...,h.} is called a complete (k + 1)-R(X)-
transversal of f.
Corollary 4.3. [5] The following hold:

(i) IfO1(X) - f + M2 o METY then f is k-R(X)-determined;

(i) If every vector field in ©(X) vanishes at the origin and ©(X) - f + MET2 > METL then

fis (k + 1)-R(X)-determined.
Definition 4.4. A germ of a smooth 1-parameter family of functions
F:(R*xR,(0,0)) — (R,0)

with F'(0,t) = 0 for ¢ small is said to be k-R(X)-trivial if there exists a germ of a l-parameter
family of diffeomorphisms H : (R* x R, (0,0)) — (R* 0), with H; preserving X, such that
H(z,0) =0, H(0,t) = 0 (for small ¢) and

F(H(z,t),t) = F(z,0) + ¢(z,t)
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for some 1) € Mi“ C &. If ¢ =0, then F is said to be R(X)-trivial.
The next result about trivial families will be needed.

Proposition 4.5. [5] Let F : (R* x R, (0,0)) — (R,0) be a smooth family of functions such that
F(0,t) = 0 for t small enough. Also, let &1, ...,&, be vector fields in ©(X) that vanish at the
origin. Then, the family F' is k-R(X)-trivial if & € (&(F),...,&(F)) + MEFL C &,

Two families of germs of functions F and G : (R* x R%,(0,0)) — (R,0) are P — RT(X)-
equivalent if there exist a germ of a diffeomorphism ¥ : (R* x R%,(0,0)) — (R* x R, (0,0))
preserving (X xR?, (0,0)) and of the form ¥(z,u) = (a(x,u),¥(x,u)) and a germ ¢ : (R*,0) - R
such that G(z,u) = F(¥(z,u)) + c(u).

A family F is said to be an R (X)-versal deformation of Fy(z) = F(x,0) if any other defor-
mation G of Fy can be written in the form G(z,u) = F(¥(x,u))+ ¢(u) for some germs of smooth
mappings ¥ and c¢ as above with ¥ not necessarily a germ of diffeomorphism.

Proposition 4.6. [5] A deformation F : (R* x R%,(0,0)) — (R,0) of a germ of function f on
X is RY(X)-versal if and only if

LRX) - f+RAL Fy,... F,} = &4,
where Fy(x) = g—i(x, 0).
Theorem 4.7. Let X be the germ of the A-model surface parametrised by f(z,y) = (z, 2y, y*, y3).

Then, any germ of a R(X)-finitely determined submersion in My with R(X)-codimension < 3 is
R(X)-equivalent to one of the germs in Table 1.

TABLE 1. Germs of submersions in My of R(X)-codimension < 3

Normal form d(f,R(X)) R(X)-versal deformation

X 0 X

+7 + X? 1 +7+ X2 +a X

+7+ X3 2 +7+ X3+ a1 X + ax X?

+7+ X4 3 7+ X34+ a1 X +ax X%+ a3 X3
Y 2 Y+(11X+CLQZ

+W + X2 3 +W+ X2+ a1 X + asY +asZ

Proof. We shall consider the vector fields in Proposition 4.1. The linear change of coordinates
in R(X) obtained by integrating the 1-jets of the vector fields in ©(X) are:

nm = (e*X,e?Y, Z, W), a €R, = (XY, Z+aY, W), a#0,

N3 = (X, eY,e2*Z e3W), a € R, n=(X+aY,)Y,Z W), a0,
s =(X+aZ)Y+aW,Z W), a#0, n=(X,Y,Z+aW, W), a#0,
n7:(X+aWYaZ7W)a O‘#O? nSZ(_Xa_szw)'

Consider the non zero 1-jet g = aX + bY + ¢Z + dW. If a # 0, after changes of coordinates
(ni, i =4,5,7,1,8, in this order) we get X. If a = 0 # ¢, (using n;, i = 2,6,3) we get +Z. If
a=c=0%#Db, (using n;, i =5,1,8) we have Y. At last, if a = b = ¢ =0 # d, using 13, we have
w.
(i) Counsider the 1-jet ¢ = X. This case is the most simple. Notice that every vector field
& € O(X) vanishes at the origin and My C O(X) - g + M3, so g is 1-R(X)-determined by
Corollary 4.3. Also,

R(X)-cod(g) = dimg(M4/O(X) - g) = 0.
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Consider the 1-jet g = +Z. For k > 2, the complete k-R(X)-transversal of g is given by
+7 +6XF. If 6 # 0, using 11 we get gp = +Z + (—1)FTLXF. For gy,

ME C OX) - gy + ML,

that is, gi is k-R(X)-determined and R(X)-cod(gx) = k — 1.
Now, consider the 1-jet g =Y. The complete 2-R(X)-transversal of g is given by

g=Y +BX*+~7Z* + 06X Z.

Consider g as a l-parameter family of germs of functions parametrised by . Then
0g/0y = Z% € (&1(g),...,&13(9)) + M3. So, by Proposition 4.5, g is equivalent to
Y +B8X? 45X Z. In a similar way, we can prove that considering ¢ a family parametrised
by ¢ and then by 8, we have g equivalent to Y. Moreover, g =Y is 2-R(X)-determined,
since M3 C O(X) - g + M3} and R(X)-cod(g) = 2.

The last 1-jet is g = W. Now, the complete 2-R(X) transversal is

g=1+W +aX?+ B2+ XY +6XZ.

Considering g a 1-parameter family of germs of functions parametrised by £, it is possible
to show that it 2-R(X)-trivial and so g is equivalent to £W + aX? +yXY +6XZ. At
this point, we split the study in two cases. If a # 0, using again the triviality result,
we show that the germ is equivalent to £W + X? (after using 7;). Besides, g is now
2-R(X)-determined and R(X)-cod(g) = 3. However, when o = 0, the germs obtained
have stratum codimension greater than 3 and will not be considered here.

Therefore, we conclude the proof. O

4.2. Contact with hyperplanes. The following result gives us a generic normal form up to
order 3 for any surface whose local parametrisation is A-equivalent to the singularity I;.

Theorem 4.8. Let f1 : (R?,0) — (R%,0) be a map germ A-equivalent to f(z,y) = (z, 2y, y%, y3).
Then, there are smooth change of coordinates in the source and isometries in the target that make
f1 equivalent to

x,Ty, Z bljxly]a CQOxZ + Z ngl‘lyj + 0(4),
i+5=2,3 i+tj=3

with bij, Cij € R and bgacos 7é 0.

Proof. In [1], it is proved that I is R? x O(4)-equivalent to

(z,y) = | 2,2y + aosy’, Z bija'y’, caor® + Z cija'y’ | +0(4),
i+j=2,3 i+j=3

with bg2,cos # 0. In order to obtain the desired normal form, we have to eliminate agsy>.

Consider the change T" and the angle § = arctan(ags/co3), such that

(sinf,cosf) = ((103,003)/\/5m:

1 0 0 0

0 cosf 0 —siné
0 0 1 0

0 sinf 0 cosf
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Hence, we obtain

x,cos fzy — sin0(co0a® + cs07” + e’y + crowy®), Y byatyl Ger’ + Y Eaty’
i+j=2,3 i+=3
To eliminate the monomials 22, 23, 2y and 2y? from the second coordinate, take the change in
the source given by:
sin 6

o5 (co0T + c302” + co17Y + C1zyz)~

z—2' =zandy—y =y +

Therefore, we have

x, cos by, Z aijz'y’, Gaoz’ + Z cr'y’ | +0(4).
i+5=2,3 i+j=3

Finally, a change of coordinates in the source provides the generic normal form. O

Given a corank 1 surface M C R* at p, locally parametrised by the normal form in
Theorem 4.8, we can deduce some information: The plane F, is the Y Z-plane, the umbilic
curvature is given by k,(p) = 2|cao| and the tangent cone Cp,M is the X Z-plane.

Let M C R* be a corank 1 surface locally parametrised by a map germ A-equivalent to I.
The family of height functions of M is given by

H:MxS* =R, H(p,v)= (p,v).

Fixing v € S3, the singularities of the height function h,(p) = H(p,v) measures the contact of M
with the hyperplane orthogonal to v, denoted by I',. This contact is also described by the one
obtained using the fibers {g = 0} from Theorem 4.7, where g appears in the proof of Theorem
4.7. Using a local parametrisation of M given by Theorem 4.8, we have

hy(z,y) = zv1 + TYV2 + Z bi]ﬂ?iijg, + copx2ug + Z cijxiyjm,
i+5=2,3 i+j=3
for v = (v, v2,v3,v4) € S3.

The height function h, is singular at the origin if and only if v; = 0. Geometrically, this
means that I', contains T, M. Hence, if v; # 0, h, is regular and the fiber I',, is transversal to
CpM and contains E,. This contact is also described by the contact of the zero fiber of g; = X
with the model surface X.

Consider S C R* the associated regular surface of M, as done before (see Theorem 3.8). Given
a binormal direction of M, v € Np,M, u will denote the corresponding asymptotic direction
(which is also an asymptotic direction of S). Furthermore, 7 is the torsion of the normal section
of the surface S tangent to the asymptotic direction u. Let C'S(e) be the canal hypersurface of
S. We denote by C the curve of cuspidal edge points of the Gauss map of C'S(e).

Proposition 4.9. Let v = (0,v2,v3,0) with v3 # 0. The hyperplane T, is tangent to T, M
and transversal to Cp,M and E,. The height function h, can have singularities of type Af_l,
k = 2,3,4 which are modeled by the contact of the zero fibre of the submersions

Gok = +7 4+ (_1)k+1Xk

with the model surface X (i.e. modeled by the composition of the submersions with the parametri-
sation of the model surface), respectively. It has a singularity of type Ay (Morse) if and only if
v € Np,M is not a binormal direction. For more degenerate singularities, this configuration has
three possibilities:
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(i) If p is a hyperbolic point, the singularity is of type As iff v is a binormal direction of
M and T # 0. Finally, the height function has an As singularity iff v is a binormal
direction, T = 0 and the asymptotic direction w of S is transversal to the curve C of
cuspidal edge points of the Gauss map. See Table 2.

(ii) If p is a parabolic point, h, has singularity of type As iff v is a binormal direction of M
and the associated asymptotic direction w is transversal to the parabolic curve of S. The
singularity is of type As iff v is a binormal direction and u is tangent to the parabolic
curve of S with first order contact.

(iii) If p is elliptic, the height function can only have singularity of type A;.

Proof. The proof follows from Theorem 2.2 and Theorem 3.8 since both surfaces M and S have
the same height function. However we will present some calculations for the case p hyperbolic,
that is, bog > 0. Let v = (0, v2, v3,0) with vg # 0. For the normal form in Theorem 4.8, E, is
the Y Z-plane and the tangent cone C, M is the X Z-plane. Hence, I';, is transversal to F, and
CpM. So this situation is modeled by the zero fiber of g = £7 + (—1)*"1 X* k =2 3,4 and the
model surface X.
Taking v = (0, v2, 1,0), the height function is given by
ho(z,y) = (bi1 + v2)my + baoa® + boay” + bsoa® + bara?y + brawy® + bosy®,
where by > 0. The determinant of the Hessian matrix of h,, is given by
det(H(hy(x,y))) = 4baoboz — (v2 + b11)”.

So, h, has a singularity of type A; (Morse) if and only if, vy # —by1 & 2v/byobg2, which is
equivalent to v not being a binormal direction (see [1]).
The conditions for h, to have a singularity of type As are: v is a binormal direction and

- b21v/b20b02 n b12b2g - bo3b20\/2 b20bo2 20,
bo2 bo2 bgs

On the other hand, the kernel of the Hessian of the height function h, with
v = (07 V2, 1, 0) = (07 7b11 + 2\/ bzobog, 1, O)

is the asymptotic direction u = (u1, Fv/baobo2u1/bo2). The normal section along this asymptotic
direction can be parametrised by

b3o

_ b20b ba0boz ;2 b11v/b20b 2
y(ur) = (uy, FLob0n gy, Fabry 2 (9 3 buavbaclu it

(bg(] ¥ b21vb20bo2 + b12b20 T by (\/bz(;lzboz) ) )_,_0(4)

Consider the rotation on the target given by the matrix

cosf sinf 0 O
sinf cosf 0 O
0 0 1 0
0 0 01

where 6 = arctan(£~ b2°b°2) Therefore sin 6 F 7%021"’2 cos = 0, and since byg, b2 > 0, we have

cosf + 7%";’02 sinf # 0. Let 4 be the curve obtained by rotating v with the previous rotation.
The second component of 7 is zero, so we can consider it as curve in R3. The torsion of 7 (and
hence of ) is given by

LbezobOQ (cosf + Vb2°b°2 sin 0) ( - ba1v/b20bo2 n b12b20 - bo3bao v/ b20b02>
15/(0) x 4(0 )H2 bo2 bo2 b,

7(0) =
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bo2
condition to have an A singularity. O

Hence, 7(0) # 0 if and only if bso F bay ngiob” + bizbao bo:sbzobzv baoboz £ (), which is precisely the
02

The singularities of the height function h, at a hyperbolic point are presented in Table 2. For
each possibility of v € S* we give the relative position of T',, E, and C,M, in addition to the
submersion whose contact of the zero fibre with the model surface X models the singularity type.

TABLE 2. Types of singularities of h, (hyperbolic point)

Vector Singularity type submersion
v =(1,0,0,0) submersion a=X
E,cT,hT,M,C,M
v = (0,v2,v3,0) A; < v is not binormal Gok = £Z + (—1)kFLXF
r',mE, C,M Ay < v is binormal and 7 # 0 k=234
As < v is binormal, 7 =0 and u M C.

v = (O,’UQ,0,0) A1 gs =Y
C,MCT,hE,

v=1(0,0,0,v4) Ay & ry(p) #0 gy =W + X?
E, C,M CTy,

7 is the torsion of the normal section along an asymptotic direction which is given in the proof
of Proposition 4.9.

Corollary 4.10. The hyperplane Ty, is an osculating hyperplane if and only if it is transversal
to E, and the height function has singularity of type Axa.

Proposition 4.11. Let v = (0,v2,0,0), va # 0, the hyperplane T, contains the tangent cone
CpM and is transversal to E,. The height function has singularity of type A1, which is described
by the contact of the zero fiber of the submersion g3 =Y with the model surface X.

Proof. When v = (0,v2,0,0), va # 0, we can take v = (0,1,0,0) and the height function is given
by hy(z,y) = xy + O(4), whose singularity is of type A;. O
Proposition 4.12. Let v = (0,0,0,v4), v4a # 0. The hyperplane ', contains both E, and CpM.

The height function h, has singularity of type A>qo, which is described by the contact of the zero
fiber of the submersion gy = =W + X2 with the model surface X if and only if k,(p) # 0.

Proof. Taking v = (0,0,0,1), the height function is given by
ho(z,y) = c202” + > cija'y’ + O(4).
i+j=3
It has singularity of type A>o if and only if ¢pg # 0, which is equivalent to £, (p) = 2|cao| # 0. O
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FRONTS OF CONTROL-AFFINE SYSTEMS IN R?

ILYA BOGAEVSKY

To Goo Ishikawa on the occasion of his siztieth birthday

ABSTRACT. We consider a control-affine system in three-dimensional space with control pa-
rameters belonging to a two-dimensional disk and study its fronts evolving from a point for
small times. We prove that generically the Legendrian lifts of such fronts have standard sin-
gularities and there are only two principally different typical cases — hyperbolic and elliptic.

INTRODUCTION

The ends of local time-optimal trajectories of a control system that start at a given point form
its front depending on time. We consider control-affine systems in three-dimensional space with
control parameters belonging to a two-dimensional disk and study singularities of their fronts
for small times.

If our system is linear-control then it defines a sub-Riemannian structure and its fronts are
described in [1] in the case that the sub-Riemannian structure is contact. For such a typical
system the fronts have infinite number of swallowtails at any neighborhood of the initial point.
Therefore their structure is complicated but it becomes much more simpler from the viewpoint
of contact geometry. Namely, let us consider the Legendrian surface consisting of all contact
elements being tangent to a considered front and cooriented outside. According to our result
this submanifold is smooth except two points lying over the initial point. Moreover, these
singularities are standard for all contact sub-Riemannian structures — not only for typical ones.
It means that all of them have the same normal form with respect to contact diffeomorphisms
of the ambient space.

A considered control-affine system can have hyperbolic and elliptic points introduced in [6].
The sets formed by them are open always and its union is dense for a typical system. In
particular, a linear-control system cannot have hyperbolic points at all and is elliptic exactly at
the points where the corresponding sub-Riemannian structure is contact.

According to the present paper the Legendrian surface consisting of all contact elements being
tangent to a front and cooriented outside is homeomorphic to the two-dimensional sphere and
has the following singularities.

If the initial point is elliptic then the considered Legendrian surface is smooth outside two
points where it has singularities Es. If the initial point is hyperbolic then the considered Leg-
endrian surface is smooth outside two disjoint segments, where it has singularities H; at their
inner points and Hy at their four ends. All singularities with the same name (Eo, Hy, or Hy)
are equivalent to each other with respect to contact diffeomorphisms of the ambient space. In
particular, their normal forms do not contain continuous invariants.

Non-typical examples of instant fronts of elliptic (left) and hyperbolic (right) points are shown
in Fig. 1. (These figures are published in [7] and [6] respectively.)

Partially supported by RFBR-16-01-00766.
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FIGURE 1. Non-typical examples of instant fronts of elliptic (left) and hyper-
bolic (right) points

1. DEFINITIONS

1.1. Instant fronts of control-affine systems in R?. We consider a control-affine system in
R? with control parameters u = (uq, uz):

(1) X = Eo(x) +uré(x) +uba(x), ui+ui <1

as a family of vector fields in R® depending on u. Here x € R3, (x,%) € T*R?, and &, &1,
¢» are bounded smooth! vector fields on R3 such that the vectors & (x) and &(x) are linearly
independent at any point x € R3.

DEFINITION. A Lipschitzian mapping ¢ : [0,7] — R3, T > 0 is called a trajectory of the
control-affine system (1) if there exist measurable functions @y, s : [0,7] — R such that the
equations

sz—f = &) + i (1) &1 (p(1)) + a(t) E2(p(t), @) +a3(t) <1
hold for almost all ¢ € [0,T].

DEFINITION. The ends (7)) of all trajectories ¢ : [0, T] — R? of the system (1) starting at a
given point p(0) = x¢ form the attainable set of the point xg € R? for the time 7'

Ao (T) = {x € R® [T o s.t. p(0) =x0, o(T) =x}.
Its boundary is denoted by d.Ax, (T).

DEFINITION. If a trajectory ¢ : [0,T] — R3 of the system (1) satisfies the condition
@ (T) € 0A,0)(T)
then it is called geometrically optimal.
REMARK. According to Filippov’s theorem (Theorem 10.1 in [2]) the attainable set Ax,(T)
is compact. Therefore its boundary 0Ax,(T) C Ax,(T') consists of the ends ¢(T") of all geomet-
rically optimal trajectories ¢ : [0, 7] — R? starting at the point ¢(0) = xo.

l«gmooth” means “infinitely smooth” everywhere.
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DEFINITION. A trajectory ¢ : [0,T] — R? of the system (1) is called locally geometrically
optimal if there exists § > 0 such that

@(t) € OALto)(t —to) Vio,t €[0,T]:tg <t <tg+0.
REMARK. It is well known that any geometrically optimal trajectory ¢ : [0,7] — R? of the
system (1) satisfies the condition
© (t) € 8A¢(t0)(t — to) Y tg,t € [O,T] 1t < .
In particular, ¢ : [0,T] — R3 is locally geometrically optimal.

DEFINITION. The closure of the set formed by the ends ¢(T') of all locally geometrically
optimal trajectories ¢ : [0, 7] — R? starting at a given point ¢(0) = xq is called its instant front
Fxo (T) for the time T.

REMARK. By definition, Fx,(T) 2 0Ax,(T).

1.2. Relativistic viewpoint: hyperbolic and elliptic points. Let us consider the space-
time R3*! and fix a point m = (x,0) € R3*!. The control-affine system (1) defines a hyperplane
H(m) = <EO (m), =4 (m), =9 (m))R C TmR3+1

where
E0 = (SOa 1)7 El = (5170)5 EQ = (6270)
are vector fields on R3*t!. This hyperplane contains the cone
C(m) = {voZo(m) + v1 E1(m) + v2 Ea(m) | v§ — v —v3 =0} C I(m)
formed by all directions belonging to the control-affine system (1) such that u? + u3 = 1.

Let II be locally defined as the field of O-spaces of some non-zero 1-form 6 on R3*!. The
restriction df|r(,) is an antisymmetric 2-form in the three-dimensional vector space II(m). Its
kernel

k(m) = ker df|ry(m) C II(m)
has dimension 1 or 3 and is defined by the field II, i.e. does not depend on the choice of a
non-zero 1-form 6.

DEFINITION. Let m = (x,0) and the kernel k(m) be one-dimensional. If the kernel k(m)
lies in the inner part of the complement of the cone C(m), then the point x is called elliptic. If
the kernel k(m) lies in the outer part of the complement of the cone C(m), then the point x is
called hyperbolic. If the kernel k(m) belongs to the cone C(m) itself, then the point x is called
parabolic. All these cases are shown in Fig. 2.

ARV V4
L EN

Ficure 2. Elliptic, hyperbolic, and parabolic points

REMARK. In the present paper parabolic points are not studied.
ExamMpPLE H. All points of the control-affine system

. . . 2 2
T=u, Y=us, 2=y, ujtu;<l
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are hyperbolic. Here

50 = (0707y)a 51 = (17070)7 52 = (07 1a0)7

H - {'UO(Oa 07 Y, 1) + vl(]-v 07 07 O) + v2(07 ]-v 07 0)}7

0 =ydt—dz, df = dy A dt, dO|n = dva A doy;

k:{UOZUQZO}CH;

C= {v%—v%—v%zO}.

The instant fronts of these control-affine system are diffeomorphic to the shown in Fig. 1 on the
right.

ExaMPLE E. All points of the control-affine system
jj:ula y:u27 22“11/7 'U;%"‘U%Sl

are elliptic. Here

§o=0,& = (1,0,9), & = (0,1,0);

= {UO(Oa 0,0, 1) + vl(lv 0, Y, 0) + U2(07 1,0, 0)}7

0 =ydxr —dz, df = dy A dzx, df|n1 = dvs A doy;

k={v1 =vy =0} CII;

C= {v%—v%—v%zO}.

The instant fronts of these control-affine system are diffeomorphic to the shown in Fig. 1 on the
left.

1.3. Stratified Legendrian submanifolds.

DEFINITION. A stratified submanifold of a contact space is called Legendrian if it is the closure
of the smooth Legendrian submanifold being the union of its strata of maximal dimension.

Let R® be a contact space with coordinates (Py, Py, Q1,Q2,U), the origin

and the contact structure defined as the field of O-spaces of the contact form
1 1
0= §PdQ — iQdP— du.

The following stratified submanifolds are Legendrian:
o Hi = {2P11nP12+Q1 =@ = UJrPl2 :0} where P11nP12 =0if P, =0;
o Ho = {P1 =A% P,=AB, Q: = B2, Qy,=24ABInA? U = AZBQ/Q} where A, B € R
are parameters and Aln A2 =0 if A =0;
e & = {Pl +iQ = Uei(ﬂ’_%),Qg—i—in = Uei(’“'%),U > O} where 1 = /=1, 9 € R

mod 27Z is a parameter, and Uei(v£8) — 0 if U = 0.
The submanifold H; consists of three connected smooth strata: the two surfaces distinguished
by the inequalities P; = 0 and the line Hi = {P; = Q1 = Q2 = U = 0}.
The submanifold Hs appears in [4] (Chapter 8) and consists of three connected smooth strata:
the surface distinguished by the conditions A # 0, the open ray

Hy={PL=P,=Q:=U=0,Q1>0}
distinguished by the conditions A = 0, B # 0, and the origin O distinguished by the conditions
A=B=0.
The submanifold & consists of two connected smooth strata: the cylinder distinguished by
the conditions U > 0 and the origin O distinguished by the conditions U = 0.
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DEFINITION. We say that a two-dimensional stratified Legendrian submanifold A of a contact
space has a singularity Hy, Ho, or Es at a point A € A if its germ (A, A) is contact diffeomorphic
to the germ (H1,0), (Hz,0), or (£2,0) respectively.

For instance, it is clear that the stratified Legendrian submanifold #; has a singularity Hy
not only at the origin O but at any point of its stratum H} as well. Besides, the stratified
Legendrian submanifold H, has singularities H; at all points of its stratum H3 — it is shown in
[5] -

2. MAIN RESULT

Let ST*R™ be the space of cooriented contact elements in R™ with the standard contact
structure and 7 : ST*R™ — R"™ be the natural projection. (A cooriented contact element in
R™ is a pair ([p];x) consisting of a point x € R™ and a ray [p] = {sp | & > 0} generated by a
non-zero covector p € TAR"™ = R"™).

DEFINITION. The image m(A) is called the front of a stratified Legendrian submanifold A.

THEOREM 1.  Let xq be any hyperbolic or elliptic point of the control-affine system (1).
Then there exists 6 > 0 such that for any T € (0,6) the instant front Fx,(T') is the front of
some stratified Legendrian submanifold of ST*R? denoted by Lx,(T) and satisfying the following
conditions:

o Ly, (T') is homeomorphic to the two-dimensional sphere;

e in the hyperbolic case Lx,(T) is smooth outside two disjoint segments and has singular-
ities Hy at inner their points and Ha at their four ends;

e in the elliptic case Lx,(T) is smooth outside two points where it has singularities Eq.

REMARK. Theorem 1 claims the existence of stratified Legendrian submanifolds Ly, (T') sat-
isfying the indicated conditions. The submanifolds Ly, (T") themselves are explicitly constructed
in Subsection 3.1.

3. PROOFS

3.1. Construction of Ly (T). Let ST*R3™! be the space of cooriented contact elements
([p, 8]; x,t) in the space-time R3*! with the standard contact structure and 7 : ST*R3+1 — R3+!
be the natural projection where [p, s] = {k(p, s) | & > 0} is the open ray generated by a non-zero
covector (p,s) € Ty ,R3T1 = R3+17,
Following Section 12.1 in [2] let us construct the Hamiltonian
h(p;x) = nax (P, &o(x) + w11 (x) + u2b2(x))

ui+uz<1

= (p,& (X)) + V (P, &1(x))2 + (p, &2(x))?

associated with the control-affine system (1). The Hamiltonian h defines the singular hypersur-
face

S = {([p, sl x,t) € ST'R*" | h(p; x) + 5 = 0}

—{((P &) + ) = (p. &1 + (P &2(x))%, (P &) +5 <0

its singularities form the smooth 4-dimensional submanifold:

= {([p, s];x, t) € ST*R**! | (p, &(x)) + 5 = (p,&1(x)) = (P, &2(x)) =0} .
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The smooth stratum ¥\ ©* (as a hypersurface in a contact space) consists of its characteristics.
Such a characteristic satisfies the equations

dp dx

— = —0xh(p; — =

o x<h(Pix),
and its projection to the space-time is the graph of a locally geometrically optimal trajectory

according to Proposition 12.1 and Section 17.1 in [2].

Oph(p;x), h(p;x)+s=0

DEFINITION. The world stratified Legendrian submanifold of a point xo € R? is the closure
of the union of all characteristics I' of ¥\ X# passing through 7~ *(xg, 0):

A= |J TcSTR,
7(I')3(x0,0)
Let 7 : ST*R3T! — R be the time function sending ([p, s];x,t) — t and ¢ : ¥ — ST*R? be the
projection sending ([p, s];x,t) — ([p];x) which is correctly defined because ¥ does not contain
contact elements with p = 0 and s # 0. The instant stratified Legendrian submanifold of the
point xg at a time T’
Ly (T) = 0 (Ax, N7~ HT)) C ST*R?

is the projection of the section of the world stratified Legendrian submanifold with the isochrone
T=T.

3.2. Arnold’s singularities of ¥. For any point (xg,to) € R3*! the fiber 7~1(x0, %) contains
exactly two singularities of ¥: the contact elements ([p, s]; X0, to) distinguished by the conditions

(P, &0(%0)) + 5 = (P, &1(%0)) = (P, &2(x0)) = 0.

In other words, they are exactly the hyperplane II(xq, tg) introduced in Subsection 1.2 with two
possible coorientations and denoted as IIT (xg, to) and I~ (xg, o).

Let O = II"(xg,ty9) or O = II"(xg,%p). Then in a neighborhood of O there exist local
coordinates (P, Py, P3,Q1,Q2,Q3,U) such that the contact structure is given as the field of
0-spaces of the contact form

(2) @:%PdQ—%QdP—dU

and:
e Y = {P1Q1 —-P?=0, PL+Q; > 0} if x¢ is a hyperbolic point of the control-affine
system (1);
o X ={P?+Q}—-P§=0, P, >0} if xq is an elliptic point of the control-affine system
(1).
This fact follows directly from [3] where the equations PiQ; — Pf = 0 and P + Q% — P =0
appear as normal forms of degeneracy hypersurfaces for symbols of systems of partial differential
equations.

ExaMpPLE H. For the hyperbolic control-affine system
T=uy, Y=uU2, 2z=21, u%—&—uggl
from Example H of Subsection 1.2 we get
(p,&1(x)) =p, (P.&2(x)=¢ (pP,&(x))+s=ry+s.
Hence in the affine chart r = —1

S={P’+d*=(~y+s)’ —y+s<0}



FRONTS OF CONTROL-AFFINE SYSTEMS IN R3 21

and
pdx +qdy —dz+ sdt =0
is the contact structure. Let
U=2z—qy—pxr—st

and

P = q-s+y, P = p P3 = —q—s+1,

Qi = —q—s+y, Q2 = 2z, @3 = qg—s—1L
In these coordinates

Y ={PiQ:1—P; =0, P+Q >0},
7 0)={r=y=2=t=0} ={Q1=P5,Q2=10,Qs = P,U =0},
and the contact structure is given by the equation © = 0.
EXAMPLE E. For the elliptic control-affine system
j::ula y:u27 73:“13/7 U;?‘i‘uggl

from Example E of Subsection 1.2 we get

P.&1(x) =p+ry, (P,&x)=q¢ (P ) +s=s.

Hence in the affine chart » = —1
S={p-y)’+¢ =5 s<0}
and
pdr +qdy —dz+sdt =0
is the contact structure. Let
U=2z—qy—pr—st

and

Pl = P—Y, P2 = -5, P3 = 4q—,

Q1 = g Q2 = —t, Q3 = 2
In these coordinates

S={PP+Q}—-P;=0, P»>0},
0 ={r=y=2=t=0}={Q=P3,Q2=0,Q3 = P,U =0},

and the contact structure is given by the equation © = 0.

3.3. Contact vector fields. A vector field K in a contact space is called contact if it preserves
the contact structure. If the contact structure is given as the field of 0-spaces of a contact form
O then K = @(I? ) is called the generating function of K. We will use the following well known
facts:

e K is uniquely defined by its generating function K = @(I? );

o K is tangent to the hypersurface {K = 0} and its characteristics;

o K is tangent to a smooth Legendrian submanifold L if and only if K|, = 0.

In our case (2)

) P = —0gK — PoK/2
(3) K=¢ Q = 0pK ~ QOuK/2
U = -K + PIpK/2 + QigK/2

In particular,

(4) K0)=0 < K(0)=0 and doK|g—n =0
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where dp K is the differential of the generating function at O and {dU = 0} is the contact
hyperplane at O.

3.4. Topology of Ay,. If K = P1Q1 — P} the formulas (3) give:
Pi=-P, Q1=Q1, P,=0, Q2=-2P,, P3s=Q3=U=0.

According to Subsections 3.2 and 3.3 in the hyperbolic case a characteristic of the smooth
stratum ¥\ X* is tangent to this contact vector field.

In particular, P, = const along the characteristics. A characteristic with P, # 0 lies in the
smooth stratum ¥ \ X% In the limit case P, = 0 we get P1Q; = 0, Q2 = const, P3 = const,
Q3 = const, U = const, P; + @ > 0. This curve intersects the stratum ¥4 as P, = Q; = 0 and
is not smooth at the intersection point. Such curves and characteristics of ¥\ ¥* with P, # 0
are called characteristics of X.

If K = P?/2+ Q3%/2 — P3/2 the formulas (3) give:

Pi=-Qi, Q1 =P, Po=0, Qo=-P,, P=Q3=U=0,

According to Subsections 3.2 and 3.3 in the elliptic case a characteristic of the smooth stratum
¥\ ¥* is tangent to this contact vector field.

In particular, P, = const. The characteristics with P, > 0 lie in the smooth stratum ¥\ %%
In the limit case P, = 0 we get a line P, = @1 = 0, P3 = const, Q)3 = const, U = const which lies
in the stratum Y*. Such lines and characteristics of 3\ ©* with P, # 0 are called characteristics
of X.

Characteristics of X satisfy the existence—uniqueness—continuity property: any point of X
belongs a locally unique characteristic which depends continuously on the point.

LEMMA 1. The Legendrian submanifold Ax, in some neighborhood of (xg,0) is homeomorphic
to the cylinder over the two-dimensional sphere if Xg is hyperbolic or elliptic point of the control-

affine system (1).

Proof. The Legendrian submanifold is the union of all characteristics of ¥ intersecting the set

Z m 7T—1(X07 0) = {[p’ 8] e ST*Q,OR3+1 ‘ h(p’ X) + s = O} ,

X,

which is homeomorphic to the two-dimensional sphere. But in some neighborhood of (x¢,0)
characteristics of ¥ satisfy the existence—uniqueness—continuity property. O

3.5. Basic Lemmas. Let R” be a contact space with coordinates (Py, P2, P3, Q1,Q2,Q3,U), its
contact structure be defined as the field of 0-spaces of the contact form (2), and ¥ be one of the
two hypersurfaces:
EZ{P1Q1—Pg2=0} or Ez{Pf—ka—PZQ:()},
The hypersurface consists of the two smooth strata:
YW={P=Q =P,=0}

and ¥\ X% Let O € %% be the origin P = Q = U = 0 and £ be the space of the germs (L, O)
at the origin of all smooth Legendrian submanifolds L that pass through the origin and are
transversal to ¥*. In particular,

(Lo,0) € £, Lo={Q1=P5,Q2=0,Q3 =P,,U =0}.

LEMMA 2. The space £ is arcwise connected and Py, P3, Q3 are coordinates on any
(L,0) € £.
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Proof. A germ (L, O) of a Legendrian submanifold at the origin is transversal to X* if and only
if the restrictions of the differentials dP;, d@Q1, and dPs to the tangent plane TpL are linearly
independent. Hence:

dQ2 = a11dPy+ai2d@Q + a3dPs

ToL — dP; = ag1dPy + axn d@Qq + a3 dPs
dQs = a3z1dPi+a3dQi +aszzdPs
AU = 0

But the tangent plane T L is a Lagrangian subspace of the contact hyperplane dU = 0 endowed
with a linear symplectic form d©|g—g = dP A dQ; and the condition

dP NdQ|, , =0, dPAdQl, ;= (1+azaz — axaz)dPr AdQy

+ (—a11 + ag1a33 — az3az1) dPy A dPy + (—ai2 + azeass — aszazz) dQ1 A dPs
gives
ag1a32 — a2a31 = —1, @11 = a21a33 — A23G31, Q12 = (22033 — (23032

These three equalities show that the space formed by all tangent planes T L such that (L,0) € £
is homotopically equivalent to a circle and, in particular, arcwise connected. But two germs
of Legendrian submanifolds at the origin with the same tangent plane can be connected by a
continuous path consisting of germs having the same tangent plane. Hence the space £ is arcwise
connected.

The equality asjass — aseaz; = —1 implies that the restrictions of the differentials dPs, dPs,
and dQ@s to the tangent plane TpL are linearly independent. So P», P53, (3 are coordinates on
(L,0) € £. O

LEMMA 3. For any (L1,0) € £ there exists a local contact diffeomorphism hy such that
(Ll,O) = hl(Lo,O) and hl(E) = 2.

Proof. According to Lemma 2 we can include the Legendrian germs (Lo, O) and (L1, O) into
a family (L.,0) € £ where ¢ € [0,1], L. = ko(Lo), and k. is a smooth family of contact
diffeomorphisms such that k.(O) = O for all € € [0, 1]. Let

. d .
Ke(kse):%kse, ecR?, K.(0)=0

be a contact vector field which depends smoothly on €.

Let K. = 9(1?8). According to Lemma 2 in some neighborhood Uy of the origin P, Ps,
and Q3 are coordinates on L. for any ¢ € [0,1]. Therefore there exists a unique function
H, :[0,1] x Uo — R depending only on &, Ps, P53, Q3 such that

(5) HE‘LE :KE}LE.

Let H. be the contact vector field defined by the formulas (3) where K = H..

First of all, let us show that H.(O) = 0. Indeed, according to (4) K.(O) = 0 and
doK:|{au=0; = 0 because I?E(O) = 0. Hence H.(O) = 0 and dpH. = 0 because L. is tan-
gent to the hyperplane {dU = 0}. So according to (4) H. (O)=0.

Now we can define a family of local contact diffeomorphisms h. depending on e € [0,1] such
that

- d
He(hse) = e hee Vee€Vo,

where Vo is a neighborhood of the origin. Indeed, it is possible because HE(O) = 0. Besides,
the equality H.(O) = 0 implies that h.(O) = O.
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The formulas (3) imply that the coordinate functions Py, P;, and () are first integrals of the
contact vector field H. because its generating function H. does not depend on Pj, @1, @2, and
U. Hence the contact vector field H, is tangent to £* and ¥\ 4. Therefore h.(X) = X for all
e €[0,1].

The equality (5) implies that for any ¢ € [0,1] the vector field H. — K. is tangent to
L. = ka(LO) So hE(Lo) = kE(Lo) for all € € [O, 1]

Therefore (L., 0) = h.(Lg,0) and h.(X) = X for all € € [0,1]. In particular, it holds for
e=1. O

3.6. Local normal forms of Ay ,. Lemma 3 implies the following
LEMMA 4. Let O =117 (xg,0) or O = 11~ (xq,0). Then in a neighborhood of O there exist

local coordinates (Py, Py, P3,Q1,Q2,Q3,U) such that:
e the contact structure is given as the field of 0-spaces of the contact form

0= %PdQ— %QdP—dU;

o 77 1(x0,0) ={Q1=P3,Q2=0,Qs = P,U =0};
e if xg is a hyperbolic point then
L={PQi—P;=0,P+Q >0} and Ax,=AYUA"
where
Py :a2b2, Ql :CQa
Af =< Py=abe, Qs=2abclna?®, U=0,
P3:a2cz7 Q3:b27
P1:627 Q1:a2027
A = Py=abe, Qy=—2abclna®, U =0,
P3:C27 Q3:a2b27
a € [0,1], b,c € R are parameters, and alna® =0 if a = 0;
e if xq is an elliptic point then

S={PP+Q}—P;=0,P,>0} and Ay, =A"

where
P2 Z 07
X Q
AE = P1 + ZQl = Pgez(w_%), U= 0,
Qs +iPy = Py (V7).

; Qo
i=+v—1,v% €R mod 27Z is a parameter, and Pgez(wi""t’z?) =01if P, =0.
REMARK. Examples H and E of coordinates from Lemma 4 are given in Subsection 3.2.

Proof. According to Subsection 3.2 and Lemma 3 in a neighborhood of O there exist local
coordinates (Py, Py, P3,Q1,Q2,Qs,U) such that:

the contact structure is given by the equation © = 0;

71 (%0,0) = {Q1 = P5,Q2 = 0,Q3 = P,,U = 0};

if x¢ is a hyperbolic point then ¥ = {P1Q1 —P2=0,PL+Q > O};

if xo is an elliptic point then ¥ = {P? + Q} — P =0, P, > 0}.

Let us consider the following parameterizations of X N7~ (xg, 0):
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e P =00, =c P,=bc, Qs =0, P3 = c? Q3 = b*, U = 0 (where b,c € R are
parameters and xg is hyperbolic);

e P, >0, P +iQ=Poe”, Qs =0, Q3 +iP3 =Py, U=0 (where ¥ € R mod 277 is
a parameter and xg is elliptic).

According to Subsection 3.4 the characteristics of ¥ have parameterizations (with a real param-
eter o) satisfying the differential equations:
o 4P _ —P, dQ =Q1, % — (. 9Q2 _ —2P, dP; _ dQs _ dU =0,

do ; do ) ' do ' do T do ~ do
if xq is hyperbolic;
dpPy -dQ1 __ . dPy __ dQz dP3 __ dQ3 __ dU __
* do +1 do il(.Pl +ZQ1)’ do O’ do P2’ do = do = do 70’
if xq is elliptic.

Therefore the characteristics passing through ¥ N 7~1(xg,0) are given by the equations:
o PL=0b%"7, Q1 =c%, Py=bc, Qs = —2bco, P3 =c?, Q3 =b%, U =0,
if xq is hyperbolic;
L] P2 20, P1 +ZQ1 :Pgei(erU), QQ = —PQJ, Q3+ZP3 :P26i¢, UZO,
if xq is elliptic.
Here o € R is a parameter along the characteristics.
In the hyperbolic case for ¢ > 0 we get the formulas for Af from Lemma 4 changing
¢+ ce~/? and setting a = e /2.
In the hyperbolic case for 0 < 0 we get the above formulas for A¥ from Lemma 4 changing
b+ be?/? and setting a = e?/2.
In the elliptic case we get the formulas for AF changing ¢ +— 1 — ¢/2 and setting
g = —QQ/PQ. O

3.7. Singularities of Ay,.

DEFINITION. We say that a three-dimensional stratified Legendrian submanifold A of a con-
tact space has a singularity Hy, Ha, or E5 at a point A € A if its germ (A, \) is contact diffeo-
morphic to the germ (H; X R, 0), (Ha x R,0), or (&2 x R, O) respectively.

LEMMA 5. The Legendrian submanifold Af UAf

(1) has singularities Hy if
PP=P=P=Q:=U=0, Q1>0, @3>0,
or
Po=Q1=Q2=Q3=U=0, P>0, P3>0
(2) has singularities Hy if
Pi=P,=P;=Q2=U=0, @Q1=0, Q3>0,

or
P=P=P=Q:=U=0, Q1>0, Q3=0,
or
Po=Q1=0Q:2=Q3=U=0, P =0, P3>0,
or

P2:Q1:Q2:Q3:U:O, P1>0, P3:0,
(3) has more complicated singularity if
Pr=P=P3=0Q1=Q2=Q3=U = 0;
(4) 14s smooth at the other points.
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Proof. The Legendrian submanifold Af UAFH has singularities if and only if @ = 0 in the formulas
of Lemma 4. It gives the set of singularities of Af :

Pr=P=P=Q:=U=0, @20, @3>0
and the set of singularities of AZ:
Po=Q1=Q2=Q3=U=0, >0, P>0
proving the item 4 from Lemma 5. Let us consider the following transformations:

e a—a, b— kb c—c, k>0,

(P, P2, P5,Q1,Q2,Q3,U) — (K*Py, kP, P3,Q1,6Q2, °Q3, k*U);
e ar—a,b—b c— ke, k>0,

(P17P25P37Q1aQ27Q37 U) = (P17 "{P27"€2P37H2Q17KQ2)Q37 HZU);
e ara,b—c c—b,

(1—_)17P2;})-3’621762276237[])*_> (P37P27P17Q37Q27Q15U);
e a—a,b—b c—c,

(P, P2, P3,Q1,Q2,Q3,U) = (Q3, P2, Q1, P3, —Q2, P, —U).
All of them preserve the contact structure and the Legendrian submanifold A¥ U A, Besides,
these transformations divide the set of singularities of Af U A into the three orbits mentioned
in the items 1-3 of Lemma 5. In particular, we prove its item 3.
The point Py = P, = P3 = Q1 = Q2 = U =0, Q3 = 1 belongs to Af. Let us consider its
section with Q3 = 1. Then b = 1 or b = —1 but these conditions define the same submanifold:
P = 112, Ql = 623
P, = ac, Q2 =2aclna?, U =0.
P3:a2c27 Q3:1a
The form © defines the contact structure

1 P.
g(PldQ1+P2dQ2—Q1dP1—deP2)_d?3:0

in the plane @3 = 1, U = 0 and our section is Legendrian. Denoting A =a, B = ¢, U = P5/2

we get the Legendrian submanifold Hs from Subsection 1.3 and prove the item 2 of Lemma 5.
But the stratified Legendrian submanifold Hs has singularities H; if A = 0 and B # 0 that is

shown in [5]. It proves the item 1 of Lemma 5. O

LEMMA 6. The Legendrian submanifold AF
(1) has singularities Eo if
PoP=P=P=0Q1=Q3=U=0, Q2#0;
(2) has more complicated singularity if
Pi=P=P=0Q1=Q2=Q3=U =0;
(3) 4s smooth at the other points.

Proof. The Legendrian submanifold A® has singularities if and only if P, = 0 in the formulas of
Lemma 4. It gives the set of singularities of AF:

P1:P2:P3:Q1:Q3:U:O;
and proves the item 3 from Lemma 6. Let us consider the following transformations:

o (P, P, P3,Q1,Q2,Q3,U) = (kP1, Py, kP3, kQ1, KQ2, £Q3, K2U), k > 0;
L4 (P17P27P37Q17Q27Q37U) — (Q37P27Q17P37 _Q27P17_U)'
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All of them preserve the contact structure and the Legendrian submanifold A®. Besides, these
transformations divide the set of singularities of A¥ into the two orbits mentioned in the items 1,
2 of Lemma 6. In particular, we prove its item 2.

Let us consider the section of AP with Qg = 2:

P2 = 07
A= P +iQ, = Pgei@_}’%), U =0,
Q3 +1iP; = P2€i(w+%2)7

The form O defines the contact structure
1
i(PldQl + P3dQz — Q1 dPy — Q3dP3) —dP, =0

in the plane Q3 = 1, U = 0 and our section is Legendrian. After obvious renaming P, — U,
P;— Py, Q3 — Q2 we get the Legendrian submanifold & from Subsection 1.3 and prove the
item 1 of Lemma 6. O

3.8. Time function 7. Here we prove some conditions which have to be satisfied by the time
function 7 in the coordinates from Lemma 4.

LEMMA 7. Let O = 1" (x0,0) or O = II" (x0,0) and doT be the differential of the time
function T at O. Then in the coordinates from Lemma /

dotT = 1 (dQ1 — dP3) + 72 dQ2 + v3(dQ3 — dPy) + vo dU
where

® Y1v3 > V3 if xo is hyperbolic;
o 73 > 2+ 3 if xq is elliptic.

Proof. The equality
doT = 71(dQ1 — dP3) + 72 dQ2 + v3(dQ3 — dP1) + 0 dU

follows from the conditions
7 (%0,0) = {@Q1 = P3,Q2=0,Q3 = P,,U =0} C 7 1(0).

Let us prove the inequalities v1v3 > 72 and 73 > 72 + ~2.

The Legendrian submanifold 771(xg,0) C ST*R3*! is situated in the isochrone 771(0) and
consists of its characteristics: the lines ([p, -|; X0, 0) with p # 0 and the two points ([0, £1]; X0, 0).
In an affine neighborhood of O the hypersurface N7~ (xg, 0) is a half-cone. It turns out that one
of the two half-characteristics of the isochrone 7=1(0) starting at O lies inside of this half-cone.

Indeed, let us choose local coordinates (z,y,z) in a neighborhood of xo € R?® such that
&1(x0) = (1,0,0), &2(x0) = (0,1,0), and &»(x0) = (ao, bo, co). Then according to Subsection 3.1
we get that in the coordinates (p, g, r, s) that are dual to (z,y, z,t):

YN (x0,0) = {[p,q,r,s] ’ aop + boq + cor + s + V/p? + ¢2 :0}

and O = [0,0,1,—cp] or O = [0,0,—1,¢p]. So, we can take the affine neighborhood r = 1 or
r = —1 respectively. It is clear that in each case the ray

p=q=0, Z£cg+s<0
is situated inside of the half-cone {aop +bogtcg+s+/p2+qg:= 0} )
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But according to Subsection 3.3 the characteristics of 7=1(0) are tangent to the contact vector
field 7 defined by the formulas (3) for K = 7. Hence one of the two vectors £7(0) where

7(0) = {Pl =y, Pr=12, Ps=3, Q1 =13, Q2=0, Q3 =1, U:O}
must lie inside of the half-cone
YN71 1 Hx0,0) =N {Q1 = P5,Q2=0,Q3 = P,,U = 0}.
It means that
o PQ; — P22 = v173 — 75 > 0 if x¢ is hyperbolic and
o« P4 — P = V2 + 93 — 43 < 0 if xg is elliptic.
O

3.9. Proof of Theorem 1. According to Lemma 1 in some neighborhood of (x¢,0) the Leg-
endrian submanifold Ay, is homeomorphic to the cylinder over the two-dimensional sphere, the
elements of the cylinder are characteristics of ¥. But an isochrone 77 !(T) is transversal to
these characteristics because their projections are the graphs of trajectories of the control-affine
system (1). It proves that Ly, (T) is homeomorphic to the two-dimensional sphere.

In neighborhoods of two contact elements TIT (xg, 0) or II™ (xg, 0) the Legendrian submanifold
Ay, has singularities described in Lemmas 4, 5, and 6.

In the hyperbolic case Theorem 1 follows from Lemma 5. Namely, singularities H; form two
quadrants described in Lemma 5. But one and only one of them lies in the domain 7 > 0
according to Lemma 7.

In the elliptic case Theorem 1 follows from Lemma 6. Namely, singularities Eo form two rays
described in Lemma 6. But one and only one of them lies in the domain 7 > 0 according to
Lemma 7.

4. APPENDIX

Theorem 1 implies that for enough small T' > 0 the stratified Legendrian submanifolds Lx, (T')
are reduced to a normal form £ in the hyperbolic case and to a normal form £¥ in the elliptic
case. Here we give explicit formulas for £ based on [6] and for £ based on [7]. The fronts of
the stratified Legendrian submanifolds £F and £ are shown in Fig. 1 on the left and the right
respectively.

NORMAL FORM LH:

4ap 1-— 32
£ = cqirx,y,2) eSTR |[p= —— | _ ’
{(p e v:2) P=avaya+rpy 1T 112
1—a? 28 1-—p? 232
where a, 8 € RU {oo} are parameters,
alna? 1—a*+2a?lna?
(b = —_—— =
(o) 1—a2’ () (1—a?)? ’

D(0) =P(c0) =0(1) =T(—-1)=0, P(1)=-P(-1)=7(0) =—-T(c0) = 1.
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NORMAL FORM LF:
LE=LFU{PT,P7}, PE=(0:0:+1;0,0,0) € ST*R?,

LE:{(p:q:r;av,y,z)EST*IR3 P =COST COS¢, ¢ = cosr sing,

r ’ r ’ 2r2

2 sinr cos ¢ 2 sinr sin ¢ 2r — sinQT}
r= ——-" y=——— 1=

where ¢ € R mod 27Z is a parameter.

(1]
2]
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ABSTRACT. In this paper, we consider two objects as surfaces with singular points in Euclidean
3-space. One is the class of framed surfaces and the other is that of one-parameter families of
framed curves. The basic invariants of a framed surface or the curvature of a one-parameter
family of framed curves determine the surface and the moving frame up to congruence. We give
relations between framed surfaces and one-parameter families of framed curves. In particular,
a surface with corank one singularities can be considered as a one-parameter family of framed
curves at least locally. Moreover, we give concrete examples of such surfaces with singular
points described as one-parameter families of framed curves.

1. INTRODUCTION

Recently, differential geometry of curves and surfaces with singular points is extensively in-
vestigated (for instance, see [3, 4, 5, 6, 7, 8, 11, 13, 14, 17, 19, 20, 21, 24, 25, 26, 27, 29, 30,
31, 32, 33, 34]). All non-singular surfaces are locally diffeomorphic to each other. Therefore, a
diffeomorphism on the target breaks down the differential geometry on surfaces in this sense.

In [34, 6], a normal form of cross caps is given by using a parameter change on the source and
an isometry (a rotation) on the target. Moreover, normal forms of cuspidal edges, swallowtails
and cuspidal cross caps are given in [20, 29, 24], respectively. By using the normal forms, they
obtain SO(3) invariants and give differential geometric properties of surfaces with singular points
by using the invariants.

We treat surfaces with singular points, that is, singular surfaces more directly. As a way to
study surfaces with singular points in Euclidean 3-space, we consider two approaches. One is to
consider framed surfaces and the other is to use one-parameter families of framed curves. We
give relations between these two objects.

A framed surface is a surface in Euclidean 3-space with a moving frame (cf. [10]). Framed
surfaces may have singular points. By using the moving frames, the basic invariants and the
curvatures of framed surfaces are introduced in [10].

On the other hand, a framed curve is a curve in Euclidean 3-space with a moving frame
(cf. [12]). Framed curves may have singular points. Therefore, we may consider one-parameter
families of framed curves as surfaces with singular points. In [27], the authors have considered
one-parameter families of framed curves in order to define an envelope of a family of space
curves. By using the moving frame, the curvature of a one-parameter family of framed curves is
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introduced in [27]. We review the theories for framed surfaces, framed curves and one-parameter
families of framed curves in §2. The basic invariants of a framed surface or the curvature of a one-
parameter family of framed curves determine the surface and the moving frame up to congruence.
We give relations between framed surfaces and one-parameter families of framed curves in §3.
We then prove that surfaces with corank one singularities can be considered as one-parameter
families of framed curves at least locally (Theorem 4.1). As concrete examples of one-parameter
families of framed curves, we give surfaces with first kind singularities (for example, cuspidal
edges and cuspidal cross caps), second kind singularities (for example, swallowtails) and cross
caps by using normal forms in §4. In general, non-degenerate singular points are also of corank
one. Moreover, A-simple singularities of a map from a 2-dimensional manifold to a 3-dimensional
one are also of corank one, see [22]. Hence, it is possible to treat map germs of non-degenerate
singular points and A-simple singularities as one-parameter families of framed curves.
All maps and manifolds considered in this paper are differentiable of class C'*°.

2. PREVIOUS RESULTS
Let R3 be the 3-dimensional Euclidean space equipped with the inner product
a-b= a1b1 —+ a2b2 + agbg,
where a = (a1, az,a3) and b = (by, ba, b3) € R3. The norm of a is given by |a| = y/a - @ and the
vector product is given by
€1 ey es3
axb=det| a1 as a3
by by b3
where {e1, ez, e3} is the canonical basis of R3. Let S? be the unit sphere in R3, that is,
5% = {a € R®||a|] = 1}.

We denote the 3-dimensional smooth manifold {(a,b) € S? x S?|a-b = 0} by A.
Let U be a simply connected domain in R? and I be an interval in R. We quickly review the
theories of framed surfaces, framed curves and one-parameter families of framed curves.

2.1. Framed surfaces in Euclidean 3-space. A framed surface in Euclidean 3-space is a
smooth surface with a moving frame.

Definition 2.1. We say that (z,n,s) : U — R3 x A is a framed surface if
o (u,v) - n(u,v) = 0,2, (u,v) - n(u,v) =0

for all (u,v) € U, where @, (u,v) = (0x/0u)(u,v) and z,(u,v) = (0x/0v)(u,v). We say that
x: U — R3 is a framed base surface if there exists (n, s) : U — A such that (z,n, s) is a framed
surface.

By definition, a framed base surface is a frontal. For definition and properties of frontals see
[1, 2, 30]. On the other hand, a frontal is a framed base surface at least locally.

We denote t(u,v) = n(u,v) x s(u,v). Then {n(u,v), s(u,v),t(u,v)} is a moving frame along
x(u,v). Thus, we have the following systems of differential equations:

T\ (a1 b s
2 ()= ) ()
o 0 er fi n Ny 0 es  fo n

(2) sul=(-er 0 g||[s]|, |[se]=[-e 0 g]|s].
tu _fl —g1 0 t tv _f2 —g2 0 t
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where a;, b;, e;, fi,g; : U = R, i = 1,2 are smooth functions, which we call basic invariants of the
framed surface. We denote the matrices in the equalities (1) and (2) by G, Fi, Fa, respectively.
We also call the matrices (G, Fi1, Fz2) basic invariants of the framed surface (x,n, s). Note that
(u,v) is a singular point of x if and only if det G(u,v) = 0.

Considering the integrability conditions &, = @, and F3 ., —F1,, = F1F2 — FoF1, the basic
invariants should satisfy the following conditions:

A1y — b192 = a2y — 52917 €1y — f192 = €2y — f291,
(3) b1y — a2g1 = bay — a1 92, fio — €291 = fou — €192,
ares + by fo = azer + bafi, g1v — €1f2 = gou — €2 f1.

Definition 2.2. Let (z,n,s), (Z,n,3) : U — R3 x A be framed surfaces. We say that (x,n, s)
and (x,n,s) are congruent as framed surfaces if there exist a constant rotation A € SO(3) and
a translation @ € R3 such that

z(u,v) = A(z(u,v)) + a,n(u,v) = A(n(u,v)), s(u,v) = A(s(u,v)),
for all (u,v) € U.

We have the existence and uniqueness theorems for framed surfaces in terms of basic invariants
(cf. [10]).

Theorem 2.3 (Existence Theorem for framed surfaces). Let U be a simply connected domain in
R? and let a;,b;, €5, fi,gi - U = R,i = 1,2 be smooth functions with the integrability conditions
(3). Then, there exists a framed surface (x,n,s) : U — R3 x A whose associated basic invariants
coincide with a;, b;,e;, fi,gi, 1 = 1,2.

Theorem 2.4 (Uniqueness Theorem for framed surfaces). Let (z,n,s), (z,n,3): U — R3 x A
be framed surfaces with basic invariants (G, F1, Fa), (QN, .7?1, .7?2), respectively. Then (x,n,s) and
(z,m,s) are congruent as framed surfaces if and only if the basic invariants (G, F1,F2) and
(G, F1, F2) coincide.

Let (z,mn,s) : U — R3 x A be a framed surface with basic invariants (G, F1, F2). We consider
rotations of the vectors s,t. We denote

s%(u,v)\ _ [cosO(u,v) —sinf(u,v)\ [s(u,v)
(tg(u,v)> - (sin@(um) cos O(u,v) > (t(u,v)) ’
where 6 : U — R is a smooth function. Then n x s? = t? and {n, s?,t%} is also a moving frame
along x. It follows that (z,mn,s?) is a framed surface. We call the frame {n,s? t’} a rotation
frame by 0 of the framed surface (z,m,s). We denote by (G%, F¥  Ff) the basic invariants of
(x,n,s%). By a direct calculation, we have the following.

Proposition 2.5. Under the above notations, the relations between the basic invariants
(G, F1,F2) and (G°, F{, F3) are given by

g9g<c059 Sin6‘>(a100S9—b1Sin9 alsin9+b1cos¢9>

—sinf cosf ag cosf — bysinf  ao sinf + by cos

0 epcosf — fisinf  ejsinf + f1cos6
Fi = | —eicosf+ frsind 0 g1 — 0, ;
—e1sinf — fy cosf —g1 + 0, 0
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0 eoc080 — fosinf egsin® + fycosf
.7-"29 = | —egcosf + fosinf 0 g2 — 0,
—egsinf — fycosf —go+ 0, 0

2.2. Framed curves in Euclidean 3-space. A framed curve in Euclidean 3-space is a smooth
curve with a moving frame.

Definition 2.6. We say that (y,v1,v2) : I — R3 x A is a framed curve if §(t) - v1(t) = 0 and
A(t) - va(t) = 0 for all t € I. We say that v : I — R? is a framed base curve if there exists
(v1,v2) : I — A such that (v,v1,15) is a framed curve.

We denote pu(t) = v1(t) x vo(t). Then {v1(t), v2(t), u(t)} is a moving frame along the framed
base curve 7(t) in R? and we have the Frenet type formula,

Vi (t) 0 L) m) Vi (t)
va(t) | =1 —€t) 0  n(t) va(t) |, () = at)p(t)
alt —m(t) —n(t) 0 u(t)

where £(t) = v1(t) - va(t), m(t) = vi(t) - p(t), n(t) = va(t) - p(t) and a(t) = 4(t) - p(t). We call
the mapping (¢, m,n,«) the curvature of the framed curve (v,v1,1v2). Note that to is a singular
point of v if and only if a(tg) = 0.

Definition 2.7. Let (v, v1,v2), (7,71, 72) : I — R3 x A be framed curves. We say that (v, vy, v0)
and (¥, V1, 09) are congruent as framed curves if there exist a constant rotation A € SO(3) and
a translation a € R? such that ¥(t) = A(v(t)) + a, v1(t) = A(v1(t)) and v(t) = A(va(t)) for all
tel

We have the existence and uniqueness theorems for framed curves in terms of the curvatures
(cf. [12]).

Theorem 2.8 (Existence Theorem for framed curves). Let (¢,m,n,a) : I — R* be a smooth
mapping. Then, there exists a framed curve (v,vy,vs) : I — R3 x A whose curvature is given by
(67 m, n7 a)'

Theorem 2.9 (Uniqueness Theorem for framed curves). Let
(v,v1,12), (3,71, 72) : T = R? x A

be framed curves with curvatures (£,m,n,a), (Z m,n, &), respectively. Then (v,v1,v2) and
(4,71, 2) are congruent as framed curves if and only if the curvatures (€, m,n,«) and (¢, m,n, Q)
coincide.

As a special case of a framed curve, let us consider a spherical Legendre curve, for details see
[31]. We say that (y,v): I — A is a spherical Legendre curve if 4(¢) - v(t) =0 for all t € I. We
call v a frontal and v a dual of ~.

We define pu(t) = y(t) x v(t). Then u(t) € S%, y(t) - pu(t) = 0 and v(t) - u(t) = 0 for all t € I.
It follows that {v(t),v(t), u(t)} is a moving frame along the frontal ().
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Let (v,v) : I — A be a spherical Legendre curve. Then we have

(1) 00 m@)\ [
u(t) | = 0 0 n(t) v(t) |,
Alt) —m(t) —n(t) 0 ul)

where m(t) = 4(t) - p(t) and n(t) = o(t) - p(t).
We say that the pair of functions (m,n) is the curvature of the spherical Legendre curve
(v,v): I — A.

2.3. One-parameter families of framed curves in Euclidean 3-space. We consider one-
parameter families of framed curves in Euclidean 3-space. Let (y,v1,15) : U — R? x A be a
smooth mapping, where U is a simply connected domain in R2.

Definition 2.10. We say that (y,v1,10) : U — R? x A is a one-parameter family of framed
curves with respect to u (respectively, with respect to v) if (y(-,v),v1(-,v),v2(-,v)) is a framed
curve for each v (respectively, (y(u, ), v1(u,-),v2(u,-)) is a framed curve for each u).

If (v,v1,v2) : U — R® x A is a one-parameter family of framed curves with respect to u, then
we denote p(u,v) = v1(u,v) X va(u,v). It follows that {v;(u,v),ve(u,v), u(u,v)} is a moving
frame along y(u,v). We have the Frenet type formula.

V14 (U, 0) 0 Lu,v)  m(u,v) v1(u,v)
Vou(u, v) = —{(u,v) 0 n(u,v) va(u,v) )
o) ) —n(wv) 0 (s, v)
V1o (U, v) 0 L(u,v)  M(u,v) vy (u,v)
Vay (U, v) = —L(u,v) 0 N(u,v) va(u,v) |,
/’l’v(uvv) _M(uvv) —N(um) 0 [,L(U,U)
Yty v) a(u, v)pu(u,v),
Vv(uvv) - P(ua v)z/l(u,v) + Q(u,v)yg(u,v) + R(uvv)“(u’v)v
where
L(u,v) = viy(u,v) - va(u,v), m(u,v) = vy (u,v) - p(u,v),
n(u, v) = vy (u, v) - p(u,v), a(u,v) = vy (u,v) - p(u,v),
L(u,v) = viy(u,v) - v2(u,v), M (u,v) = viy(u,v) - p(u,v),
N(u,v) = vo,(u,v) - p(u,v), P(u,v) = v, (u,v) - v1(u,v),
Q(ua U) = Vv(ua U) ' VQ(u’ U)) R(”v 1)) = 7U(u7 U) ' I-‘l‘(uv U)'

By ’7uv(ua U) = fY'Uu(ua U)» Vluv(uy U) = Vl’UU,(ua U)7 V2u’u(u7 ’U) = V2vu(u7 ’U) and
Py (U, 0) = ., (u, v), we have the integrability condition

for all (u,v) € U.

(u,v) = M(u,v)n(u,v) — N(u,v)m(u,v) + £, (u,v),
(u,v) = N(u,v)l(u,v) — L(u,v)n(u,v) + m,(u,v),
(u,v) = L(u,v)m(u,v) — M(u,v)l(u, v) + n,(u,v),

P, (u,v) = Q(u,v)l(u,v) + R(u, v)m(u,v) — alu,v) M (u,v),
(u,v) = —P(u,v)l(u,v) + R(u,v)n(u,v) — a(u,v) N (u,v),
(u,v) = —P(u,v)m(u,v) — Q(u, v)n(u,v) + o, (u,v)
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We call the mapping (¢,m,n, «, L, M, N, P,Q, R) satisfying the integrability condition (4) the
curvature of the one-parameter family of framed curves with respect to u of (v,v1,vs).

Definition 2.11. Let (vy,v1,12), (3, 71,72) : U — R® x A be one-parameter families of framed
curves with respect to u. We say that (vy,v1,12) and (7,71, 02) are congruent as one-parameter
families of framed curves if there exist a constant rotation A € SO(3) and a translation a € R3
such that J(u,v) = A(y(w,v)) + a, 1(u,v) = A(v1(u,v)) and va(u,v) = A(ve(u,v)) for all
(u,v) € U.

We also have the existence and uniqueness theorems for one-parameter families of framed
curves in terms of curvatures (cf. [27]).

Theorem 2.12 (Existence Theorem for one-parameter families of framed curves).
Let (¢,m,n,o, L, M,N,P,Q,R) : I — R be a smooth mapping satisfying the integrability
condition (4). Then, there exists a one-parameter family of framed curves with respect to u,
(v,v1,12) : U = R3 x A whose curvature is given by (£, m,n, o, L, M, N, P,Q, R).

Theorem 2.13 (Uniqueness Theorem for one-parameter families of framed curves). Let
(vsv1,v2), (3,01, 02) : U = R® x A

be one-parameter families of framed curves with respect to u with curvatures

coincide.

Let (v,v1,v2) : U — R3? x A be a one-parameter family of framed curves with respect to u
with curvature (¢, m,n,a, L, M, N, P,@Q, R). For the normal plane of v(u,v), spanned by v (¢, \)
and v (t, ), there are other frames by rotations. We define (v{(u,v), vy (u,v)) € A by

W(u,v) \ [ cosf(u,v) —sinf(u,v) vy (u,v)
v(u,v) )~ \ sinf(u,v)  cos(u,v) va(u,v) )’
where 6 : U — R is a smooth function. Then (v,2¢,18) : U — R3 x A is also a one-parameter
family of framed curves with respect to u and
w1 (u,v) = 10 (u,v) x v (u,v) = v1(u,v) X va(u,v) = p(u,v).
Proposition 2.14. Under the above notation, the curvature
(ﬁe,ma,ne,aa,Le,MQ,NQ,PQ,QQ,RQ)
of (v, 1,18 is given by
(6 — 0y, mcosf —nsinh, msin@ +ncosb,«, L — 6, M cosf — N sin6,
Msinf + N cosf, Pcosf — @Qsinf, Psinf + Q cosf, R).

We call the moving frame {v{(u,v),v§(u,v), u(u,v)} the rotated frame along ~(u,v) by
0(u,v).

We also have similar results for the case of one-parameter families of framed curves with
respect to v.
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3. RELATIONS BETWEEN FRAMED SURFACES AND ONE-PARAMETER FAMILIES OF FRAMED
CURVES

3.1. Framed surfaces as one-parameter families of framed curves. Let
(x,m,8): U = R>x A

be a framed surface with basic invariants (G, F1, F2). We denote t = n x s. We give conditions
for the framed surface to be a one-parameter family of framed curves.

Lemma 3.1. Under the above notations, we have the following.

(1) (x,m,s) is a one-parameter family of framed curves with respect to u if and only if
a1(u,v) =0 for all (u,v) € U.

(2) (x,n,t) is a one-parameter family of framed curves with respect to u if and only if
b1 (u,v) =0 for all (u,v) € U.

(3) (x,m,8) is a one-parameter family of framed curves with respect to v if and only if
az(u,v) =0 for all (u,v) € U.

(4) (xz,m,t) is a one-parameter family of framed curves with respect to v if and only if
ba(u,v) =0 for all (u,v) € U.
Proof. (1) If (x,n,s) is a one-parameter family of framed curves with respect to u, then
xy(u,v) - n(u,v) = 0 and x,(u,v) - s(u,v) = 0 for all (u,v) € U. Since (x,n,s) is a framed
surface, the condition @, (u,v) - n(u,v) = 0 holds. Hence, the condition x, (u,v) - s(u,v) = 0 for
all (u,v) € U is equivalent to a;(u,v) = 0 for all (u,v) € U.

The other cases can be proved similarly. O

Proposition 3.2. Under the above notations, we have the following.
(1) Suppose that there exist smooth functions ki, ko : U — R such that

(kl (ua v)ﬂ ko (U, ’U)) 7é (07 O)
and
k1 (u,v)ag(u,v) + ka(u,v)by (u,v) =0

for all (u,v) € U. Then there exist smooth functions 6,0 : U — R such that (z,n,s%) and
(xz,m,t¥) are one-parameter families of framed curves with respect to u.
(2) Suppose that there exist smooth functions ki,ks : U — R such that

(kl (U" U)a ko (u’ U)) 7é (07 0)

and ki (u,v)az(u,v) + ka(u, v)bz(u,v) = 0 for all (u,v) € U. Then there exist smooth functions
0,0 : U — R such that (z,m,s’) and (z,n,t?) : U — R® x A are one-parameter families of
framed curves with respect to v.

Proof. (1) We take a smooth function 6 : U — R which satisfies the condition

k1 (u,v) —ka(u,v) ) .
VE (u,0) + K3 (u,v) " /K2 (u,v) + K3 (u, v)

(cosO(u,v),sinf(u,v)) = (

Then by Proposition 2.5,

al(u,v) = ai(u,v)cosB(u,v) — by (u,v)sinb(u,v)

1
= k1 (u, v)aq(u, v) + ko (u, v)by (u, v
T Ty a0+ ke v (u, )

= 0.
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By Lemma 3.1 (1), (x,n,s%) is a one-parameter family of framed curves with respect to wu.
Moreover, we take a smooth function ¢ : U — R which satisfies the condition

ko (u,v) k1 (u,v)
VR (u,v) + B3 (u,v) | VER(u,0) + k2 (u,0) |

(cos p(u,v),sinp(u,v)) = (

Then by Proposition 2.5,

bf (ua ?]) = a (ua U) sin (p(ua U) + bl (’U/7 ’U) cos (,O(U, ?])

1
- ki (u, v)ai(u,v) + ka(u, v)by (u,v
\/k%(uvv)-i-k%(u,v)( (1, v)ay (u, v) + ko (u, )by (u, v))

= 0.
By Lemma 3.1 (2), (&,n,t?) is a one-parameter family of framed curves with respect to u.
(2) We can prove the assertion by a similar calculation. i

We give a relation between basic invariants of a framed surface and the curvature of the
one-parameter family of framed curves under a condition.

Proposition 3.3. Let (z,n,s) : U — R® x A be a framed surface with basic invariants
(G, F1,F2). Suppose that ai(u,v) = 0 for all (u,v) € U. Then the curvature of the one-
parameter family of framed curves with respect to u of (x,m,s) : U — R3 x A is given by

((u,v), m(u,v),n(u,v), a(u,v), L(u,v), M (u,v), N(u,v), P(u, v), Q(u,v), R(u, v))
= (el(ua 'U), fl(u7 U)agl(u7 ”U), bl(u7 ”U), 62(u7 'U), fQ(u7 U)aQQ(u7 ”U), 07 a?(”v U)a b?(“a U))

Proof. By definitions of basic invariants and the curvature, we have

(u,v) = ny(u,v) - s(u,v) = e1(u,v), m(u,v) = n,(u,v) - t(u,v) = f1(u,v),
n(u,v) = 8y (u,v) - t(u,v) = g1(u,v), a(u,v) = @, (u,v) - t(u,v) = by (u,v),

L(u,v) = ny(u,v) - s(u,v) = ea(u,v), M (u,v) = ny(u,v) - t(u,v) = fg(u,v),
N(u,v) = 8y(u,v) - t(u,v) = ga(u,v), P(u,v) = &y (u,v) - n(u,v) =

Q(u,v) = xy(u, v) - s(u,v) = az(u,v), R(u,v) = &y (u,v) - n(u,v) = bg(’LL v).

O

We give examples of framed surfaces which are not a one-parameter family of framed curves
with respect to u nor v as follows.

Example 3.4. Let « : R? — R? be given by
1 1 1 1 1 1 1 1
w(u,v) = (eu?v? CO8 — €08 5, e w? 27 sin el sin el 0) (u,v #0),
(0,0,0) (u=0orv=0).
Then x is a smooth mapping. Moreover, if we take n(u,v) = (0,0,1) and s(u,v) = (1,0,0),
then (z,n,s) : R? — R3 x A is a framed surface.

Next, we show that x is not a one-parameter family of framed curves with respect to u nor
v. If u,v # 0, then we have

2wz iz 11 1 /.1 1\ . 1
:I:u(u, ’U) T COS E + Sin ﬁ COS 1}77 Sin ? — COS ? Sin ﬁ’ 0 5

1

2w 11 1 (.1 1 1
x,(u,v) = — cosv—2+smﬁ cos 5, | sin—5 —cos smuz,O .
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For v € R with cos(1/v?)sin(1/v?) # 0, lim, 010 @y (u,v)/|2,(u,v)| does not exist. Hence
there does not exist (vi,v%) : R? — A such that (z,v{, vY) is a one-parameter family of
framed curves with respect to u (cf. [9]). Also, for u € R with cos(1/u?)sin(1/u?) # 0,
lim, 040 @y (u,v) /|2, (u, v)| does not exist. Hence, there does not exist (v¥,3) : R> — A such
that (z,v7,14) is a one-parameter family of framed curves with respect to v. In particular, @ is
not a one-parameter family of framed base curves with respect to u nor v around (0, 0).

A singular point of a mapping  : U — R? is a fo singularity if & at the point is A-
equivalent (equivalent by diffeomorphisms of the source and of the target) to the map germ
(u,v) = (uv,u? & 302, u?v £ v3) at (0,0) (cf. [2, 28]).

Example 3.5 (D4i singularity). Let % : R?2 — R? be given by

xt(u,v) = (uwv,u? £ 302, u?v +v3).
Define n : R? — S? by n(u,v) = (2u,v, —2)/v4u? + v2 + 4. Since x:(u,v) = (v,2u, 2uv) and
xE(u,v) = (u, £6v,u? + 3v?), 2 (u,v) - n(u,v) = zF(u,v) - n(u,v) = 0 for all (u,v) € R%

v u
It follows that (x*,n) : R? — R3 x S? is a Legendre immersion. However, % are not one-

parameter families of framed base curves with respect to u nor v around (0, 0).

We give an example of a framed surface which is also a one-parameter family of framed curves
with respect to u and v, respectively.

Example 3.6. Let m1,nq, k1, mo,no and ko be positive integers with
mi1 =n1 + k1 and  mo = ng + ko.
Let = : R? — R? be given by
z(u,v) = [ —u™, —u™ + —u"2, —0™2 | .
n mi N9 ma
Define (n,s) : R? — A by
(ukrvkz —pk2 1)

n(u,v) = T o T s(u,v) =

(1,u*,0)
VuZki 1

Since

xy(u,v) = (w7 ™ 0) = w716k, 0), @y (u,v) = (0,027 ™2 L) = 2710, 1, 002),
we have x, (u,v) - n(u,v) = x,(u,v) - n(u,v) = 0 for all (u,v) € R2. It follows that (z,n,s) is
a framed surface. If ny,ng > 1, then (0,0) is a corank 2 singular point of . Moreover, define
(v, vy) i R?2 — A and (v9,v3) : R? — A by

(—uf,1,0) (0, —vk2, 1)
VuZk 117 VoRz + 1
Then (z,vi, vy) and (x,v],vy) are one-parameter families of framed curves with respect to u
and v, respectively.

Vf(u, 1)) = V%‘(u,v) = (0707 1)7 Vf(u,v) = ) VS(’LLJ)) = (17070)'

3.2. One-parameter families of framed curves as framed surfaces. First, we consider a
one-parameter family of framed curves with respect to u. We give conditions for the surface to
be a framed base surface. In this section, we use the following notations. Let

(x, i vd) : U = R* x A
be a one-parameter family of framed curves with respect to v with curvature

(gu’ mu7nu7 aU? Lu’ Mu’ Nu’ Pu? qu Ru)'
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Lemma 3.7. Under the above notations, we have the following.

(1) (x, v, 1v8) : U — R3 X A is a framed surface if and only if P*(u,v) = 0 for all (u,v) € U.

(2) (z,v¥, V%) : U — R3 x A is a framed surface if and only if Q“(u,v) = 0 for all (u,v) € U.
Proof. (1) Since (x,v}',vy) is a one-parameter family of framed curves with respect to u, we
have @, (u,v) - vi'(u,v) = 0 for all (u,v) € U. Since x,(u,v) - vi'(u,v) = P*(u,v), (x, v, vy) is
a framed surface if and only if P*(u,v) =0 for all (u,v) € U.

(2) We can prove the assertion by a similar calculation. a

Proposition 3.8. Under the above notations, suppose that there exist smooth functions
k1,ko : U — R such that (k1 (u,v), ka(u,v)) # (0,0) and ki(u,v)P*(u,v) + ka2 (u,v)Q%(u,v) =0
for all (u,v) € U. Then there exist smooth functions 0, : U — R such that (x, Vf’e, V;’G) and
(x, vy 7, v%) : U = R3 x A are framed surfaces.

Proof. We take a smooth function 6 : U — R which satisfies the condition

k1 (u,v) —ka(u,v) ) '
VI (u,0) + K3 (u,0) " \/E3 (u, v) + k3 (u, 0)

(cosO(u,v),sin f(u,v)) = (

Then by Proposition 2.14,

POu,v) = P%(u,v)cosf(u,v) — Q" (u,v)sinb(u,v)

1
= K1 (u, v) P (u, v) + ko (u, v)Q" (u, v
T s e P o) + e 0)Q (wv)

= 0.

By Lemma 3.7 (1), (w,l/f’e,ug’e) is a framed surface. Moreover, we take a smooth function
¢ : U — R which satisfies the condition

(cos p(u,v),sin ¢(u,v)) = ( ka (u,v) Ky (u,v) ) .

VR (u,0) + k3 (u,0) " /R (u,0) + K3 (u, )
Then by Proposition 2.14,
Q"0 (u,v) = P%(u,v)sinb(u,v) + Q"(u,v) cosf(u,v)
1
= k P k u
\/k‘%(u,v) T /{J%(u,’u)( 1(“;”) (U,’U) + 2(U7U)Q (U,U))
= 0.

By Lemma 3.7 (2), (z,v5"7,1,"%?) is a framed surface. O

Next, we consider one-parameter families of framed curves with respect to v and v. We give
conditions for the surface to be a framed base surface.

Let (z, v, vY) : U — R® x A be a one-parameter family of framed curves with respect to u
and (z,v7,v8) : U — R3 x A be a one-parameter family of framed curves with respect to v,
respectively. We denote p* = v} x v and pu® = v x v3.

Proposition 3.9. Under the above notations, we have the following.

(1) Suppose that p"(u,v) and p*(u,v) are linearly independent for all (u,v) € U, that is,
if k1 (u, v)p™(u,v) + ka(u, v)pu? (u,v) = 0 for all (u,v) € U, where ky,ka : U — R are smooth
functions, then (k1 (u,v), ka(u,v)) = (0,0) for all (u,v) € U. Then there exists a smooth mapping
(n,s): U — A such that (x,n,s) is a framed surface.
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(2) Suppose that p*(u,v) and p*(u,v) are linearly dependent for all (u,v) € U, that is, there
exist smooth functions ki, ks : U — R such that (k1(u,v), ka(u,v)) # (0,0) and
ky (u, v) ™ (u, v) + ka(u, v)p’ (u, v) =0

for all (u,v) € U. Then there exists a smooth mapping (n,s) : U — A such that (xz,n,s) is a
framed surface.

Proof. (1) Since p*(u,v) and p?(u,v) are linearly independent, we can define the smooth
mapping (n,s) : U — A by

R 7T s 7 O
It follows that
mu(uvv) -’I’L(U,U) = O‘u(uvv)u’u(u7v) : (Hu(u’v) X Hv(uvv)”p’u(ua ’U) X iu’v(ua ’U>|) = Oa
2o(u,0)  n(n,0) = (o) () - (1 (0, 0) X (1 0)/ 8 (1, 0) X 2 (1, 0)]) = 0,

Moreover, n(u,v) - s(u,v) = (u*(u,v) x p*(u,v)/|p*(u, v) x p*(u,v)|) - p*(u,v) = 0. Therefore,
(x,m,8): U — R?x Ais a framed surface.

(2) By the assumption and p®(u,v), u¥(u,v) € S2, if ki(p) = 0 (respectively, ka(p) = 0),
then ko(p) = 0 (respectively, k1(p) = 0). It follows that ki(u,v) # 0 and ka(u,v) # 0 for all
(u,v) € U. Then we have p¥(u,v) = £p*(u,v). We define the smooth mapping (n,s) : U — A
by n(u,v) = vi(u,v), s(u,v) = u*(u,v). Then z,(u,v) n(u,v) =0 and

zy(u,v) - n(u,v) = a’(u,v)pu’ (u,v) - Vi (u, v) = £a* (u,v)pu" (u,v) - vi*(u,v) = 0.
Moreover, n(u,v) - s(u,v) = v¥(u,v) - p*(u,v) = 0. Therefore, (x,n,8) : U — R3 x A is a

framed surface. O

We give an example of a one-parameter family of framed curves with respect to u and v which
is not a framed base surface.

Example 3.10 (A cross cap). Let  : R? — R3 be given by x(u,v) = (u + v, (u + v)v,v?).
Note that x is diffeomorphic to the cross cap Z(u,v) = (u,uwv,v?) by using the parameter
change ¢(u,v) = (u + v,v). Since x,(u,v) = (1,v,0), if we consider the smooth mapping
(i, vy) : R? — A defined by
(—v,1,0)
Vifo?’
then z, (u,v) - vi(u,v) = 0, z,(u,v) - V¥ (u,v) = 0 and v (u,v) - v¥(u,v) = 0 for all (u,v) € R2.
Hence, (x, v}, v4) is a one-parameter family of framed curves with respect to u. Moreover, since
xy(u,v) = (1,u + 2v,2v), if we consider the smooth mapping (v{,13) : R? — A defined by
(—(u+2v),1,0) ", 0) (20,2v(u + 20), =1 — (u + 2v)?)
i (u,v) = )

1+ (u+ 2v)? 2 V4 (u+20)2)(1 + (u+ 2v)2 + 402)
then @, (u,v) - ¥ (u,v) = 0, T, (u,v) - V¥ (u,v) = 0 and v¥(u,v) - v§(u,v) = 0 for all (u,v) € R2.
Hence, (x,v},vy) is a one-parameter family of framed curves with respect to v. However, the
cross cap is not a frontal at (0,0) (cf. [6]). Hence x is not a framed base surface. Since

u (1,v,0) (1,u+ 2v,2v)
) = 222 - )
V14w V1t (u+2v)2+4v

the conditions in Proposition 3.9 are not satisfied around (0, 0).

vy (u,v) = vg (u,v) = (0,0,1),

vy (u,v) =

v(uv @) =
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4. SURFACES WITH CORANK ONE SINGULAR POINTS

We consider surfaces with corank one singular points from the view point of one-parameter
families of framed curves.
If (0,0) is a corank one singular point of x, then

z(u,v) = (u, f(u,0),9(u,v)) or @(u,v) = (v, f(u,v), g(u,v))

around (0,0) by using a parameter change (a one-parameter parameter change).

Theorem 4.1. Let x : U — R3 be a smooth mapping and p € U be a corank one singular point.
Suppose that x is given by the form x(u,v) = (u, f(u,v), g(u,v)).

(1) There exists a smooth mapping (vi',vy) : U — A such that (z,v, vy) is a one-parameter
family of framed curves with respect to u.

(2) If there exist smooth functions ki,ka : U — R such that (k1 (u,v), k2(u,v)) # (0,0) and
k1 (u,v) fy(u,v) + ka(u,v)gy(u,v) = 0 for all (u,v) € U, then there exists a smooth mapping
Wy, v3) - U — A such that (z,v],V3) is a one-parameter family of framed curves with respect
to v. Conversely, if there exists a smooth mapping (V¥,v3) : U — A such that (x,v],13) is a
one-parameter family of framed curves with respect to v, then there exist smooth function germs
k1, ko : (U,p) — R such that (k1(u,v), ka(u,v)) # (0,0) and k1(u,v) fo(u, v)+k2(u,v)gy(u,v) =0
around p.

Proof. (1) Since @, (u,v) = (1, fu(u,v), gu(u,v)), we consider smooth mappings
(_fu(u7 U)) 17 O) Vu(u U) — (_gu(u; ’U)a _fu(u7 U)gu<u7 U)a 1 + f'g(ua U))

T f2lwe) 2 VO R 0) + g3 (o) (4 fE(w,0)
By a direct calculation, we have

Vi (u,v) =

Ty (u,v) - V) (u,v) =0, x,(u,v) vy(u,v) =0, and vi(u,v) vy(u,v) =0
for all (u,v) € U. Hence, (z,v{,14): U — R3 x A is a one-parameter family of framed curves
with respect to wu.
(2) Since z,(u,v) = (0, f,(u,v), g»(u,v)), we consider smooth mappings
(0, k1 (u,v), ka(u, v))
VE3 (u,v) + k3 (u,v)

vy (u,v) = , vy (u,v) = (1,0,0).

By a direct calculation, we have
Ty(u,v) - v](u,v) =0, x,(u,v)- -vy(u,v) =0, and v} (u,v)- vy (u,v)=0

for all (u,v) € U. Hence, (z,v¥,18) : U — R® x A is a one-parameter family of framed curves
with respect to v.

Conversely, suppose that (z, v}, 18) : U — R3 x A is a one-parameter family of framed curves
with respect to v. We denote

vi (u,0) = (V11 (1, 0), 175 (u, v), vis(u, v))

and v3 (u,v) = (V3 (u, v), V35 (u, v), V35 (u,v)). It follows that

mv(ua ’U) vy (’LL U) = VfQ(“v v)fv(u, U) + VfS(u’ U)gv(uv U) =0,
T (u,v) - vy (u,0) = v (u, v) fo(u,v) + vi3(u, v)go (u, v) = 0.
If (v95(p),vi5(p)) # (0,0), then (vfy(u,v),vis(u,v)) # (0,0) around p. If we consider

(
(k1, k2) = (V¥y, v]3), then the condition is satisfied. On the other hand, if (v75(p), vi5(p)) = (0,0),
then v} (p) = (£1,0,0). Since v} (p) - v3(p) = 0, we have (v3,(p), ¥¥3(p)) # (0,0). It follows that
(V5 (u, v), V¥5(u, v)) (0,0) around p. If we consider (k1,ks) = (35, V%;), then the condition is
satisfied. O



42 TOMONORI FUKUNAGA AND MASATOMO TAKAHASHI

Remark 4.2. Suppose that = : U — R? is given by x(u, v) = (u, f(u,v), g(u,v)) and there exists
a smooth mapping (v7,v3) : U — A such that (x,v],1d) is a one-parameter family of framed
curves with respect to v. Then (f,g) : U — R? is a one-parameter family of frontal curves with
respect to v around p € U. For definition and properties of one-parameter families of frontal
curves (Legendre curves) see [16, 32]. Conversely, if (f,g) : U — R? is a one-parameter family
of frontal curves with respect to v, then there exists a smooth mapping (v},v3) : U — A such
that (a,v?,1y) is a one-parameter family of framed curves with respect to v by Theorem 4.1.
Also see [18].

Proposition 4.3. (1) Let (z, 1%, v%) : U — R3 x A be given by x(u,v) = (u, f(u,v), g(u,v)),

(_fu(uvv)’LO) V”(u ’U) _ <_gu<uvv)v_fu(uvv)gu(uav)71+f12¢(uvv)).
L) 2 VO o) + g2 (w )L+ 2 (,v))

vi'(u,v) =

Then the curvature of the one-parameter family of framed curves with respect to u,
(x, V3, 1Y) is given by

Juu (1, 0)gu (u, v)

(u,v) = v, (u,v) - vy (u,v) = )
(u,0) (wo0) ) = ) T+ 2 (00) * 920a,0)
m%(u,v) = v¥ (u,v) - u“(u,v)= —fuu(u,v)
(w0) = il o) i) = e e+ 2w ) T 2 ()
nu(u 1}) _ Vg (u U) ) Hu(u ’U) _ —guu(U,U) + fuu(uvv)fu(ua v)gu(u,v) - fg(uvv)guu(ua U)

(L4 f3(u,v) + g3 (u,0)) /1 + f3(u,v)
au(u’v) = :cu(u7v)~p,“(u,v):\/1—|—f5(u7v)+gz(u,v),
Juv(u,v)gu(u,v)

LY(u,v) = viy(u,v)- vy(u,v) = )

() () ) = e o)+ 2(00) + g0 0)

u u u _fuv(ua U)
M"(u,v) = vi,(u,v)- U, v) = )

(u.0) (o) ) = e o)L + F2(u.0) + 92(0.0))

Un) = U () - . v) — fgm,(u,v) +.fuv(uav)fu(uv U)gu(uvv) - 5(U,U)gm,(u, U)
Niw o) = iyl v) () (L1 £2(0) + 43w, 0) /1§ 20, 0) |
Pru) = o) v o) = o)

VI+ fE )
—fu (1, v)gu (v, v) fo (1, v) + go(u, v) + £ (u, 0)g5 (u, v)
VA 2 w,0) (A + f2(u,0) + g2 (u,v))
fulw, ) fu(u, ) + gu(u, v)go (u, v)
VI+ o)+ g2(ue)

Q% (u,v) = xy(u,v) - vy(u,v) =

)

Ru(ua U) = Ty (U, U) : /“u(uv 'U) -

(2) Suppose that there exist smooth functions ki, ks : U — R such that (k1 (u,v), ka(u,v)) # (0,0)
and ki (u,v) fo(u,v) + ka(u,v)gy(u,v) = 0 for all (u,v) € U. Let (x,v¥,v3) : U — R3 x A be
given by x(u,v) = (u, f(u,v), g(u,v)),

v (u,v) = (0, ki (u, v), ka(u, v)) v¥(u,v) = (1,0,0
1( ’ ) \/k%(u,v)+k§(u,v)7 2( ’ ) (, ’ )
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Then the curvature of the one-parameter family of framed curves with respect to v, (¢, vy, vy) is
given by

C(uy,v) = v, (u,v) - vg(u,v) =0,

v o () = k1o (u, 0)ka(u, v) — kay (u, v) k1 (u, v)
e = ey ) = T G ) TR )
n'(u,v) = vy(u,v)- p’(u,v) =0,

o (u. v = z.(uv) - ul(u.v) = kQ(u’v)fv(uvv)_kl(uvv)gv(u’v)
(u,v) v(u,v) - p¥(u,v) N TR ;
LY (u,v) = v}, (u,v) vy (u,v) =0,

)

v () = k1o (u, 0) ko (u, v) — kay (u, v) k1 (u, v)
) = v, (u,v) - p(u,v) (k2 (u,v) + k2(u,v)) )
)
)

= vy, (u,v) - pu’(u,v) =0,

= x,(u,v) v (u,v) = Sulu, )y (u,v) + g (u, v) ke (u, v),

VR, 0) + 3w, 0)

Qv(ua U) = mu(u,v) . V;(U,U) =1,
Sulu, )k (u,v) — gy (u, v)ki (u, v)
VE (u,v) + k3 (u, v) '

R’ (u,v) = my(u,v)- - p’(u,v) =

Proof. (1) By definition, we have

Y(u,v) = vi'(u,v) x v¥(u,v) = (L, fu(u,v), gu(w, v)) ,
”(7 ) 1(’ )X 2(7 ) \/1+f3(u7v)+gﬁ(u,v)

By a direct calculation, we have the curvature.
(2) By definition, we have

(0, ka(u,v), —kl(u,v))-
V3 (u,v) + k3(u,v)

By a direct calculation, we have the curvature. O

w’(u,v) = Vi (u,v) X vy (u,v) =

For the surface x(u,v) = (u, f(u,v), g(u,v)), if we consider a parameter change
d(u,v) = (u+v,v),
then we have x o ¢(u,v) = (u+ v, f(u, v), §(u,v)). Then we have the following corollary.
Corollary 4.4. Let x : U — R3 be a smooth mapping given by the form
x(u,v) = (u+ v, f(u,v), g(u,v)).

Then there exist smooth mappings (V¥,vy) : U — A and (v],vy) : U — A such that (x, v}, VY)
and (x, v}, V) are one-parameter families of framed curves with respect to u and v, respectively.

By a similar calculation of Theorem 4.1 (2), we also have the following result (cf. [23, Propo-
sition 3.4]).

Proposition 4.5. Let © : U — R3 be a smooth mapping and p € U be a corank one singular
point. Suppose that x is given by the form x(u,v) = (u, f(u,v), g(u,v)). Then there exist smooth
functions k1, ko : U — R such that (k1 (u,v), ka(u,v)) # (0,0) and

ki (u,v) fo(u, v) + ka(u, v)go (u,v) = 0

for all (u,v) € U if and only if there exists a smooth mapping n : U — S? such that (z,mn) is a
Legendre surface.
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Proof. Suppose that ki (u,v)f,(u,v) + ka(u,v)g,(u,v) = 0 for all (u,v) € U. Since
and z, (u,v) = (0, f,(u,v), gy (u,v)), we define n : U — S? by
n(u ’U) _ (_kl (uv v)fu(ua 'U) — kQ(ua v)gu(uv U)v kl(uv U)v k?(uv ’U))
’ \/(kl (uv U)fu (U, U) + k2 (u7 v)gu(uv U))2 + k%(uv ’U) + k% (uv ’U)
Then x,(u,v) - n(u,v) = 0 and x,(u,v) - n(u,v) = 0 for all (u,v) € U. Hence, (z,n) is a
Legendre surface.
Conversely, suppose that (z,n) : U — R3 x S? is a Legendre surface. We denote

n(u,v) = (n1(u,v),na(u,v),n3(u,v)).

By definition, we have

T, (u,v) - nlu,v) = ni(u,v) + fulu,v)ne(u,v) + gu(u,v)ns(u,v) =0,

Ty (u,v) - n(u,v) = fulu,v)na(u,v) + gy(u,v)ng(u,v) = 0.
If no(u,v) = nz(u,v) = 0, then ni(u,v) = 0. It contradicts the fact that n(u,v) € S2. Hence
(na(u,v),n3(u,v)) # (0,0) for all (u,v) € U and fy,(u,v)na(u,v) + g, (u, v)nz(u,v) = 0. O

By Theorem 4.1 (2) and Proposition 4.5, we have the following corollary.

Corollary 4.6. Let x : (U,p) — R3 be a smooth mapping germ and p be a corank one singular
point. Suppose that x is given by the form x(u,v) = (u, f(u,v),g(u,v)). The following are
equivalent:

(1) There exists a smooth mapping germ (V§,vy) : (U,p) — A such that (xz,v],vy) is a
one-parameter family of framed curves with respect to v.

(2) There exists a smooth mapping germ n : (U,p) — S? such that (x,mn) is a Legendre
surface.

(3) There exists a smooth mapping germ (n,s) : (U,p) — A such that (x,m,s) is a framed
surface.

We consider concrete examples of one-parameter families of framed curves. We give cuspidal
edges, swallowtails and cuspidal cross caps which are generic singularities of frontals. Since these
are frontals, they are also framed surfaces at least locally. Moreover, we consider cross caps and
ruled surfaces as one-parameter families of framed curves.

We say that a singular point of a mapping & : U — R? is a cuspidal edge (respectively,
swallowtail, cuspidal cross cap or cross cap) if x at the point is A-equivalent to the map germ
(u,v) = (u,v?v3) (respectively, (u,4v® + 2uv, 3v* + uv?), (u, v?, uv?®) or (u,uv,v?)) at (0,0).

Let & : U — R? be the frontal of a Legendre surface (x,n), where U is a domain in R?. We
define the discriminant function A : U — R by A(u,v) = det(xy, z,, n)(u,v) where (u,v) is a
coordinate system on U. When a singular point p of @ is non-degenerate, that is, dA(p) # 0,
there exists a smooth parametrization d(¢) : (—e,e) — U, 6(0) = p of the singular set S(x).
We call the curve 6(¢) the singular curve of &. Moreover, there exists a smooth vector field 7(t)
along ¢ satisfying that 7(t) generates ker das().

Remark 4.7. If a singular point p is non-degenerate of (z,n), then p is also of corank one.
Hence x is a one-parameter family of framed base curves around p.

A non-degenerate singular point p is called of first kind (respectively, of second kind) if
nA(p) # 0 (respectively, nA(p) = 0 and nmA(p) # 0), see [29, 21].

Now we define a function ¢,(t) on (—e¢,€) by ¢,(t) = det((xod)’,nod,dn(n))(t). Using these
notations, we have the following result (see [15] for example).
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Theorem 4.8 ([4], [17]). Let (x,n) : U — R3 be a Legendre surface and p € U be a non-
degenerate singular point of . Then the following assertions hold.

(1) If nA(p) # 0, then x to be a front near p if and only if ¢, (0) # 0 holds.

(2) The map germ x at p is A-equivalent to the cuspidal edge if and only if x to be front near
p and nA(p) # 0 hold.

(3) The map germ x at p is A-equivalent to the swallowtail if and only if x to be front near
p and nA(p) = 0 and nmA(p) # 0 hold.

(4) The map germ x at p is A-equivalent to the cuspidal cross cap if and only if n\(p) # 0,
¢(0) =0 and ¢.,(0) # 0 hold.

Here, n\ : U — R means the directional derivative of X by the vector field 7, where 1 is an
extended vector field of n to U.

4.1. First kind singularities. We consider first kind singularities. A normal form of the first
kind singularities is given in [24].

Proposition 4.9 (R. Oset Sinha, K. Saji [24]). Let f : (R?,0) — (R3,0) be a frontal with
a normal unit vector field v. Let 0 be a singular point of the first kind. Then there exist a
coordinate system (u,v) on (R2,0) and an isometry germ ® : (R3,0) — (R3,0) satisfying that

2

Do fu,v) = <u,a(u) + %

where a, bg, by, by, bg be smooth functions satisfying that a(0) = a’(0) = be(0) = b, (0) = b1(0) = 0.

,bo(u) + by (w)v? + by (u)v® + bz (u, 11)1)4) )

By using Proposition 4.9, we have the following.

Proposition 4.10. Let z : (R%,0) — (R3,0) be given by x(u,v) = ®o f(u,v) in Proposition 4.9.
Then there exist smooth mappings (V¥ v%) : (R?,0) — A and (v{,v8) : (R%,0) — A such that
(z, v, vY) and (2,7, 18) : (R%,0) — R3 x A are one-parameter families of framed curve germs
with respect to u and v, respectively.

Proof. By Theorem 4.1 (1), there exists a smooth mapping (v¥, %) : (R?,0) — A such that
(z, v}, V¥) is a one-parameter family of framed curve germs with respect to w.
We denote

fuv) = afu)+ 3,

g(u,v) = bo(u) + by(w)v? + by(u)v® + bz(u, v)v?.
Then f,(u,v) = v and g,(u,v) = 2b1(u)v + 3ba(u)v? + by (u,v)v* + 4bz(u,v)v3. Hence, if
we consider ki(u,v) = 2b1(u) + 3ba(u)v + bz, (u,v)v> + 4bz(u,v)v? and ko(u,v) = —1, then

(k1(u,v), ko (u,v)) # (0,0) and kq (u,v) fy(u,v) + k2(u, v)gy(u,v) = 0. By Theorem 4.1 (2), there
exists a smooth mapping (v7,13) : (R?,0) — A such that (z,¥,vy) is a one-parameter family
of framed curve germs with respect to v. o

We treat cuspidal edges and cuspidal cross caps as concrete examples of the first kind singu-
larities in the following. A normal form of the cuspidal cross cap is given in [24]. They consider
folding mappings. Here we give the following normal form similarly to cuspidal edges in [20].

Theorem 4.11. (1) [L. Martins, K. Saji [20]] Let f : (R%,0) — (R?0) be a cuspidal

edge germ. Then there exist a diffeomorphism germ ¢ : (R%,0) — (R%,0) and isometry germ
® : (R3,0) — (R3,0) satisfying that

4 1 b b bosz -
Do fop(u,v)= (u, %UQ + %u‘g + 51)2, %uQ + %U’UZ + 2531)5) + h(u,v)
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(bos # 0,b29 > 0), where
h(u,v) = (0,u*hy (u), u*ha(u) + u?v*hz(u) + vvhy(u) +v°hs(u,v)),

with hy(u), ho(u), ha(u), ha(u), hs(u,v) are smooth functions.
(2) Let f: (R%,0) — (R3,0) be a cuspidal cross cap germ. Then there exist a diffeomorphism
germ ¢ : (R?,0) — (R2,0) and isometry germ ® : (R3,0) — (R3,0) satisfying that

az0 o a3o0 3 a40 4
@ofoqb(u,v) = <u,2u+6u—|—24 +72
—;O u? + —20 ud + —24: ut + —;2 w? + —(1; w® + 20: 4) + h(u,v),

(b13 # 0,b29 > 0), where
h(u,v) = (0,u’hy (u), u’ha(u) + wdv?hs(u) + u?v3hy(u,v) + v7hs(v)),
with hyi(u), ho(u), ha(u), ha(u,v), hs(v) are smooth functions.

Proof. (2) Let f: (R%,0) — (R3,0) be a cuspidal cross cap germ and v be a unit normal of f.
By using the same method in [20], we may assume that a null vector field 7 is given by the form
Oy on S(f) and the singular curve 6(¢) is given by the form (¢,0). Moreover, we may assume
that

(5) Flu,v) = (u, a1 () +0°/2,b1(w) + v*ba(u) + 0’03 (u, v)),
where ay, b1, by and b3 are smooth functions, a;(0) = a}(0) = b1(0) = b7(0) = b2(0) = 0 and a}

means the derivation of a; with respect to u for example. By a direct calculation, we obtain

v(u,v) = N(u,v)v(u,v) where
v(u,v) = (a)(u)(2b2(u) + 3vbs
—(2ba(u) + 3vbs(u, v

w,v) + 023 4 (u,v)) — (B (u) + 20y (u) + v3b3.0 (u, v)),
+ U2b37v(u, v)),1)

and N (u,v) = 1/|v(u,v)|. Then ¢¢(t) = det(f(¢,0),v(t,0),v,(¢,0)) = 3N (t,0)b3(t,0). Since
f is not a front and Theorem 4.8 (1), we have ¢¢(0) = 3b3(0,0) = 0, that is, b3(0,0) = 0.
Moreover, under this condition, ¢';(t) = 3N (t,0)b3.(t,0). Since f is a cuspidal cross cap germ
and Theorem 4.8 (4), we have ¢/;(0) = 3N(0,0)b3.,(0,0) # 0, that is, b3,(0,0) # 0. Hence,
we have b3(u,v) = wag(u,v) + byg(v), where ay and by are smooth functions, a4(0,0) # 0 and
b4(0) = 0. Substituting this equation to (5), we have

(
)

flu,v) = (u,a1(u) + v2/2, by (u) 4 v2bo(u) + u1)3a4(u, v) + v3b4(1})),

where a1(0) = a}(0) = b1(0) = b1(0) = b2(0) = by(0) = 0 and a4(0,0) # 0. By rotations
(u,v) = (—u,—v) and (z,y,z) — (—z,y,2), we may assume b} (0) > 0. Summarizing up the
above argument, we have the normal form of cuspidal cross cap. m|

By Corollary 4.6, or by using Theorem 4.11, we have the following.

Proposition 4.12. Let x : (R?,0) — (R3,0) be given by x(u,v) = ®o fogp(u,v) in Theorem 4.11
(1) or (2). Then there exist smooth mappings (v, v¥) : (R%,0) — A and (v¥,v3) : (R%,0) — A
such that (x, V%, V%) and (z,v¥,vy) : (R?,0) — R3 x A are one-parameter families of framed
curve germs with respect to u and v, respectively.
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4.2. Second kind singularities.

Proposition 4.13 (K. Saji [29]). For any functions g and h satisfying G,.»(0,0) > 0,
g(0,0) = h(070) = 07 gu(0,0) Gov ( ) - 07 h ( ? ) hUU(OaO) - O and hUU’U(Ovo) - 0’

o) = (1 (% =) gl ) = v 0) + glu0),

is a frontal satisfying that 0 is a singular point of the second kind, and f,,(0,0) = (1,0,0), a null
vector field n = ,, the singular set S(f) = {v?/2 —u = 0}. Moreover, if hyyyy(0,0) # 0, then
0 is a swallowtail. Conversely, for any singular point of second kind p of a frontal f : U — R3,
there exists a coordinate system (u,v) on U, and an orientation preserving isometry ® on R3
such that ® o f(u,v) can be written in the above form.

By using Proposition 4.13, we have the following.

Proposition 4.14. Let x : U — R3 be given by z(u,v) = ® o f(u,v) in Proposition 4.13. Then
there exist smooth mappings (Vi vy) : U — A and (v¥,v3) : U — A such that (x,v¥,vy) and
(z,v?,08) : U — R3 x A are one-parameter families of framed curve germs with respect to u
and v around p, respectively.

Proof. By Theorem 4.1 (1), there exists a smooth mapping (v¥,14) : U — A such that
(z, v}, V¥) is a one-parameter family of framed curve germs with respect to w.
By a direct calculation, we have

i) = (0. (5 =) gt (=) Bl

Since gyyy(0,0) > 0, we have gy, (u, v) # 0 around p € U. Hence, if we consider (k1 (u,v), k2(u, v))
= (—hyoo (U, V), Gopw (1, v)), then (k1 (u,v), ka(u,v)) # (0,0) and
k1 (u,v) fy(u,v) + ka(u,v)gy(u,v) = 0.

By Theorem 4.1 (2), there exists a smooth mapping (v{,v%) : U — A such that (x,v},v3) is a
one-parameter family of framed curve germs with respect to v around p. O

4.3. Cross caps. The cross cap map germ is not a frontal. However, the generic singularities
from 2-dimensional manifolds to 3-dimensional one are cross caps. In [6, 34, 11], they investigate
cross caps from the view point of differential geometry.

Proposition 4.15 (J. M. West [34], T. Fukui, M. Hasegawa [6]). Let g : (R%,0) — (R3,0)
be a smooth map with a cross cap at (0,0). Then there are a rotation T : R® — R? and a
diffeomorphism ¢ : (R?,0) — (R?,0) so that
k
Togog(u,v) = |uuv+ B)+O0(w,v)"",> " Aj(u,v) + O(u,v)" ™ | (k>3),
Jj=2

where

k J
bi i Gi,j—i i
523 oY and Aj(u,v) = ; 00— z)'u I with agy # 0.

<.

By Theorem 4.1 (1), we have the following.
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Proposition 4.16. Let © : U — R3 be given by x(u,v) = T o g o ¢(u,v) in Proposition 4.15.
Then there exists a smooth mapping (v, v8) : U — A such that (z, v, v8) : U — R3 x A is a
one-parameter family of framed curve germs with respect to u.

Moreover, the A-simple singularities of a map from a 2-dimensional manifold to a 3-dimensional
one are also of corank one, see [22]. These are also one-parameter families of framed base curves.

4.4. Ruled surfaces. We consider ruled surfaces as follows. Let v : I — R? be a smooth curve
and (§,v) : I — A a spherical Legendre curve with the curvature (m,n), see §2.2 (cf. [31]). We
define a ruled surface  : R x I — R3 by x(u,v) = v(v) + ud(v). We denote u(v) = §(v) x v(v).

Since ruled surfaces are constructed by a one-parameter family of straight lines, these are
one-parameter families of framed curves.

Proposition 4.17. Under the above notations, there exists a smooth mapping
(v V) :Rx1— A

such that (x, v}, vy¥) is a one-parameter family of framed curves with respect to u with the cur-
vature

(e (u,v), m*(u,v),n"*(u,v), " (u,v), L*(u,v), M*(u,v), N*(u,v), P*(u,v), Q“(u,v), R*(u,v))
= (0,0,0,1,n(v),0, —m(v),¥(v) - v(v),¥(v) - w(v) + um(v),¥(v) - §(v)).
Proof. Since @, (u,v) = §(v), if we take v¥(u,v) = v(v), v&(u,v) = pu(v), then
(x, % v8) :Rx T —R>x A

is a one-parameter family of framed curves with respect to u. By a direct calculation, we have
the curvature. O
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JET BUNDLES ON GORENSTEIN CURVES AND APPLICATIONS

LETTERIO GATTO AND ANDREA T. RICOLFI

Dedicated to Professor Goo Ishikawa, on the occasion of his 60th birthday

ABSTRACT. In the last twenty years a number of papers appeared aiming to construct locally
free replacements of the sheaf of principal parts for families of Gorenstein curves. The main
goal of this survey is to present to the widest possible mathematical audience a catalogue of
such constructions, discussing the related literature and reporting on a few applications to
classical problems in Enumerative Algebraic Geometry.

0. INTRODUCTION

The purpose of this expository paper is to present a catalogue of locally free replacements of
the sheaves of principal parts for (families of ) Gorenstein curves. In the smooth category, locally
free sheaves of principal parts are better known as jet bundles, understood as those locally free
sheaves whose transition functions reflect the transformation rules of the partial derivatives of a
local section under a change of local coordinates (more details in Section 1.4). Being a natural
globalisation of the fundamental notion of Taylor expansion of a function in a neighborhood of
a point, jet bundles are ubiquitous in Mathematics. They proved powerful tools for the study
of deformation theories within a wide variety of mathematical situations and have a number of
purely algebraic incarnations: besides the aforementioned principal parts of a quasi-coherent
sheaf [28] we should mention, for instance, the theory of arc spaces on algebraic varieties [10, 40],
introduced by Nash in [44] to deal with resolutions of singular loci of singular varieties.

The issue we want to cope with in this survey is that sheaves of principal parts of vector
bundles defined on a singular variety X are not locally free. Roughly speaking, the reason is that
the analytic construction carried out in the smooth category, based on gluing local expressions
of sections together with their partial derivatives, up to a given order, is no longer available.
Indeed, around singular points there are no local parameters with respect to which one can take
derivatives. This is yet another way of saying that the sheaf Q% of sections of the cotangent
bundle is not locally free at the singular points.

If C is a projective reduced singular curve, it is desirable, in many interesting situations, to
dispose of a notion of global derivative of a regular section. If the singularities of C' are mild,
that is, if they are Gorenstein, locally free substitutes of the classical principal parts can be
constructed by exploiting a natural derivation ¢ — w¢, taking values in the dualising sheaf,
which by the Gorenstein condition is an invertible sheaf. This allows one to mimic the usual
procedure adopted in the smooth category. Related constructions have recently been reconsidered
by A. Patel and A. Swaminathan in [46], under the name of sheaves of invincible parts, motivated
by the classical problem of counting hyperflexes in one-parameter families of plane curves. Besides
loc. cit., locally free jets on Gorenstein curves have been investigated by a number of authors,

The first author was partially supported by INDAM-GNSAGA and by PRIN “Geometria sulle varieta
algebriche”. The visit of the first author to Stavanger and of the second author to Torino was supported by the
grant “Finanziamento Diffuso della Ricerca” no. 53_RBA17TGATLET by Politecnico di Torino and “Progetto di
Eccellenza del Dipartimento di Scienze Matematiche”, 2018-2022 no. E11G18000350001.
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starting about twenty years ago [35, 36, 34, 18, 25]. The reader can consult [19, 26, 20], and the
references therein, for several applications.

0.1. The role of jet bundles in Algebraic Geometry. The importance of jet extensions
of line bundles in algebraic geometry emerges from their ability to provide the proper flexible
framework where to formulate and solve elementary but classical enumerative questions, such as:

(i) How many flexes does a plane curve possess?
(ii) How many members in a generic pencil of plane curves have a hyperflex?
iii) How many fibres in a one-parameter family of curves of genus 3 are hyperelliptic?

) What is the class, in the rational Picard group of Mg, the moduli space of stable curves
of genus g, of the closure of the locus of smooth curves possessing a special Weierstrass
point?

1v

(
(

We will touch upon each of these problems in this survey report.

0.2. Wronskian sections over Gorenstein curves. A theory of ramification points of linear
systems on Gorenstein curves was proposed in 1984 by C. Widland in his Ph.D. thesis, also
exposed in a number of joint papers with Robert F. Lax [53, 52]. The dualising sheaf we on an
integral curve C, first defined by Rosenlicht [49] via residues on the normalisation C, can be
realised as the sheaf of regular differentials on C, as explained by Serre in [50, Ch. 4 § 3]. There
is a natural map Qf — wc allowing one to define a derivation d: ¢ — we, by composition
with the universal derivation 0c — Q. Differentiating local regular functions by means of
this composed differential allowed Widland [51] and Lax to define a global Wronskian section
associated to a linear system on a Gorenstein curve C, coinciding with the classical one for
smooth curves.

As a quick illustration of how such construction works, consider a plane curve ¢: C — P2 of
degree d, carrying the degree d line bundle 0¢ (1) = t*Opz(1). The Wronskian by Widland and
Lax vanishes along all the flexes of C', but also at singular points. The total order of vanishing
equals the number of flexes on a smooth curve of the same degree. For example, if C' is an
irreducible nodal plane cubic, the Wronskian associated to the bundle & (1) would vanish at
three smooth flexes, but also at the node with multiplicity 6. If C' were cuspidal, the Wronskian
would vanish at the unique smooth flex, and at the cusp with multiplicity 8. In all cases the
“total number” (which is 9) of inflection points is conserved.

In sum, the Wronskian defined by Widland and Lax is able to recover the classical Pliicker
formula counting smooth flexes on singular curves, but within a framework that is particularly
suited to deal with degeneration problems, provided one learns how to extend it to families. For
families of smooth curves, as pointed out by Laksov [33], the Wronskian section of a relative line
bundle should be thought of as the determinant of a map from the pullback of the Hodge bundle
to a jet bundle. The theory by Widland and Lax, however, was lacking a suitable notion of jet
bundles for Gorenstein curves, as Ragni Piene [47] remarked in her AMS review of [53]:

“This (Widland and Lax) Wronskian is a section of the line bundle

s ®(s—1)s/2
e ®wd s—1)s

)

where s := dim H°(X,L). They define the section locally and show that it
patches. (In the classical case in which X is smooth, one easily defines the
Wronskian globally, by using the (s — 1)st sheaf of principal parts on X of L.
To do this in the present case, one would need a generalisation of these sheaves,
where w plays the role of Q4. Such a generalisation is known only for s = 2.)”
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These generalisations are nowadays available in the aforementioned references. In the last two
sections we will present a few applications and open questions arising from the use of such an
extended notion of jet bundles for one-parameter families of stable curves.

0.3. Overview of contents. In the first section we describe the construction of principal
parts, jet bundles (with a glimpse on an abstract construction by Laksov and Thorup) and
invincible parts by Patel and Swaminathan. In Section 2 we describe two applications of locally
free replacements: the enumeration of hyperflexes in families of plane curves via automatic
degeneracies [46], and the determination of the class of the stable hyperelliptic locus in genus 3
[19]. In Section 3 we define ramification points of linear systems on smooth curves; we introduce
the classical Wronskian section attached to a linear system and state the associated Brill-Segre
formula. In Section 4 we describe a generalisation to Gorenstein curves, due to Lax and Widland.
In Section 5 we review the main ingredients needed in the computation of the class in Pic(M,)®Q
of the locus of curves possessing a special Weierstrass point as in [26]. In Section 6 we propose a
few examples and some natural but still open questions.

Conventions. All schemes are noetherian and defined over C. Any scheme X comes equipped
with a sheaf of C-algebras Ox. If U C X is an open subset in the Zariski (resp. analytic) topology,
then Ox(U) is the ring of regular (resp. holomorphic) functions on U. A curve is a reduced,
purely 1-dimensional scheme of finite type over C. We denote by K¢ the canonical line bundle of
a smooth curve C. In the presence of singularities, we will write we for the dualising sheaf. We
denote by QL the sheaf of relative Kihler differentials on a (flat) family of curves 7: X — S.

Acknowledgment. Both authors are grateful to the anonymous referee for carefully reading
the paper and for providing valuable comments, that definitely improved the shape of the paper in
terms of clarity and readability. The first author is also indebted to Professor Stanistaw (Staszek)
Janeczko for encouraging support. The second author wishes to thank Max-Planck Institut fir
Mathematik for support.

This paper is dedicated to Professor Goo Ishikawa, on the occasion of the celebration (Goo
'60) of his sixtieth birthday, wishing him many more years of new beautiful theorems.

1. PRINCIPAL PARTS, JETS AND INVINCIBLE PARTS

This first section is devoted to recall the definition and properties of the sheaves of principal
parts and to introduce a couple of related constructions: jets of vector bundles, especially those
of rank 1, and the Patel-Swaminathan invincible parts. We start by giving the general idea of
jets, which blends their analytic construction with the algebraic presence of the dualising sheaf.

These constructions lead to the technique of locally free replacements of principal parts
for families of curves with at worst Gorenstein singularities. They are intended to deal with
degenerations of ramification points of linear systems in one parameter families of curves of fixed
arithmetic genus. In fact, in Section 2 we shall give two applications to see the theory in action:
the count of hyperflexes in a pencil, as performed in [46], and the determination of the class of
the stable hyperelliptic locus in genus 3, as worked out by Esteves [19].

1.1. The idea of jets. Our guiding idea is the following ansatz, which we shall implement below
only in the case of algebraic curves. Let X be a (not necessarily smooth) complex algebraic
variety of dimension r. If X is not smooth, the sheaf of differentials Q% is not locally free. Even
in this case it is possible to construct, in a purely algebraic fashion, the sheaf of principal parts
(see Section 1.3) attached to any quasi-coherent sheaf .#. If X is singular, this sheaf is not
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locally free (even if .# is locally free), and this makes harder its use even to solve elementary
enumerative problems. But suppose one has an &x-module homomorphism ¢: Q% — .#, where
M is a locally free sheaf of rank » = dim X. This induces a derivation d: &x — .# obtained by
composing ¢ with the universal derivation &y — Q1 attached to X. Let P € X be a point and
U an open neighborhood of P trivialising .#, that is,

MU)=0U) m1 & & OU) m,.

Such a trivialisation allows one to define partial derivatives with respect to the generators
mi,...,m, € #(U). In the smooth case, and taking .# = Q, these generators can just
be taken to be the differentials of a local system of parameters around P. Following an idea
essentially due to Lax and Widland, one defines for each f € O(U) its “partial derivatives”
d;f € €(U) by means of the relation

T
df=> dif -m;
i=1
in .4 (U). Tterating this process in the obvious way, one can define higher order partial derivatives
(with respect to my, ..., m,), and thus jet bundles, precisely as in the smooth category.

1.2. Dualising sheaves. This technical section can be skipped at a first reading. It will be
applied below in special cases only, but it is important because it puts the subject in the
perspective of new applications.

Any proper flat family of curves 7: X — S has a dualising complex w;, = ' Og. Here 7' is
the right adjoint to Rm.. The cohomology sheaf of the dualising complex

Wr = h_l(w;r%

in degree —1 (where 1 is the relative dimension of 7) is called the relative dualising sheaf of the
family. Its formation commutes with arbitrary base change; for instance, we have

wﬂ‘xs = WX,
for X, = 7—1(s) a fibre of 7.

Example 1.1. Let 7: X — S be a local complete intersection morphism. This means that there
is a factorisation 7: X — Y — S with ¢: X — Y a regular immersion and Y — S a smooth
morphism. Then one can compute the dualising sheaf of 7 as

(1.1) wr = det(I/I?)Y @gy i det Qy /g,

where .# C Oy is the ideal sheaf of X in Y. Every curve in a smooth surface is a local complete
intersection scheme. For instance, if i: C' < P2 is a plane curve of degree d, the ideal sheaf of
is Op2(—d) and so (1.1) yields

we = ﬁc(d) Ko 1% det Q]%,z = ﬁc(d — 3).

Definition 1.2. A (proper) C-scheme X is said to be Cohen—Macaulay if its dualising complex
wYy is quasi-isomorphic to a sheaf. When this sheaf, necessarily isomorphic to wx, is invertible,
X is called Gorenstein.

For a proper flat morphism 7: X — S, the relative dualising sheaf w, is invertible precisely
when 7 has Gorenstein fibres.
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1.3. Principal parts. Sheaves of principal parts were introduced in [28, Ch. 16.3]. Let 7: X — S
be a morphism of schemes, .# the ideal sheaf of the diagonal A: X — X X g X and denote by
QL = A*(#/.#?) the sheaf of relative Kihler differentials. Let p and ¢ denote the projections
X x5 X — X, and denote by A, C X xg X the closed subscheme defined by .#**1, for every
k > 0. Then, for every quasi-coherent &x-module E, the sheaf

Pi(E) =p(¢"E® On,)

is quasi-coherent and is called the k-th sheaf of principal parts associated to the pair (w, E).
When S = Spec C we simply write P¥(E) instead of P¥(E).

PROPOSITION 1.3. Let w: X — S be a smooth morphism, E a quasi-coherent Ox-module.
The sheaves of principal parts fit into right exact sequences

E®Sym*Ql - P*(E) - PFY(E) - 0

for every k > 1. If E is locally free then the sequence is exact on the left, and P¥(E) is locally
free for all k > 0.

ProoF. Consider the short exact sequence
0— Ik g & Op, — On, , — 0.
Tensoring it with ¢*E gives an exact sequence
(1.2) BRI 7" S *E® On, — ¢"E® Oa,_, — 0.

The sheaf ¢*E ® .#% /.#%+1 is supported on the diagonal Ag C X xg X, and the same is true for
its quotient 2 := (¢*F ® %/ #*+1)/kere C ¢*E ® O, . Since p|a, is an isomorphism, we have
Rip,.Z = 0 for all i > 0 and all sheaves . supported on Ag. Therefore, applying p. to (1.2) we
obtain
(1.3) ps (FE® I5 ) 75 5 PE(E) —» PFY(E) —» R'p. 2 =0,
which is the required exact sequence, since
I (q*E@ ]k/ijrl) = A* (q*E@ jk/ijrl)

= A" E@ A* (5% )74

=E®A*Sym" (v/.72)

= E®Sym" QL.
We used smoothness of 7 to ensure that .# is locally generated by a regular sequence. This
allowed us to make the identification .#%/.#5+1 = Sym*(.#/.#2) in the third equality above.
If E is locally free, then (1.2) is exact on the left, and the same is true for (1.3), so that local

freeness of P¥(E) follows by induction exploiting the resulting short exact sequence and the base
case provided by PY(F) = E. O

Example 1.4. Suppose 7: X — S is smooth. Then there is a splitting P}(0x) = Ox @ QL.
For an arbitrary vector bundle E, the splitting of the first order bundle of principal parts usually
fails even when S is a point. In fact, in this case, the splitting is equivalent to the vanishing of
the Atiyah class of E, which by definition is the extension class

A(E) € Ext} (E,E® Q%)

attached to the short exact sequence of Proposition 1.3 taken with k£ = 1. But the vanishing of
the Atiyah class is known to be equivalent to the existence of a holomorphic connection on E.
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Note that for every quasi-coherent sheaf F¥ on X one has a canonical map
(1.4) v: w1 E — p.q*E — P*(E),

where the first one is an isomorphism when = is flat, and the second one comes from applying
p«(¢*E ® —) to the surjection & — O, .

Example 1.5. To illustrate the classical way of dealing with bundles of principal parts, we now
compute the number § of singular fibres in a general pencil of hypersurfaces of degree d in P™.
This calculation will be used in Subsection 2.1.2. The number ¢ is nothing but the degree of the
discriminant hypersurface in the space of degree d forms on P", which in turn is the degree of

ea(PY (G (d))) € A (P7).
By Proposition 1.3, the bundle P!(&px(d)) is an extension of Op(d) by Q. (d). The Euler
sequence
0= Qbn — Opn(=1)"T = Opn — 0
twisted by Opn(d) says that the same is true for the bundle @px(d — 1)"*!. Then the Whitney
sum formula implies that

(P (Opn(d))) = c(Opn (d — 1)) = (1 + (d - 1)¢)"*,
where ¢ € A'(P") is the hyperplane class. Computing the n-th Chern class gives
(1.5) d=(n+1)-(d—1)".

1.4. Jet bundles. Let m: X — S be a quasi-projective local complete intersection morphism of
constant relative dimension d > 0. Let Q}r be the sheaf of relative differentials, and Q;‘i its d-th
exterior power. Then there exists a canonical morphism Q% — w, restricting to the identity over
the smooth locus of 7 (see Corollary 4.13 in [39, Section 6.4] for a proof). The construction goes
as follows. Let X — Y — S be a factorisation of 7, with i : X — Y a regular immersion with
ideal .# C Oy and Y — S smooth. The exact sequence

I)I? =iy g = QL =0
induces a canonical map
py : QU @ det I /I — i det Q.
According to (1.1), tensoring py with the dual of det .# /.#2 gives a morphism Q2 — w,. It is
not difficult to see that this map does not depend on the choice of the factorisation.

A natural morphism of sheaves QL — w,, restricting to the identity on the smooth locus of T,
exists for arbitrary flat families 7: (X, z9) — (5,0) of germs of reduced curves [1, Prop. 4.2.1].
More generally, the results in [17, Sec. 4.4] show that a natural morphism
(1.6) b: Q% = w,,
can be constructed for every flat morphism 7: X — S of relative dimension d over a reduced
base S (and over a field of characteristic zero).

We now apply this construction to flat families 7: X — S of Gorenstein curves (so for d = 1),
taking advantage of the invertibility of w, in order to construct locally free jets. When dealing
with such families, we will therefore assume to be working over a reduced base, which will
be enough for all our applications. Composing ¢ with the exterior derivative homomorphism
d: Ox — QL attached to the family gives an Os-linear derivation

(1.7) dr: Ox — wy.
For every integer k > 0 and line bundle L on X, there exists a vector bundle
(1.8) Jr(L)
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of rank k + 1 on X, called the k-th jet extension of L relative to the family w. We refer to [26,
Section 2] for its detailed construction in the case of stable curves. The same construction (as
well as the proof of Proposition 1.7 below) extends to any family of Gorenstein curves as one
only uses the map Q! — w, and the invertibility of the relative dualising sheaf. The bundle (1.8)
depends on the derivation d, (although we do not emphasise it in the notation), and formalises
the idea of taking derivatives (with respect to d,) of sections of L along the fibres of . It can be
thought of as a holomorphic, or algebraic, analogue of the C* bundle of coefficients of the Taylor
expansion of the smooth functions on a differentiable manifold. When S = Spec C we simply
write J*(L).

We now sketch the construction of the jet bundle (1.8). Suppose we have an open covering
U ={U,} of X, trivialising w, and L at the same time, with generators e, € w,(U,) and
Yo € L(U,) respectively over the ring of functions on U,. Then for every non constant global
section A € H(X, L) we can write

Av., = pa - tha € L(Ua)
for certain functions p, € Ox(U,). Define operators D: : Oy — Oy inductively for i > 0, by
letting D9 (ps) = pa and by the relation
dﬂ<DZ¢_1<Poc)) = Dg(ﬂa) “€a-
It is then an easy technical step to show that over the intersection Uy = U, N Ug, the (k + 1)-
vectors (D! (pq))T and (Dg(pg))T differ by a matrix Mg € GLx11(0y,,), and that in fact the
data {M,g} define a 1-cocycle with respect to . The verification of this fact uses that d, is a
derivation. The upshot is that the vectors (D? (p,)) glue to a global section
(1.9) DR\
of a well defined vector bundle J¥(L). Moreover, the bundle obtained comes with a natural
C-linear morphism
(1.10) §: Ox — J¥(L)
such that if J¥(L)|y, is free with basis {€,,; : 0 <4 < k}, then ¢ is defined on this open patch
k i
by f= 320 Dalf) - €as
Example 1.6. When S is a point, X is a smooth projective curve, L is the cotangent bundle
QL with the exterior derivative d: Ox — QY the C-linear map (1.10) reduces to the “Taylor
expansion” truncated at order k. More precisely, let U C X be an open subset (trivialising
wx = Q%) with local coordinate x. Then we can take ¢ = dz € Q% (U) as an Ox (U)-linear

generator, and {dz’: 0 <i <k} can be taken as a basis of J*(Q%)|y. The restriction 8|y of
(1.10) then takes the form

il Ozt

where the denominator 1/i! is there for cosmetic reasons. The cocycle condition that the above
coefficients need to satisfy is equivalent to the chain rule for holomorphic functions.

k .
10 -
f'—> E Tafdmz,
i=0

Computations in intersection theory involving jet bundles often rely on the application of the
following key result.

PROPOSITION 1.7 (26, Prop. 2.5]). Let w: X — S be a flat family of Gorenstein curves. Then,
for every k > 1 and line bundle L on X, there is an exact sequence of vector bundles

(1.11) 0= Low?* = J¥L) - JY(L) = 0.
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LEMMA 1.8. Let m: X — S be a flat family of Gorenstein curves with smooth locus U C X,
let L be a line bundle on X, and fix an integer k > 0. Then

JE(L)|, = PH(I)|,,-

PROOF. The derivation d,: Ox — w, defined in (1.7) and used to define the k-jets restricts

to the universal derivation d: Oy — 9[1] /g over the smooth locus U. But jet bundles taken with

respect to the universal derivation agree with principal parts in the smooth case, as one can
verify directly from their construction; see also [35, Section 4.11] for a reference. O

1.4.1. The approach of Laksov and Thorup. Laksov and Thorup [35] generalised the construction
of (1.10) in the following sense. Given an S-scheme X and a quasi-coherent Ox-module .#
admitting an Og-linear derivation d: Ox — .#, they constructed for all £ > 0 an Og-algebra

I =T a

over X, along with an algebra map 6: Ox — J* generalising the one constructed in (1.10). The
sheaf J* is called the k-th algebra of jets. It is quasi-coherent, and of finite type whenever ./ is.
For every Ox-module £, one can consider the &x-module

TNZL)=T" ©oy £
of ZL-twisted jets. They fit into exact sequences
LM - THL) - THL) =0,

that are left exact whenever .# is S-flat. The construction carried out in [35] works over fields of
arbitrary characteristic and is completely intrinsic, in particular it avoids the technical step of
verifying the cocycle condition.

1.4.2. Arc spaces. The study of arc spaces (also called jet schemes) was initiated by Nash [44] in
the 60’s in the context of Singularity Theory. Arcs on algebraic varieties received a lot of attention
more recently since Kontsevich’s lecture [32]. See for instance the papers by Denef-Loeser [10, 9]
and Looijenga [40]. An arc of order n on a variety X based at point P is a morphism

a: Spec C[t]/t" ™ — X

sending the closed point to P. The reader may correctly think of it as the expression of a germ of
complex curve considered together with its first n derivatives. For instance if n = 1, one obtains
the classical notion of tangent space at a point. These maps form an algebraic variety £, (X),
and the inverse limit £(X) = lim £,,(X) is the full arc space of X, an infinite type scheme whose
C-points correspond to morphisms Spec C[[t] — X. Kontsevich invented Motivic Integration in
order to prove that smooth birational Calabi—Yau manifolds have the same Hodge numbers; he
constructed a motivic measure on £(X), which can be thought of as the analogue of the p-adic
measure used earlier by Batyrev to show that smooth birational Calabi—Yau manifolds have
equal Betti numbers. Other remarkable notions introduced by Denef-Loeser are the motivic
Milnor fibre and the motivic vanishing cycle; the latter is the motivic incarnation of the perverse
sheaf of vanishing cycles attached to a regular (holomorphic) function U — C. This theory has a
wide variety of applications in Singularity Theory, but it has also proven successful in Algebraic
Geometry, for instance in the study of degenerations of abelian varieties via motivic zeta functions
[29].
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1.5. Invincible parts. An elegant approach to the problem of locally free replacements of
principal parts has been proposed by Patel and Swaminathan in their recent report [46]. Their
construction is formally more adherent to the purely algebraic definition of principal parts as
described in Section 1.3. To perform the construction they restrict to certain families of curves
according to the following:

Definition 1.9. Let 7: X — S be a proper flat morphism of pure Gorenstein curves. Then 7 is
called an admissible family if the locus I' C X over which 7 is not smooth has codimension at
least 2.

Let m: X — S be an admissible family with X and S smooth, irreducible varieties, and assume
dim S = 1. Let E be a vector bundle on the total space X. Patel and Swaminathan define the
k-th order sheaf of invincible parts associated to (m, E) as the double dual sheaf

PH(E)™.

This intrinsic construction is related to the gluing procedure (giving rise to jets) described in
Section 1.4, via the following observation.

PROPOSITION 1.10. Let w: X — S be an admissible family of Gorenstein curves, with X and
S smooth irreducible varieties and dim S = 1. Let L be a line bundle on X. Then the sheaf of
invincible parts PX(L)VV agrees with the jet bundle JX(L) of (1.8).

PROOF. The vector bundle J¥(L) restricted to the smooth locus U = X \ T of 7 agrees with
PE(L)|y by Lemma 1.8. But by [46, Prop. 10], P¥(L)VV is the unique locally free sheaf with this
property. (I

2. TWO APPLICATIONS

2.1. Counting flexes via automatic degeneracies. In this section we report on one of the
main applications of the sheaves of invincible parts that motivated the research by Patel and
Swaminathan. In particular, we wish to describe the application of their theory of automatic
degeneracies to the enumeration of hyperflexes in general pencils of plane curves. A hyperflex
on a plane curve C' C P? is a point on the normalisation P € C such that for some line ¢ C P2
we have ordp(v*f) > 4, where v: C — C is the normalisation map. The general plane curve
of degree d > 1 has no hyperflexes, but one expects to find a finite number of hyperflexes in a
pencil. One has the following classical result.

ProproOSITION 2.1. In a general pencil of plane curves of degree d, exactly
6(d —3)(3d —2)

will have hyperflexes.

Remark 2.2. Note that this number vanishes for d = 3. This should be expected, for in a
general pencil of plane cubics all fibres are irreducible, but a cubic possessing a hyperflex is
necessarily reducible.

A proof of Proposition 2.1 via principal parts can be found in [16]. A different approach, via
relative Hilbert schemes, has been taken by Ran [48]. In [46], the authors apply their theory of
automatic degeneracies to give a new proof of Proposition 2.1. More precisely, after a suitable
Chern class calculation, which we review below in the language of jet bundles, the authors subtract
the individual contribution of each node in the pencil to get the desired answer. Let us note
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that it is extremely useful to have an explicit function (see Subsection 2.1.1 below) computing
the “correction term” one has to take into account while performing a Chern class/Porteous
calculation over a family of curves containing singular members.

2.1.1. Automatic degeneracies. Given a (proper, non-smooth) morphism of Gorenstein curves
X — S, the associated sheaves of principal parts are not locally free, but the jets constructed
out of the derivation (1.7) are locally free. To answer questions on the inflectionary behavior of
the family X — 5, the classical strategy is to set up a suitable Porteous calculation and compute
the degree of the appropriate Chern classes of the jet bundles. However, inflection points are by
definition smooth points, and singularities in the fibres X, tend to “attract” inflection points as
limits; so one has to excise the contribution to this Porteous calculation coming from the singular
points of the fibres. This problem was tackled in [46], where the authors propose a theoretical
solution, working nicely at least under certain assumptions. More precisely, the authors are able
to attach to any germ f € C[z,y] of a plane curve singularity a function

AD(f): NN,  m— AD™(f),

whose value at m € N they call the m-th order automatic degeneracy associated to f. As
explained in [46, Remark 18], the function AD(f) is an analytic invariant of the germ f. We
refer the reader to [46, Section 5] for an algorithmic approach to the computation of the values
of this function.

Given a l-parameter admissible family X — .S of curves where the singularity f = 0 appears
in a fibre, the number AD™(f) is the correction term one has to take into account in the Porteous
calculation aimed at enumerating m-th order inflection points on X — S. The authors determine
this function in the nodal case by proving [46, Theorem 24] the formula

(2.1) AD™ (2y) = (mi 1).

It remains an open problem to compute the function AD(f) for other singularities, although in
loc. cit. a few computations for a specific m are carried out, for instance

AD* (y2 — x3) =10
for the cusp singularity.

2.1.2. The count of hyperflezes. Let X C P? x P! — P! be a generic pencil of plane curves of
degree d. It can be realised explicitly as follows. Let us choose two general plane curves C; and
Cy of degree d, the generators of the pencil. Their intersection will consist of d? reduced points.
Blowing up these points gives

T X = P2 xP' - PL
Consider the line bundle Ly = b*Op2(d), where b: X — P2 is the blow up map. The number we

are after is
- 5
[ atwn - ()
X

where § = 3(d—1)? is the number of nodes computed in (1.5) and the binomial coefficient computes
the automatic degeneracy of a node, using (2.1) with m = 4. This number is determined by the
Chern classes

n = c1(wr), ¢ = c1(La)-
Using the exact sequences of Proposition 1.7 we get

CQ(JT?.(Ld)) = 117% + 187 + 6¢2.
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It is easy to see that (? € A%(X) has degree 1. Exploiting that E? = —d?, one can check that 72
has degree 3d? — 12d + 9. Finally, ¢ has degree 2d — 3. The difference

11(3d? —12d +9) + 18(2d —3) + 6 — 5-3(d — 1)® = 6(d — 3)(3d — 2)
computes the number of hyperflexes prescribed by Proposition 2.1.

2.2. The stable hyperelliptic locus in genus 3, after Esteves. In this section we will see
the sheaves of principal parts and the technique of locally free replacements in action to solve
a concrete problem. The results in this section hold over an algebraically closed field k of
characteristic different from 2. Consider the moduli space M3 of smooth, projective, connected
curves of genus 3. A hyperelliptic curve of genus 3 is a 2 : 1 branched covering of the projective
line with 8 ramification points.

Let H C Mj3 be the divisor parametrising hyperelliptic curves, and let H be its closure in the
Deligne-Mumford moduli space M3 of stable curves. The vector space Pic(M3) ® Q is generated
by the Hodge class A (pulled back from M3), whereas Pic(M3) ® Q is generated by A, § and 41,
with 6; denoting the boundary classes on Ms. A proof of the following theorem, expressing the

classes [H] and [H] in terms of the above generators, can be found in [30].

THEOREM 2.1. One has

(2.2) [H] =9A
and
(2.3) [H] = 9\ — 6o — 301.

Formula (2.2) also follows from Mumford’s relation [43, p. 314]. Below is a quick description
of how Esteves [19, Thm. 1] proves formula (2.3).

2.2.1. Smooth curves. Let m: C — S be a smooth family of genus 3 curves. We constructed
in (1.4) a natural map of vector bundles v: 7*7,QL — PL(QLl) on C, where the source has
rank 3 and the target has rank 2. Assuming the general fibre is not hyperelliptic, it turns
out that the top degeneracy scheme D of v (supported on points P such that v|p is not
onto) has the expected codimension, namely 2. Then Porteous formula applies and gives
[D] = ca(PL(QL) — 7* 7. QL) N [C]. Pushing this identity down to S, and observing that there are
8 Weierstrass points on a hyperelliptic curve of genus 3, one gets, after a few calculations, the
relation 8h, = 72\, proving the formula for [H].

2.2.2. Stable curves. Let now X — S be a family of stable curves of genus 3, which for simplicity
we assume general from the start. This means S is smooth and 1-dimensional, the general fibre
of 7 is smooth and the finitely many singular fibres have only one singularity. One can see that
only two types of singularities can appear in the fibres: a uninodal irreducible curve Z C X, or a
reducible curve X Uxy Y C X consisting of a genus 1 curve X meeting a genus 2 curve transversally
at the node N. It is also harmless to assume there is exactly one singular fibre of each type.

After replacing the sheaf of differentials Q! with the (invertible) dualising sheaf w,, Esteves
obtains, via a certain pushout construction, a natural map of vector bundles

T T — Plwg) = F

where, as before, the source has rank 3 and the target has rank 2. Note that the middle sheaf,
the sheaf P!(w,) of principal parts, is not locally free because of the presence of singularities.
However, by construction, the restriction of 7 to the smooth locus recovers the old map v from
the previous paragraph. Unfortunately, one cannot apply Porteous formula directly here, because
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this time the top degeneracy scheme of 77 has the wrong dimension, as it contains the elliptic
component X.

The way out is to replace w, by its twist I = w; ® Ox(—X).! Repeating the pushout
construction gives the diagram

0 — L®Ql —— PY(L) —— L —— 0

ao| |
F

0 — LQw, ! L 0

where ¢ is as in (1.6). The map of vector bundles
v in*m L — PHL) — '

has now top degeneracy scheme of the expected dimension. It can be characterised as follows.

PROPOSITION 2.3 ([19, Prop. 2]). The top degeneracy scheme D' of v' consists of:

(1) the 8 Weierstrass points of each smooth hyperelliptic fibre, each with multiplicity 1;
(2) the node of Z, with multiplicity 1;

(3) the node N = X NY, with multiplicity 2;

(4) the 3 points A € X \ {N} such that 2A = 2N, each with multiplicity 1;

(5) the 6 Weierstrass points of Y, each with multiplicity 1.

The multiplicities tell us how much the points we do not want to count actually contribute.
Esteves then proves [19, Prop. 3] the crucial relation m,[D’] = 72\; — 7d9.» — 701, . Subtracting
the unwanted contributions (2) — (5) with the indicated multiplicities on both sides, one gets the
relation

8hr = T2X\; — 880, — 2401 1,

thus proving the formula for [H] in Theorem 2.1.

3. RAMIFICATION POINTS ON RIEMANN SURFACES

In order to make clear that, at least from the point of view of ramification points of linear
systems, Gorenstein curves almost behave as if they were smooth, it is probably useful to quickly
introduce the notion of ramification loci of linear systems in the classical case of compact Riemann
surfaces, which correspond, in the algebraic category, to smooth projective curves.

3.1. Ramification loci of Linear Systems. A linear system on a smooth curve C of genus g
is a pair (L, V), where L is a line bundle and V' C H°(C, L) is a linear subspace. If L has degree
d and dimV = r + 1, one refers to (L, V) as a g§ on C. When V = H%(C, L) the linear system is
called complete. For instance the complete linear system attached to K¢ is the canonical linear
system. Every g/, defines a rational map

py: C--»PV, P (vo(P) : v1(P) : -+ : v (P)),

where (v, ..., v,) is a C-basis of V. The closure of the image of ¢y is a projective curve, not
necessarily smooth, of arithmetic genus g + § where ¢ is a measure of the singularities of the
image, that may be also rather nasty. See Proposition 4.8 in the next section for the (local)
meaning of the number d. The rational map ¢y turns into a morphism if (L, V) has no base
point, that is, for all P € C there is a section v € V not vanishing at P. If moreover the map
separates points, in the sense that for all pairs Py, P, € C there is a section vanishing at P; and

LA similar technique involving twisting by suitable divisors will be exploited in Section 5.2.
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not at P;, then the map is an embedding and the image itself is smooth of the same geometric
genus as C. For most curves a basis (wo, . ..,wy—1) of H(C, K¢) is enough to embed C in P9~1,
The curves for which the canonical morphism is not an embedding are called hyperelliptic. They
can be embedded in P39~* by means of a basis of K?Q.

We now define what it means for a section v € V'\ 0 to vanish at a point P € C to a given
order. This is a crucial concept in the theory of ramification (or inflectionary behavior) of linear
systems. Observe that, given a point P € C, any section v € V defines an element vp in the
stalk Lp via the maps

V c H(C,L) = Lp.

Definition 3.1. Let v € V'\ 0 be a section, P € C a point. We define
ordp v :=dim¢ Lp/vp € N
to be the order of vanishing of v at P.

Definition 3.2. Let (L,V) be a g;. A point P € C is said to be a ramification point of (L, V)
if there exists a section v € V' \ 0 such that ordp v > r + 1. A ramification point of the canonical
linear system (K¢, HY(C, K¢)) is called a Weierstrass point.

Example 3.3. Let ¢: C — P2 be a smooth plane quartic. Then C has genus 3 and the complete
linear system attached to K¢ = t*Opz(1) is the linear system cut out by lines. Therefore the
Weierstrass points of C' are precisely the flexes. It is known classically that there are 24 of them.
We take the opportunity here to recall that flexes of plane quartics are geometrically very relevant:
their configuration in the plane determines and is determined by the smooth quartic. See the
work of Pacini and Testa [45] for this exciting story.

Example 3.4. The g? on P! determined by
V=C-202®C-210C- x5 €G3, H(Op(4)))
defines the morphism ¢y : P! — P2 given by
(zo: 1) = (ot : o] : 3).

In the coordinates x, y and z on P2, the image of ¢y is the plane quartic curve 2* — 332 = 0. The
curve possesses a unique triple point at P := (0: 0 : 1) and a hyperflex at the point @ := (0: 1 : 0),
as it is clear from the local equation z* — 2z = 0 (the tangent is z = 0). An elementary Hessian
calculation shows that @ has multiplicity? 2 in the count of flexes of C. Then, by Example 3.3,
any reasonable theory of Weierstrass points on singular curves should assign the “weight” 22 to
the triple point P, in order to reach the total number of flexes of a quartic curve. See Example
4.11 for the same calculation in terms of the Wronskian (cf. also Remark 4.12 for the relationship
between the Hessian and the Wronskian at smooth points).
In fact, the curve C' can be easily smoothed in a pencil

ot =yt L(x,y)2® =0,
where L(z,y) = ax + by is a general linear form. An easy check, based on the computation of the
Jacobian ideal, shows that the generic fibre of the pencil is a smooth quartic having a hyperflex
at the point (0: 1:0). Then there must be exactly 22 smooth flexes that for ¢ = 0 collapse at
the point P = (0:0:1). According to the theory of Widland and Lax, sketched in Section 4,

the triple point is a singular Weierstrass point of the curve, thought of as a Gorenstein curve of
arithmetic genus 3.

2We will soon interpret this multiplicity as ramification weight, see (3.2).
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3.2. Gap sequences and weights. Let P € C be an arbitrary point, (L, V) a linear system,
and assume 0 < r < d. For ¢ > 0, let us denote by
V(-iP)CV
the subspace of sections vanishing at P with order at least i. Note that V(—(d+ 1)P) =0. If
dimV(—(i — 1)P) > dim V(—iP),
then ¢ is called a gap of (L, V) at P. It is immediate to check that in the descending filtration
(3.1) VoOV(-P)D2V(-2P)D---2DV(—(r+1)P)2---2V(—-dP)20
there are exactly r +1 = dim V' gaps. Note that 1 is not a gap at P if and only if P is a base
point of V.
Definition 3.5. The gap sequence of (L,V) at P € C' is the sequence
apLy(P)iog <ag < - < apyq1
consisting of the gaps of (L, V) at P, ordered increasingly.
For a generic point on C, the gap sequence is (1,2,...,r 4+ 1), meaning that the dimension

jumps in (3.1) occur as early as possible. Equivalent to the gap sequence is the vanishing sequence,
whose i-th term is «; — i. The ramification weight of (L,V') at P is the sum

(3.2) wtp v (P) =Y (a; —1i).
One may rephrase the condition that P is a ramification point for (L, V') in the following equivalent
ways:
(i) V(=(r+1)P) #0, that is, (r + 1) P is a special divisor on C}
(ii) the gap sequence of (L,V) at P is not (1,2,...,r + 1);
(iii) the vanishing sequence of (L, V') at P is not (0,0,...,0);
(iv) the ramification weight wty, v (P) is strictly positive.
According to (i), P € C is a Weierstrass point if and only if h°(Kc(—gP)) > 0.

Definition 3.6. Weierstrass points of weight one are called normal, or simple. On a general
curve of genus at least 3 these are the only Weierstrass points to be found. Those of weight at
least two are usually called special (or exceptional) Weierstrass points.

The locus in Mg of curves possessing special Weierstrass points has been studied by Cukierman
and Diaz. We review the core computations in the subject in Section 5.

3.3. Total ramification weight and Brill-Segre formulas. The notion of ramification point
of a linear system (L, V') recalled in Definition 3.2 relies on the notion of order of vanishing of a
section of L. This compact algebraic definition can be phrased also in the following way, which
was used for the first time by Laksov [33] to study ramification points of linear systems on curves
in arbitrary characteristic. There exists a map

(3.3) D":CxV —=J(L), (Pwv)— Dw(P),

where D"™v € H°(C, J"(L)) is the section defined in (1.9), and whose vanishing at P is equivalent
to the condition ordp v > r 4+ 1 of Definition 3.2. The map D" is a map of vector bundles of
the same rank r + 1, so it is locally represented by an (r + 1) x (r 4+ 1) matrix. The condition
DTv(P) = 0 then says that (3.3) drops rank at P. This in turn means that P is a zero of the
Wronskian section

r+1
Wy :=det D" € H° <C, A J"(L))
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attached to (L, V). The total ramification weight of (L, V'), namely the total number of ramifica-
tion points (counted with multiplicities), is

r+1
WtV = deg /\ JT(L) = ZWtL,V(P)
P

It can be computed by means of the short exact sequence
0= L®KE — J(L)— J L) —0,
reviewed in Proposition 1.7. By induction, one obtains a canonical identification

r+1
/\ JT‘(L) — L®r+1 ® Ké(“rl)/?.

Using that deg K¢ = 2g — 2, one finds the Brill-Segre formula
(3.4) wty = (r+1)d+ (g — Dr(r+1)

attached to (L, V). For instance, since h?(C, K¢) = g, the number of Weierstrass points (counted
with multiplicities) is easily computed as

(3.5) wtg. =deg [\ J97 (Kc) = (g — (g +1).

For g = 3, (3.5) gives the 24 flexes on a plane quartic, as in Example 3.3.

4. RAMIFICATION POINTS ON GORENTEIN CURVES

The study of Weierstrass points on singular curves is mainly motivated by degeneration
problems. For instance it is a well known result of Diaz [13, Appendix 2, p. 60] that the node of
an irreducible uninodal curve of arithmetic genus g can be seen as a limit of g(g — 1) Weierstrass
points on nearby curves. In this section we review the Lax and Widland construction of the
Wronskian section attached to a linear system on a Gorenstein curve.

The key idea is to define derivatives of local regular functions in the extended sense sketched at
the beginning of Section 1. One exploits the natural map Q& — we (see the references in Section
1.4 for its construction), where we is invertible by the Gorenstein condition. The dualising sheaf
is explicitly described by means of regular differentials on C'. Thanks to this extended definition
of differential Widland and Lax are able to attach a Wronskian section to each linear system on
C, as we shall show in Section 4.2, after a few preliminaries aimed to reinterpret the Gorenstein
condition of Definition 1.2 in local analytic terms. In the last year some progress has been
done also in the direction of linear systems on non-Gorenstein curves, essentially thanks to the
investigations of R. Vidal-Martins. See e.g. [41] and references therein. As for Gorenstein curves
we should mention the clever way to deform monomial curves due to Contiero and Stéhr [2] to
compute dimension of moduli spaces of curves possessing a Weierstrass point with prescribed
numerical semigroup.

4.1. The analytic Gorenstein condition. Let C be a Cohen—Macaulay curve. Its dualising
sheaf we has the properties

(4.1) HY(C,0c) = H(C,we)Y, HY(C,0c) = H°(C,we)Y.
Recall that g := p,(C) = h'(C, O¢) is the arithmetic genus of C. For smooth curves we have
QL = we. But if C is singular, the sheaf Qf is no longer locally free and it does not coincide

with we. The dualising sheaf itself may or may not be locally free: the curves for which it is are
the Gorenstein curves.
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Example 4.1. All local complete intersection curves are Gorenstein. This includes curves
embedded in smooth surfaces as well as the stable curves of Deligne-Mumford. Note that, by the
adjunction formula, a plane curve ¢: C < P2 of degree d has canonical bundle we = ¢* Op2 (d — 3),
clearly a line bundle. See also Example 1.1 for a relative, more general formula.

The dualising sheaf we of a reduced curve C was first defined by Rosenlicht [49] in terms of
residues on the normalisation of C'. For a Gorenstein curve, this sheaf has a very simple local
description. In [50, Section IV.10], to which we refer the reader for further details, it is shown
that the stalk we, p is the module of regular differentials at P. We now recall an analytic criterion
allowing one to check local freeness of w¢.

Let v: C — C be the normalisation of an integral curve C, and let S C C be its singular locus.
The canonical morphism ¢ — v, 0 is injective, with quotient a finite length sheaf supported
on S. We denote by

(4.2) p := dim¢ éC,P/ﬁC,P
the fibre dimension of this finite sheaf at a point P € C. Clearly §p > 0 if and only if P € S.

This number is an analytic invariant of singularities [50, p. 59]. The sum ), 0p = po(C) — pa(C)
is the number 0 quickly mentioned in Section 3. Another local measure of singularities is the
conductor ideal.

Definition 4.2. Let B be the integral closure of an integral domain A. The conductor ideal of
A C B is the largest ideal I C A that is an ideal of B, that is, the set of elements a € A such that
a-B C A. Let C be an integral curve, P € C' a point. We denote by ¢p C O¢c p the conductor

ideal of O¢ p C 50,1:. Define the number
np = dime Oc,p/cp.

For instance if 50113 = Oc,p then cp = 50713 and np vanishes in this case. We wish to recall
the following characterisation.

PRrOPOSITION 4.3 (][50, Proposition IV.7]). An integral projective curve C' is Gorenstein if and
only if np = 26p for all P € C.

In other words, the numerical condition np = 2Jp guarantees that the sheaf of regular
differentials is invertible at P.

Example 4.4. Let P be the origin (0,0) of the affine cuspidal plane cubic y? — 23 = 0. Then
Ocp = (C[t27t3](t27t3). The normalisation is the local ring 0c p = Cl[t];). In this case the
conductor is the localisation of the conductor of the subring C[t?,¢3] C C[t]. Since

C[t?,t%] = C + Ct* + Ct> + t*CJt],
the conductor is the ideal (#2,¢3), and its extension in 5@713 is (t?). Then np = dim¢ C[t]/t? = 2,
and Jp = dimc C[t]/C[t?,¢3] = 1. Thus P is a Gorenstein singularity. Having this point as its
only singularity, the cuspidal curve is a Gorenstein curve of arithmetic genus 1.
Example 4.5. Let C be the complex rational curve defined by the parametric equations
X =Y =% Z =t°. Then C is the spectrum (the set of prime ideals) of the ring C[t3,t4,5].
Clearly the origin P = (0,0,0) of A3 is a singular point of C. One has that

ﬁC,P - C[tB, t4, ts}(t37t4,t5)

is not a Gorenstein singularity: the conductor of C[t3,*, %] ;s 44 5y C Clt] () is t*C[t] (). Thus
np = 3, an odd number, and C' cannot be Gorenstein at P.
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4.2. The Wronskian section after Widland—Lax. We now explain the construction, due to
Widland and Lax, of the Wronskian attached to a linear system (L, V) on a Gorenstein curve.
For simplicity we shall stick to the case of integral (reduced, as usual, and irreducible) curves
to avoid coping with linear systems possessing non zero sections identically vanishing along an
irreducible component. For example if X UY is a uninodal reducible curve of arithmetic genus g
the space of global sections of the dualising sheaf has dimension g but there are non-zero sections
vanishing identically along X (or on Y'). However if one considers a linear system on a reducible
curve that is not degenerate on any component, then everything goes through just as in the
irreducible case.

If P € C is a singular point on an (integral) curve C, the maximal ideal mp C ¢ p is not
principal and so there is no local parameter whose differential would be able to freely generate
Q¢ p- But we can still consider the natural map Q¢ — we (cf. Section 1.4) and its composition

d: ﬁc—)(dc

with the universal derivation ¢ — Qf.

Let now (L, V) be a g} on the (Gorenstein) curve C, and let P be any point (smooth or not).
Let (v, v1,...,v,) be a basis of V. Then v; p, the image of v; in the stalk Lp, is of the form
vy p = fi -p where f; € Oc p and p generates Lp over Oc p. Letting op be a generator of

we,p over Oc p, one can define regular functions f7, fi(Q), RPN fi(r) € O¢,p through the identities
df; = fz/ op, dfi(j_l) — f(j) cop

in we p, for each i = 0,1,...,r (cf. also Section 1.4). If P were a smooth point, one could take
op = d z, where z is a generator of the maximal ideal mp C O¢,p, thus recovering the classical
situation.

Definition 4.6. The Widland-Lax (WL) Wronskian around P € C is the determinant

fo [ oo [r
fo A S

(43) WLV,ap = . . . . S ﬁCJD.
for) 1(7‘) . fgr)

A point P is said to be a V-ramificaton point (or also a V-Weierstrass point) if WLy ., (P) = 0,
that is, if ordp WLy, > 0.

Our next task will be to show that the germ (4.3), as well as its vanishing at P, does not depend
on the choice of the generators 1p and op of Lp and wc p respectively; then we will use the
explicit description of we in the previous section to check that singular points are V-ramification
points with high weight.

So if ¢p and 7p are others generators, then v; = g;¢p and d g~V = ¢ rp. Let p = lpop
and op = kp7p. Then a straightforward exercise shows that

Whyop = 05 k2 0wy

This proves at once that the vanishing is well defined and that all the sections WLy, patch
together to give a global section

WLy.p € HO (Q O+l ®w?r(r+1)/2) .
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If f € Oc,p is any germ, according to Definition 3.1 one has

= dim¢ ﬁ}i = Z OrdQ f7

Op
(4.4) ordp f = dim¢
f-or [ Op Qev-1(P)

where in the last equality f is seen as an element of Oz 0 via O¢c,p C ﬁ’Nc,p C 05 o
Definition 4.7. Let P € C. Define the V-weight of P and total V-ramification weight as

th(P) := ordp WLV’p7 wty = Z th(P).
pPeC

According to (4.4), one can compute the V-weight at P as

wty(P)= > ordgWLy,p.
Qev=1(P)

PROPOSITION 4.8. Let (L, V') be a g} on a Gorenstein curve C of arithmetic genus g. Then

(4.5) wty = (r+1)d+ (g — 1)r(r + 1).
Moreover, for all P € C, the inequality
(4.6) wty (P) > dpr(r+1)

holds, with ép as defined in (4.2). That is, singular points have “high weight”.

In particular if L = we, one has that wt,. (P) > dpg(g — 1). Proposition 4.8 in [38] relies on
an explicit description of the generator of the dualising sheaf around the singularities, that we
shall review below just to provide a few examples illustrating the situation. The verification we
offer here makes evident how the theory by Lax and Widland offers the right framework to study
the classical Pliicker formulas in terms of degenerations.

PROOF OF PROPOSITION 4.8. Formula (4.5) is clear. Let now P be a singular point of C
and vp: ép — C be the partial normalisation of C' around a singular point P. Then ép is
Gorenstein of arithmetic genus g — dp. Consider the linear system (‘7, vHL), where Vis spanned
by vpvg, vpv1, ..., vpyy. It is a g on Cp. Applying the formula (4.5) for the total weight to 17,
we find
wty = (r+1)d+ (g —1—dp)r(r+1) = wty —dpr(r+1).

The V-Weierstrass points on ép are the same as the V-Weierstrass points on C'. Then the
difference counts the minimum weight of the singular point P with respect to (L, V). O

In general wty (P) = dpr(r + 1) + E(P). The correction E(P) is called the extraweight. It is
zero if no point of v ' (P) is a ramification point of the linear system (V,v5L).

Example 4.9. If P € C is a cusp, one has dp = 1, hence its weight is at least r(r + 1). However
the vanishing sequence of V at the preimage of P in the normalisation is 0,2,...,7+ 1. It follows
that

wty (P)=r(r+1)+r=r(r+2).
If L = we then wt,,. (P) = g% — 1.

Before offering a few examples of how the WL Wronskian works concretely in computations,
we recall the following fact.
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PROPOSITION 4.10 ([24, p. 362]). Let T be a local section of Qla and let Tg its image in
the stalk Q} G Assume that Ql = 0z 7q for all Q € v~!(P) and that h generates the

conductor in each local ring Oz Then 7/h generates wc p over Oc p.

Example 4.11. Let us revisit from Example 3.4 the rational irreducible quartic plane curve given
by 2* — %2 = 0 in homogeneous coordinates z, 3, z on P2. It is Gorenstein of arithmetic genus 3
with we = Op2(1)|c. It has a triple point at P:= (0:0: 1) and a hyperflex at Q@ :== (0:1:0),
i.e. a Weierstrass point of weight 2. To see that the Weierstrass weight at @ is 2 one may argue
by writing down the Wronskian of a basis of holomorphic differentials adapted at @ (i.e. wg = dt,
wy; = tdt and wy = t*dt). The vanishing sequence is 0, 1,4 (equivalently, the gap sequence is
1,2,5) so the weight is 2

In the chart z # 0, V = H°(C,wc) is spanned by (¢3,#%,1), which are nothing but the
parametric equations mapping P! onto the quartic. One has

Ocp=C+C-*+C-t*+1° Clt] ), np = 6, dp =3.

According to Proposition 4.8, P is a Weierstrass point with weight at least p - 3(3 — 1) = 18.
The exact weight can be directly computed through the Wronskian as follows. The preimage of
P through the normalisation map is just one point P. Then dt generates QL 6.5 and therefore

o = dt/t% is a regular differential at P. A basis of the space of regular dlfferentlals at P is then
given by
(o,t30, t10),
so the Wronskian is
1 t4
0 3% 4 | ct*.Clt).
0 24t 36t

It follows that P is a Weierstrass point of weight 22, as anticipated in Example 3.4. Together with
the hyperflex at @, one fills the total weight, 24, of a Gorenstein curve of genus 3. The example
shows that the point P has extraweight E(P) = 4. This can also be computed by looking at
the vanishing sequence of the linear system 17, generated by (1,t3,t1). Clearly the vanishing
sequence is 0, 3,4, whose weight is 4, as predicted by the calculation above.

The output of this example is of course in agreement with the classical fact that the Hessian
of the given plane curve cuts the singular points and the flexes. In this case the Hessian cuts
indeed the singular point with multiplicity 22 and the hyperflex @ with multiplicity 2

Remark 4.12. A local calculation shows that the Hessian of a plane curve cutting the inflection
points with respect the linear system of lines follows by the vanishing of the Wronskians at those
points (at least when they are smooth).

Example 4.13. The previous example was rather easy because we have dealt with a unibranch
singularity (that is, v=!(P) consisted of just one point). To illustrate the behavior of the WL
Wronskian with multibranch singularities, let C' be the plane cubic 22 + 222 — %22 = 0. It has a
unique singular point, the node P := (0:0: 1). The curve C is Gorenstein of arithmetic genus
1. Let us compute its V-weight, where V' denotes the complete linear system HY(C, Op2(1)|c).
Clearly the coordinate functions x, y and z form a basis of V. They can be expressed by
means of a local parameter ¢ on the normalisation v: P — C. In the open set z # 1, indeed,
C has parametric equations x = t> — 1 and y = t(t> — 1). The preimage of the point P
via v are @1 = (t — 1) and Q2 = (¢t + 1) thought of as points of Spec C[t]. One has that

Oc.p =C+ (t*—1)- Oc,p, thus the conductor is (t> — 1). Since d ¢ generates both le and Q! .
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op =dt/(t* — 1) generates the dualising sheaf we p. Let

dt d dt
= — 1 = —
UQI t*l a UQ2 t+1

Then one has
wty (P) = ordp WLy, = ordg, WLy oo, +ordg, Why,sq, -

We shall show that ordg, WLy s, = 3, By symmetry, the same will hold for ordg, WLy s, .
showing that the weight of P as a singular ramification point is 6 as expected. For simplicity,
let us put z =t — 1. In this new coordinate the basis of v*L near @)1 is given by vy := z(z + 2),
v1 = 2(2°+32+2) and v3 = 1. The conductor is generated by z near Q. Then the WL-Wronskian
near @ is:

224+ 22 23+ 322422 1
Why,o, = 222422 322 +622+2z 0| =2°(3z+4) € 2*- C[z]
422 42z 622 +1222422 0

as desired. The computations around ()5 are similar and then P is a singular ramification point
of weight 6.

5. THE CLASS OF SPECIAL WEIERSTRASS POINTS

5.1. Introducing the main characters. Let M, be the moduli space of smooth projective
curves of genus g > 2. It is a normal quasi-projective variety of dimension 3g — 3. Let

My, C M,

be its Deligne-Mumford compactification via stable curves. It is a projective variety with orbifold
singularities. Thus, its Picard group with rational coefficients is as well-behaved as the Picard
group of a smooth variety. The boundary M, \ M, is a union of divisors A; C M, each obtained
as the image of the clutching morphism

Mi,l X Mg—i,l — Mg,

defined by glueing two stable 1-pointed curves (X, z) and (Y, y) identifying the markings = and
y. By a general point of A; we shall mean a curve that lies in the image of the open part
M;1 x My_;1. Note that ¢ ranges from 0 to [g/2], with ¢ = 0 corresponding to irreducible

uninodal curves. We use the standard notation ¢; for the class of A; in Pic(My) ® Q, and we
always assume ¢ < g — 1.

i g—1
X Y

FIGURE 1. A general element of the boundary divisor A; C M.

This section aims to sketch the calculation of the class in Pic(M,) ® Q of the closure in M, of
the locus of points in M, corresponding to curves possessing a special Weierstrass point. Recall
from Definition 3.6 that a Weierstrass point (WP, for short) is special if its weight as a zero of
the Wronskian is strictly bigger than 1. Let us define

(5.1) wt(k) := { [C] € My | C has a WP with weight at least k }.
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Let Mg 1 be the space of 1-pointed smooth curves, and Mg,l be the moduli space of stable
1-pointed curves. Borrowing standard notation from the literature, define the “vertical” loci

VD,_1:={[C,P] € My | P is a WP whose first non-gap is g — 1 }
Vg1 = { [C, P] € My, | there is 0 € H(C, K¢) such that DYo(P) =0 }.

Taking their images along the forgetful morphism M, — M, we get the subvarieties Dy_;
and Dgyq of My, respectively. Diaz [13, Section 7] and Cukierman [6, Section 5] were able to
determine the classes

[Dys1] € Pic(M,) ® Q.

The main observation of [26] is that while computing the classes of ﬁgil is quite hard, the
computation of their sum is quite straightforward. Let

VWt(?) C Mg,l

be the closure of the locus of points [C, P] € M, 1 such that P is a special Weierstrass point on
C, namely a zero of the Wronskian of order bigger than 1. The goal is to globalise the notion of
Wronskian to families possessing singular fibres. This will be achieved through jet extensions
of the relative dualising sheaf defined on a family of stable curves. Using (a) the invertibility
of the relative dualising sheaf and (b) the locally free replacement of the principal part sheaves
for such families, everything goes through via a standard Chern class calculation, as we show
below. We warn the reader that our computation is not performed on the entire moduli space
but just on 1-parameter families of stable curves with smooth generic fibre, in order to avoid
delicate foundational issues regarding the geometry of the moduli space of curves.

5.2. Special Weierstrass points. Let 7': C' — T be a (proper, flat) family of stable curves
over a smooth projective curve T, such that C’ is a smooth surface, with smooth generic fibre C,’].
In particular, by the compactness of T, the fibre C; is smooth for all but finitely many t € T.
If the family is general, the singular fibres are general curves of type A;. The general fibre of
type Ag is an irreducible uninodal curve of arithmetic genus g. Let m: C — T be the family one
gets by blowing up all the nodes of the irreducible singular curves. The irreducible nodal fibres
get replaced by curves of the form C' U L, where C' is a smooth irreducible curve of genus g — 1
and L is a smooth rational curve, intersecting C' transversally at two points (the preimages of
the node through the blow up map). The rational component L is the exceptional divisor which
contracts onto the node by blow down. From now on we shall work with the new family

m:C—=T,

where all the singular fibres are reducible.
As for all families of stable curves, the dualising sheaf w, is invertible, and its pushforward

E; = mwsr

is a rank g vector bundle on T, called the Hodge bundle (of the family). Its fibre over t € T
computes

HO<Ct,UJ7‘—|ct) = HO(Ct,WCt>.
If C;, = X Ua Y is a uninodal reducible curve of type A;, one has a splitting
(5.2) HO(Co,we,) = HO(X, Kx(A) & HO(Y, Ky (4)).

A Weierstrass point on the generic fibre is a ramification point of the complete linear series
attached to K¢, = wr|c,. So it must belong to the degeneracy locus of the map of rank g vector
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bundles
m*E, —% JI Y wy)

N,
lﬂ

T

The zero locus of the determinant map AY DY~! may be identified with a section W, of the line
bundle

g g
&L= NI we) @7 \EY.

The vanishing locus of this section cuts the Weierstrass points on the generic fibre. Moreover

W, identically vanishes on the reducible fibres C; of type A; for 1 < ¢ < [g/2]. Indeed, the

identification (5.2) shows that there exist nonzero regular differentials on C; vanishing identically

on either component. Moreover W, identically vanishes on the rational components L gotten by

blowing up the nodes of the original irreducible nodal fibres.

A local computation due to Cukierman [6, Proposition 2.0.8] (but see also [7] for an alternative
way of computing), determines the order of vanishing of W, along each component of the reducible
fibres of m. Let F' C C be the Cartier divisor corresponding to the zero locus of W, along the
singular fibres. Then, letting Z,) be the cycle representing Z(Wy|c, ) C C, one has

[Z(W,)] =Z, + F.

One can view Z(Wy/|c,) as the zero locus of the Wronskian section “divided out” by the local

equations of the components of the singular fibres. More precisely, W, induces a section W,T of
the line bundle #(—F'), which coincides with W, away from F'. Therefore we have

(5.3) Z,=¢ (/\ Jﬁl(wﬂ)> —7n'c1(Ey) — F = %g(g + Dey(wr) — 7 A —

where \; := ¢1(E,) denotes, as is customary, the first Chern class of the Hodge bundle of the
family. From now on, we use the (standard) notation K, := ¢1(wy).

Remark 5.1. Intersecting the class (5.3) with a fibre C;, one gets
1
Z Ct (g+1)K Ct—’ﬂ' )\ Ct FCt

But the second and third products vanish because C; is linearly equivalent to the generic fibre
(and the intersection of two fibres is zero), whereas the first term corresponds to a divisor of
degree (g — 1)g(g + 1) on C;. In the case where ¢ corresponds to a singular fibre, the degree of
this divisor would be the total weight of the limits of Weierstrass points on that fibre.

The issue is now to detect and compute the class of the locus of special Weierstrass points in
the fibres of 7. Since the family 7 may have singular fibres, the traditional version of principal
parts would not help unless one decided to focus on open sets where they are locally free. This is
for example the approach followed in [6]. However, usmg the locally free replacement provided
by jet bundles, we can now consider the “derivative” DW, of the section W, € H(C, Z(—F)),
where Z(—F')) denotes the twist £ ®¢, Oc(—F). The derivative DW, is a global holomorphic
section of the rank two bundle

Jo(ZL(=F)).
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By abuse of notation let us write simply Vwt(2) for the locus Vwt(2)  C C defined by the zero
locus of DW...

Definition 5.2. Let Cy be any stable curve of arithmetic genus g > 2. A point Py € Cj is said
to be a limit of a (special) Weierstrass point if there exists a family X — Spec C[t] such that X,
is smooth, X is semistably equivalent to Cy and there is a (special) Weierstrass point P, such
that Py € P,.

It turns out that Vwt(2) is the locus of special Weierstrass points on smooth fibres of 7. In
fact if the family C — T is general, then only singular fibres of the codimension 1 boundary strata
of M, occur. If X Us Y is a general member of A;, one may assume that A is not a Weierstrass
point neither for X nor for Y. Then if Py € X € X U4 Y is a limit of a special Weierstrass point
it must be a special ramification point of Kx((g —4+ 1)P) by [7, Theorem 5.1]. But by [8], for a
general curve X and for each j > 0, there are only finitely many pairs (P, Q) € X x X such that
@ is a special ramification point of the linear system Kx ((j + 1)P). See also Example 6.4 below.

It follows that the locus Vwt(2) is zero dimensional. Indeed, the special Weierstrass points
have the expected codimension 2 in general family of smooth curves. Its class is given by the top
(that is, second) Chern class of J1(Z(—F)). Explicitly, we have

(5.4) {th(2)] _ (J; <w;?9<9+1>/2 ® ;\]EX(—F)>> .

By the Whitney sum formula applied to the short exact sequence
0= wr ®L(—F) = JH(L(-F)) - ZL(—F) =0,

and recalling that (5.3) is computing precisely ¢1 (£ (—F)), one finds
[Vwi@)] = (;g(g F 1)Ky — Ay — F) (;g(g 1)Ky 4+ Ky — A — F) .
Thus in A%(C) we find
(Vwi@)] = %g(g + (9% +9+2)K2 — (¢° + g+ 1)(Ex(F +7°2r)) + F?,

where we have used (7*)\;)? =0 = F - 7*\,. We want to compute the pushforward

(55) 7. [Vat2)] = 1olg + (6 + 9+ . K
(P H g+ 1) (e (B F) 4 (K - 7 Ar)) + 1 F2,

The reason why we are interested in the class (5.5) is that if g > 4 the degree of 7 restricted
to Vwt(2) is 1. Therefore, if we let
wt(2) C T
be the locus of points parametrising fibres possessing special Weierstrass points, then its class
is given by (5.5). The reason why for g > 4 the degree of 7 is 1, is because of the following
important result, obtained by combining results by Coppens [3] and Diaz [11].

THEOREM 5.1. If a general curve of genus g > 4 has a special Weierstrass point, then all the
other points are normal.
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To complete the computation, let F; C C be the (vertical) divisor corresponding to the zero
locus of the Wronskian along the singular fibres of type type A;, for 1 < i < [¢g/2]. Thus

F= Egg:/ 12 I'F, and clearly we have F;, - F;, = 0 for iy # i5. Moreover, we have decompositions

F; = Z Fij, Fij =miX; +mg_;Yj,

with each Fj; supported on a fibre X; Ua; Y; of type A;. Recall that the notation means that
X, and Y; have genus ¢ and g — ¢ respectively, and they meet transversally at the (unique) node
A;. The multiplicities m; (resp. my_;) with which W, vanishes along X (resp. Y;) only depend
on i. Using that ijz = fij = X;-Y; = [4;] € A%(C), it is easy to check that

Ffj = (2mimg_¢ - m? - mg_i) [4,].

To compute (5.5), we will apply the projection formula 7, (7*a - 8) = - 7w, 3. The pushforward
7. K2 is by definition the tautological class 1 € A(T). Define

= Zﬂ'* | € AY(T).

This is the class of the points correspondlng to singular fibres of type A;. We have the following
equalities in A(T):
T (K T M) = MK - A = (29 — 2) A\
MoKy - Fij) = mimi(Kr - Xj) + mg_ime (K7 - Y5)
= (mi(2i — 1) +my—i(2(g —i) — 1)) - m[A]
= (2(imi + (9 — i)mg—i) — mi — mg_;) - m[A;].
Substituting the above equalities in (5.5) we obtain

lg/2]
41
(5:6) m [VWt@)] = 99+ (g + 9+ 2)m1 = 2(4° + 9+ 1)(g = DAs — codos — Y cidin
i=1
where § is the class of the locus in T of type Ag (irreducible uninodal), ¢ is a coefficient to be
determined and

(5.7) ci= (g +g+1)(2(im; + (g — )mg—i) —m; —mg_;) + 2mymg_; — m? — mgﬂ-.

Now one uses one of the most fundamental relations between tautological classes. The class k1
and A, are not independent, as they are related by

Fir =120 =) din.
i

This is a consequence of the Grothendieck—Riemann—Roch formula, as explained for instance in
[42]. Thus formula (5.6) can be simplified into

(5.8) . [Vwt@)| = (399 + 1)(g® + 9 +2) = 26> + g+ 1)(g — 1) As
[9/2] )
B ( ol (e g+ 2>) b
1=0
which, after renaming coefficients, becomes

lg/2]
(5.9) Ty [th(Q)} = (2469 + 9% + 4g° + 3¢ ) — agdy — Z bid; r-
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Clearly the expression (5.9) is not complete: one still needs to determine the coefficients ay and
b;. Computing b; amounts to finding the explicit expressions for m;, for all 1 < ¢ < [¢g/2]. This
has been done by Cukierman in his doctoral thesis (but see [7, Proposition 6.3] for an alternative
slightly more conceptual, although probably longer, proof).

THEOREM 5.2 ([6, Prop. 2.0.8]). The multiplicities m; with which the Wronskian W, vanishes
along X; (of genus i), are given by:

(5.10) m; = (g_;+1>.

The way Cukierman proves Theorem 5.2 is the following. He considers a family f: X — S of
curves of genus g parametrised by S = Spec C[t], with smooth generic fibre and special fibre
semistably equivalent to a uninodal reducible curve X U4 Y with components of genus ¢ and
g — i respectively. After checking that f.ws ® k(0) is isomorphic to H*(Kx (A)) & H°(Ky (A)),
he constructs suitable global bases of f.wy such that the first elements are non degenerate on
one component and vanish on the other. He then computes the relative Wronskian using such
bases and finds the multiplicity displayed in (5.10). All the technical details are in [6].

Granting Theorem 5.2, we can now compute the right hand side of (5.9). We need to substitute
the expressions (5.10) into the constant ¢; defined in (5.7). This finally gives (see also [26] for
more computational details)

(5.11) bi = (9° +39° + 29 + 2)i(g — ).

We still have to determine ay. To this end, we use the following argument, due to Harris and
Mumford [31]. Consider the simple elliptic pencil xgF; + x1 E2, where E; and E5 are two plane
cubics intersecting transversally at 9 points. Let S be the blow-up of P? at the intersection points.
This gives an elliptic fibration

(5.12) e:S— P!

with nine sections (the exceptional divisors of the blown up points). Let ¥; be any one of them.
Then consider a general curve C' of genus g — 1, and choose a constant section P: C' — C x C.
Construct the family ¢: F; — P!, by gluing C x C and S, by identifying ¥; with P. The fibre
over a point ¢ € P! is the union C' U E;, with C meeting E; = ¢~ 1(¢) transversally at a single
point. In other words, what varies in the family is just the j-invariant of the elliptic curve.

THEOREM 5.3 ([13, Lemma 7.2]). The fibres of ¢: F; — P! contain no limits of special
Weierstrass points, that is, ¢.[Vwt(2)] = 0.

Harris and Mumford computed the degrees of A\, dg and §; to be, respectively: 1, 12 and —1.
Taking degrees on both sides of (5.9), with ¢ taking the role of 7, we get the (numerical) relation

0=/ . [th(?)] = (2469 +9¢2 + 46> +3¢%) -1 —ap-12+b; - 1.
Pt
Given the expression of b; computed in (5.11), one obtains

1
ao = z9(g+ 1)(2¢° + g +3).

We have therefore reconstructed the proof of the following result.
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THEOREM 5.4 ([26, Theorem 5.1]). Let w: C — T be a family of stable curves of genus g > 4
with smooth generic fibre. Then the class in A'(T) of the locus of points whose fibres possess a
special Weierstrass point is

(5.13) . [th(Q)} = (24 69 + 992 + 4¢° + 3g*) A,

l9/2]

1 L
— 599+ 1)(29° + g+ 3)00 — Y _ (9° + 39% + 29 + 2)i(g — i)d.
=1

Remark 5.3. Let now [wt(2)] be the class in A'(T) of the locus of points of T' corresponding to
fibres carrying special Weierstrass points. By Theorem 5.1, for g > 4 one has

(wt(2)] = deg(m) [r(Vwt(2))| = |r(Vwt(2))] = . [Vwt(2))] ,

because deg(r) = 1. We may conclude that for g > 4, the right hand side of (5.13) is the
expression of the class [wt(2)].

5.3. Low genus. We observe that formula (5.13) holds for genus 1, 2 and 3 as well, and actually
recovers classical relations among tautological classes.

5.3.1. Genus 1. Recall the elliptic fibration e from (5.12). No member of the pencil (either a
smooth or rational plane cubic) possesses Weierstrass points. In particular there are no special

Weierstrass points. Then [wt(2)] = 0. Setting g = 1 in (5.13) one obtains the relation
(5.14) 12X — 69 = 0,

expressing the classical fact that ¢: S — P! has 12 irreducible nodal fibres. Indeed, the degree of
A on this pencil is 1, as the relative dualising sheaf restricted to the section ¥y C S'is Os(—%1)|x,,
which has degree —¥% = 1.

5.3.2. Genus 2. A curve of genus 2 is hyperelliptic: it is a ramified double cover of the projective
line. The Riemann—Hurwitz formula gives 6 ramification points which are the Weierstrass points.
All these ramification points are simple. This means that if C — T is a family of curves of genus
2, then

(5.15) 0= [Wt(2)] = 130\ — 138, — 260,

This recovers the well known relation 10\ — §o — 207 = 0, discussed in [43], showing that the
classes A, dg, 61 are not independent in Pic(Ms) ® Q. See [5] for the generalisation and [20] for
the interpretation of the Cornalba and Harris formula generalising (5.15) in the rational Picard
group of moduli spaces of stable hyperelliptic curves.

5.3.3. Genus 3. In genus 3 the hyperelliptic locus is contained in Vwt(2). Since each hyperelliptic
curve of genus 3 has 8 Weierstrass points, the map 7 restricted to it has degree greater than 1.
Since each hyperelliptic Weierstrass point has weight 3, a local check performed carefully in [12]
shows that the degree of 7 restricted to VHs is 16. On the other hand it is known (see e. g. [14])
that each genus 3 curve possessing a hyperflex has only one such. So the degree of 7 restricted to
H, the hyperflex locus, is 1 and then for g = 3 formula (5.13) can be correctly written as

16 - [Hs] + [H] = [F(z)} = 452) — 485, — 124,



76 L. GATTO AND A. T. RICOLFI
The calculation [H3] = 9A — 6y — 36; was already reviewed in Section 2.2. Then, the class of the
curves possessing a hyperflex is given by

(5.16) [H] = 308\ — 325 — 826;.

Example 5.4. Consider a pencil of plane quartic curves with smooth generic fibre. Since it has
no reducible fibres, the degree of §; is zero on this family. The degree of Jy is 27 while the degree
of Ais 3. Then in a pencil of plane quartics one finds precisely 308 -3 —32-27 = 60 hyperflexes, as
predicted by Proposition 2.1 using the automatic degeneracy formula by Patel and Swaminathan.

6. FURTHER EXAMPLES AND OPEN QUESTIONS

The purpose of this section is to show how the theory of Weierstrass points on Gorenstein
curves may help to interpret some phenomenologies that naturally occur in the geometry and
intersection theory of the moduli space of curves.

6.1. The Examples.

Example 6.1. Let m: X — S := Spec C[[t] be a family of stable curves, such that

(1) X is a smooth surface analytically equivalent to zy — t = 0,

(2) X, is a smooth curve of genus g, and

(3) Xo is a stable uninodal curve, union of a smooth curve X of genus g — 1 intersecting
transversally an elliptic curve F at a point A, that is, X = X Uy E.

FIGURE 2. A family of stable curves degenerating to a general member of Ay C M.

One says that Py € X \ {A} is a limit of a Weierstrass point if, possibly after a base change,
there is a rational section P: S — X such that P, is a Weierstrass point on X,,. The limit of
Weierstrass points are very well understood for reducible curves of compact type, by means of
many investigations due to Eisenbud, Harris and their school. In fact several classical references
(see e.g. [13, 15]) show that

(a) if Py € E, then Py # A is a ramification point of the linear system ¢ (gA). Applying the
Brill-Segre formula (3.4), the total weight wty of the ramification points of the linear
system V = H°(E, 0(gA)) is ¢?, including the point A. Thus there are at most g — 1
Weierstrass points on the smooth generic fibre degenerating to the elliptic component. All
the ramification points of V' are simple, as one can check via the sequence of dimensions

dimV >dimV(-A4) > - >dimV(—gA) > dimV(—(g + 1)A4) = 0.
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(b) If Py € X \ {A} is a limit of a Weierstrass point, then it is a ramification point of the
linear system W := H°(X, Kx(2A)). Applying the Brill-Segre formula (3.4) once more,
by replacing r 4+ 1 by g and d by 2g — 2, one obtains

wtw =2g9(g— 1)+ (g —2)g(g— 1) = (9 — 1)(29 + ¢* — 29) = g°(9 — 1).

The point A contributes with weight g — 1 (as one easily checks by looking at its vanishing
sequence) and thus there are at most (g—1)2(g+1) Weierstrass points on X,, degenerating
to X.

It follows that no more than
(wty — 1)+ (Wt —g+1) =wty +wty —g=g¢°>—g

Weierstrass points on X, can degenerate to Xy. Since the total weight of the Weierstrass points of
X, is g° — g, it follows that all the ramification points of the linear systems V and W are indeed
limits of Weierstrass points. There are exactly g2 — 1 distinct Weierstrass points degenerating on
F and a total weight of (g — 1)*(g + 1) Weierstrass points on X,, degenerating on X. Moreover,
the counting argument shows that the node A is not a limit. Notice that g2 — 1 is the weight of
a cuspidal curve of arithmetic genus g, according to Example 4.9. This is not a coincidence.

The situation just described is related to the behavior of a family of smooth genus g curves,
degenerating to a cuspidal curve of arithmetic genus g. The relative dualising sheaf coincides
with the canonical sheaf on smooth fibres. The Weierstrass points of the smooth fibres degenerate
to the Weierstrass points on the special fibre (with respect to the dualising sheaf), including the
cusp, and the cusp has weight g2 — 1 in the sense of Widland and Lax. Let us now show how to
construct a model of the original family contracting the elliptic curve to a cusp. The idea is to
consider w,(—X), the dualising sheaf twisted by —X (a Cartier divisor, due to the smoothness
hypothesis on X). We have

Town(—X) ® C(0) = H (X0, wr(—X)|x,)-
Now observe that h%(Xg, w.(—X)|x,) > g = h*(X,wx(24)). But the restriction map
(6.1) HO(:{o,wﬂ— )|x0>—>HO(X wx<2A)) O'I—>O'|X,

is injective. Indeed, if o|x = 0 then o(A) = 0, that is, o|p € H°(Or(—A)) = 0. Thus o = 0,
which implies that the (6.1) is an isomorphism. Now the sheaf ./Z := m,w,(—X) maps the family
m: X = S in P(mwyr(—X)), i.e. we have the following diagram:

X%Pw*wﬂ (-X))
l/

The generic fibre X,, is mapped by ¢_ isomorphically onto its canonical image, a geometrically
smooth curve of genus g, whereas the special fibre is a cuspidal curve having a cusp in A, and the
elliptic component of X is contracted to A by ¢_y . In fact, since the restriction of such a map
to E has degree 0, one has ¢_z(Q) = ¢_4(A) for all Q € E. Then there are g> — 1 Weierstrass
points degenerating onto the cusp: this number equals the weight of the cusp as a Weierstrass
point with respect to the dualising sheaf.

Example 6.2. As another illustration of the same phenomenology, consider the classical case of
a pencil of cubics, for instance

Co: -2 —ty2=0.



78 L. GATTO AND A. T. RICOLFI

The generic fibre C; is smooth. It has 9 flexes, as classically known. But Cy has only one smooth
flex at F':= (0 : 1 : 0). Thus the remaining flexes collapse to the cusp P := (1 : 0 : 0), as is
visible by considering the normalisation. The Weierstrass points with respect to the linear system
of lines can be detected via the Wronskian determinant by Widland and Lax. It predicts that
the cusp has weight 8. The cubic Cy is the image of the map (23, xoz?,23): P! — P2. In the
open affine set zo = 1, it is just the map ¢ — (¢,t3). Notice that d¢ is a regular differential at
P of A C P! and then o := dt/t? generates the dualising sheaf at the cusp (where (¢?) is the
conductor of Op C ﬁ~p). One has

dt
("o :=d(t") =nt""tdt = nt" T — = nt" o

12
from which (¢*)" = nt"*!. The Wronskian around the point P is then given by
I t3 IR A
0 (13 (3| =10 2t3 3| et C[t].

0 (3" (3" 0 6t 12t°

Example 6.3. In [15], Eisenbud and Harris study limits of Weierstrass points on a nodal
reducible curve C' which is the union of a curve X of genus g — i together with 1 < i < g elliptic
tails, a curve of arithmetic genus g. More precisely, if X — S has smooth generic fibre X,, and X
is semistably equivalent to C, then each elliptic tail carries g2 — 1 limits of Weierstrass points on
nearby smooth curves: these are in turn the ramification points of the linear systems O, (4;),
where A; is the intersection point X N E;. The remaining Weierstrass points of X,, degenerate on
smooth points of X. The theory predicts that if Py € X is a limit of a Weierstrass point P, € X,
then it is a ramification point of a linear system V € G(g, H*(Kx (241 + - - -+ 24;)) such that A;
is a base point of V(—A; —--- — A;). If X is the i-cuspidal curve got by making each A; into a
cusp, as explained in [50], then V' = (v*ws, ..., v*w,), where (w1,...,w,) is a basis of HU()?,w}A()
and v: X — X is the normalisation. This linear system coincides with the one induced by the
dualising sheaf of the irreducible curve with ¢ cusps that X normalises.

g—1
Ey Ar
E, Az
E; Ai
X X

FIGURE 3. Stable reduction of a degeneration to a cuspidal curve.

Example 6.4. Let C' be a smooth complex curve of genus g — 1 > 1 and let C — Cbea family
of cuspidal curves parametrised by C' itself contructed as follows. If @ € C' is a point, the fibre
éQ is the cuspidal curve obtained from C by creating a cusp at the point @, that is, the cuspidal
curve associated to the modulus 2@Q in the sense of [50, p. 61]. In other words, éQ is the curve
such that ﬁ’@Q’P = Oc,p if P # @, whilst ﬁéQ,Q is the subring of O¢ ¢ of the regular functions
whose derivatives vanish at (). One wonders which fibres of the family carry special Weierstrass
points (with respect to the dualising sheaf) away from the cusp {Q}. Let v: C — 5@ be the
normalisation of éQ. Then y*waQ = K¢ (2Q) and then the special ramification points, but @, of
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éQ are the special ramification points of the linear system K¢ (2Q). For general @, one cannot
expect to find any such point. So, solving the problem amounts to finding the locus SWj of all
the pairs (P, Q) € C x C such that P is a special ramification point of K (2Q). The number
N(g) of such pairs is obtained by putting ¢ = 1 in [8, formula (20)]:

N(g) := /C C[swl] = 69" + 14¢° + 10¢° — 14g — 16.
X

Notice that N(1) = 0, because a rational cuspidal curve of arithmetic genus 1 (i.e. a plane
cuspidal cubic) has no hyperflexes.

Example 6.5. Example 6.4 can be interpreted within the geometrical framework of moduli
space of stable curves as follows. Let C — X be a family such that Cg is the curve X Ug~o E,
where (E,0) is an elliptic curve. Then Py € X is a limit of a special Weierstrass point if and only
if it is a special Weierstrass point of the linear system K (2P). This fact has been generalised
first of all in [7]: if X U4 Y is a uninodal stable curve of arithmetic genus g union of a smooth
curve of genus ¢ and a smooth curve of genus g — i then Py € X is limit of a special Weierstrass
point on X, if and only if either P, is a ramification point of the linear system Kx ((gv + 1)A)
or Py is a ramification point of the linear system Kx ((gy +2)A) and A is a Weierstrass point for
the component Y. In case Y is an elliptic curve, i.e. without Weierstrass points, the limits on X
are solely the ramification points of Kx(2P), as claimed.

Example 6.6. The first example not immediately treated by the theory of Eisenbud and Harris
is that of a family X — S of curves of genus 3 such that the special fibre X is the union of two
elliptic curves intersecting transversally at two points A; and A, (the “banana curve”).

15

By

FIGURE 4. The banana curve: an example of a genus 3 curve carrying a 1-
parameter family of limits of Weierstrass points.

In this case each point on each component can be limit of Weierstrass points, in the sense
that for each point Py, say in Fj, there exists a smoothing family X — S such that Py is limit of
a Weierstrass point of a curve of genus 3. All the Weierstrass points distribute themselves in
twelve points on E; and twelve points on Es. Esteves and Medeiros prove in [21] that the variety
of limit canonical system of the “banana curve” is parametrised by P*.

Indeed each Py € E; determines uniquely a point in the pencil of linear systems

V € G(3,H (024, +24,))

which contains H%(€(A; + A3)). Thus for each component there is a 12 : 1 ramified covering
E; — P! and the (fixed) ramification points are the limits of special Weierstrass points on nearby
smooth curves. Also this example may be interpreted in terms of the theory of Widland and Lax
(see [4] for details). In fact the linear system Vp, defined on Eq maps F; to a plane quartic with
a tacnodal singularity (64 = 2, local analytic equation (y — 22)? = 0) at the coincident images of
A; and Ay . Then the limits of Weierstrass points on E; are precisely the smooth flexes, while
the information about the Weierstrass points degenerating on the other components is lost in the
tacnode. Notice that according the theory of Widland and Lax a tacnode must have weight at
least 6-3-2=2-3-2=12.
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6.2. Open Questions.

6.2.1. Porteous Formula with excess. Consider the loci
wt(2) :== { [C] € M, | C has a special Weierstrass point },
Dgy_1 :={[C] € M, | C has a special Weierstrass point of type g — 1},
Dyi1:={[C] € M, | C has a special Weierstrass point of type g+ 1 }.

Although wt(2) is clearly equal to the set-theoretic union Dg_; UDg44, it is not obvious that

[We®)] = [Byi] + By

This is the main result of [26]. Within the general framework discussed in Section 5, consider the
maps of vector bundles

T En o JI 2w, TE, — 2 Jiwr

N7 N,
l |

T T

The loci ﬁg 1 and ﬁg+1 are in fact in the degeneracy loci of the above maps; however these
maps degenerate identically along the special singular fibre which are divisors of C. So, to
compute the class of the loci of ]D)g 1 and ]DgH one should dispose of a Porteous formula with
excess, generalising the residual formula for top Chern classes as in [23, Example 14.1.4]. To our
knowledge, such formulas are not known up to now.

6.2.2. Computing automatic degeneracies. It is an interesting problem, already raised in [46],
to compute the function AD™(f) of automatic degeneracies (as discussed in Section 2.1.1) for
more complicated plane curve singularities than the node. Some results for low values of m have
already been obtained in loc. cit. For instance it would be very useful to be able to determine
the function AD(f) for cusps, ordinary triple points, tacnodes.

6.2.3. Porteous formula for Coherent sheaves. To study situations like 6.2.1 but avoiding the
locally free replacement of the principal parts, S. Diaz proposed in [14] a Porteous formula for
maps of coherent sheaves. This was a question asked by Harris and Morrison in [30]. The purpose
is that of getting rid of two issues at once: excess contributions, and the lack of local freeness of
principal parts of the dualising sheaf at singularities. Diaz’s theory is nice and elegant. However
the main example he proposes is the computation of the hyperelliptic locus in genus 3, which
Esteves computed as sketched in Section 2.2, again using locally free substitute of principal parts.
It would be interesting to work out more examples to extract all the potential of Diaz’ extension
of Porteous’ formula for coherent sheaves.

6.2.4. Dimension estimates. Recall the definition (5.1) of wt(k). In [27] it is proven that for
g > 4 the locus wt(3) of curves possessing a special Weierstrass point of weight at least 3 has the
expected codimension 2. It is a hard problem to determine the irreducible components of wt(k)
and their dimensions. For instance Eisenbud and Harris prove that if & < [g/2] then wt(k) has at
least one irreducible component of the expected codimension k. In general, however, the problem
is widely open. It would be natural to conjecture that wt(k) C M, has the expected codimension
k if g > 0, but there is really no rigorous evidence to support such a guess.
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6.2.5. Computing new classes. Only a handful of classes of geometrically defined loci of higher
codimension in Mg have been computed. For instance Faber and Pandharipande have determined
the class of the hyperelliptic locus in M, via stable maps [22]. Let C — S be a family of stable
curves of genus g > 5 parametrised by a smooth complete surface S. Many singular fibres
belonging to boundary strata of M, of higher codimension can occur. If 7: X — S is a family of
stable curves of genus 4 parameterised by a complete scheme of dimension at least 2, then Faber
and Pandharipande are able to compute the locus of points in S corresponding to hyperelliptic
fibres. Esteves and Abreu (private communication) are able to compute the class [H4] using the
same method we discussed in Section 2.2. However it seems a hard problem to determine the
class in As,_5(M,) (already for g = 4) of the locus wt(3). This would be the push forward of
the third Chern class of

g
J? w£(9+1)/2®/\Ex ,

where J2 is the locally free replacement constructed in the previous sections. Unfortunately, one
has no control on the degree of the restriction of 7 to the irreducible components of Vwt(3). In
genus 4 this locus should contain, with some multiplicity, the hyperelliptic locus, the (nonempty)
locus of curves possessing a Weierstrass point with gap sequence (1,2,3,7) and the (nonempty)
locus of curves possessing a Weierstrass point with gap sequence (1,2,4,7). These loci all have
the expected codimension 2 (by [37]), but as far as we know their multiplicities in wt(3) are not
known.
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REFLEXION MAPS AND GEOMETRY OF SURFACES IN R*

P.J. GIBLIN, S. JANECZKO, AND M.A.S. RUAS

ABSTRACT. In this article we introduce new affinely invariant points—‘special parabolic points™—
on the parabolic set of a generic surface M in real 4-space, associated with symmetries in the
2-parameter family of reflexions of M in points of itself. The parabolic set itself is detected in
this way, and each arc is given a sign, which changes at the special points, where the family
has an additional degree of symmetry. Other points of M which are detected by the family
of reflexions include inflexion points of real and imaginary type, and the first of these is also
associated with sign changes on the parabolic set. We show how to compute the special points
globally for the case where M is given in Monge form and give some examples illustrating the
birth of special parabolic points in a 1-parameter family of surfaces. The tool we use from
singularity theory is the contact classification of certain symmetric maps from the plane to
the plane and we give the beginning of this classification, including versal unfoldings which
we relate to the geometry of M.

1. INTRODUCTION

In a previous article [6] the first two authors studied families of local reflexion maps on
surfaces in R3 and their bifurcation sets, in particular showing that certain special parabolic
points, not related to the flat geometry of the surface, are detected by the structure of the
corresponding bifurcation set. These special parabolic, or A3 points, arose also in earlier work
on centre symmetry sets of surfaces [7]. Although the definition of the reflexion maps is local
the bifurcation sets could be extended over the whole surface, producing curves connecting
the special parabolic points. In this article we extend some of these results to surfaces in R?,
again studying local reflexions and bifurcation sets of familites of contact maps. In the present
situation we need to study the contact between two surfaces in R* and this is measured by a map
(germ) R?,0 — R? 0. The appropriate equivalence relation to measure contact is K-equivalence
(see [10]) and therefore the bifurcation set of a family of contact maps must be constructed
according to this equivalence relation, taking into account the inherent Zs-symmetry of the
contact maps.

We find new ‘special parabolic points’ on a surface in R*, which are of two types, ‘elliptic’
and ‘hyperbolic’, and are in some ways analogues of the special parabolic points encountered in
R3; the local structure of the bifurcation sets is also similar to the 3-dimensional case. For a
surface in R* however there are more special kinds of points and the bifurcation set of our family
of contact functions displays different structures at these. We have not so far found a natural
interpretation of a global bifurcation set, connecting special parabolic points and other points
through the hyperbolic and elliptic regions of the surface.

In §2 we derive the family of reflexion maps and explain our interpretation of the bifurcation
set of such a family. The abstract classification which we need is given in Theorem 3.1 and the
application to surfaces in R* occupies the remainder of §3. We find the bifurcation set germ
at parabolic points, at the two types of special parabolic points, and at inflexion points of real
and imaginary type. In particular we show that arcs of the parabolic set between these various

2010 Mathematics Subject Classification. 52A05, 57R45.
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special points can be given a sign, which changes in a well-defined way at the special points.
Identifying the local structure of the bifurcation sets requires that we are able to check versal
unfolding conditions and we give the criteria for these to hold in each case.

The above calculations are done with a surface M in Monge form at the origin. In §4 we
show how to compute the special parabolic points on a whole surface given in Monge form. The
special parabolic points are found as the intersection of the parabolic set with another curve in
M and we find an explicit formula for this curve, given in Appendix A but applied to several
examples in §4. An example, adapted from [4], shows the birth of special parabolic points on a
loop of the parabolic set created in a generic 1-parameter family of surfaces—an elliptic island
in a hyperbolic sea. Immediately after the moment that the island appears it has no special
parabolic points but two of these, of the same type, can be born as the island grows larger.
Between the two the sign of the parabolic set changes.

Finally in §5 we give some concluding remarks and open problems.

2. FAMILIES OF CONTACT MAPS
Consider a surface M in R*, with coordinates (a, b, ¢, d), parametrized by

vz, y) = (f(2,9), 9(2,9), 2, y),
where we shall assume that the 1-jets of f and g at (z,y) = (0,0) are zero. Let (p,q) be the
parameters of a fixed point on the surface. Reflecting a point v(p + 2, ¢ + y) of M in the point
~v(p, q) gives 2v(p, q) —y(p+x,q+y), so that reflecting M in v(p, q) gives the surface M* through
v(p, q) with parametrization R? — R*:
(@,9) = 2fp,a) = fp+=,9+y), 29(p,q) —glp+2z.9+y), p—2, ¢—Y).

Thus © = y = 0 returns the point v(p,q). Composing this parametrization with the map
R* — R? defined by (a,b,c,d) — (f(c,d) — a, g(c,d) —b), for which the inverse image of (0, 0)
is equal to M, gives the following map (germ) F, . : R? (0,0) — R?,(0,0), whose K-class
measures the contact between M and M* at v(p, q) (see [10]).

Foo@y) = (flo+z.qg+y)+ flo—x.a-y) —2f(p.q),
(1) gp+z.q9+y) +9(p—z,9—y) —29(p.q))
When we include the parameters p, ¢ we write F(z,y,p, q). Note that

F(mayapa Q) = F(*l’, -y, D, q) :
for each (p,q) the map F{, ;) is symmetric with respect to the reflexion (x,y) — (-, —y).

Thus F is a family of symmetric mappings R? — R2, with variables x, y parametrized by p, q.
We investigate the bifurcation set of this family, the fundamental definition of which is

Br = {(p,q): there exist (z,y) such that F{, ) has an unstable
singularity at x,y with respect to K equivalence
of maps symmetric in the above sense}.

In [6] the corresponding bifurcation set of a family F' of real-valued functions was analysed
by studying the critical set of F.. Here we need to work directly with K-equivalence of maps,
where the critical set does not play so significant a role, and we adopt a different approach.

At (p,q) = (0,0) the contact map is

(2) F(O.,O)(xa y) = (f<$7y) + f(_xa _y)7 g(l’,y) + g(—:m _y))7
which is twice the even part of (f,g), but we shall sometimes ignore the factor 2. Thus the
conditions on M needed for the classification of Fig ¢y involve only the even degree terms of f, g;
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however the conditions for the family F' with parameters p, g to give a K-versal unfolding will
involve also the odd degree terms.

We work within the set of maps h : R? — R? which are symmetric by reflexion in the origin:
h(z,y) = h(—x,—y). To do this we use the basis u = 22, v = xy, w = y? for all functions of two
variables which are symmetric with respect to this symmetry and study map germs H : R3 — R?
with coordinates (u,v,w) in R3, up to K-equivalence preserving the homogeneous variety (cone)
V : v? = uw. (In fact for us this is a half-cone since u = x? and w = y? are non-negative,
but for classification purposes we may assume that the whole cone is preserved.) We write
v K-equivalence for this equivalence of germs H : R3,(0,0,0) — R? (0,0). We shall work with
v K-versal unfoldings and construct bifurcation diagrams for these in a sense we now explain.

For a given germ H, the yK equivalence will preserve the intersection H~*(0) NV up to
local diffeomorphism of R?, and indeed will preserve the multiplicity of intersection of the curve
H~1(0) with the cone V. As the map H varies in a family the multiplicity will change and
furthermore intersection points of multiplicity > 1 may move away from the origin; these points
nevertheless form part of the ‘contact data’ of H~!(0) and V since they represent unstable
mappings. Except in one case, described below, all the contact data are concentrated at the
origin.

Definition 2.1. The strata of our bifurcation set are those points in the versal unfolding space
for which the contact data consisting of the multiplicity of contact between H~*(0,0) and V in
an arbitrarily small neighbourhood of the origin in R3 are constant.

The idea is best illustrated by an example, which will arise in §3.5 below. Consider the family
of maps H) ,,(u,v,w) = (v,u — w® + Aw + pw?). For any (A, u), H;t(()) lies in the plane v =0
with coordinates (u,w), and V : v? = uw intersects this plane in the two lines v = 0,w = 0 (for
real solutions for z,y we require indeed u > 0 and w > 0). We therefore examine how the curve
u— w3 + Aw + pw? = 0 in the (u,w) plane meets the two coordinate axes. Intersection with the
axis w = 0 gives only the origin. Intersection with the axis u = 0 requires w(—w? + pw + \) = 0
which gives tangency at the origin when A = 0, so that in the (A, u) plane the axis A = 0, apart
from the origin, is one stratum of the bifurcation set. The total contact between H L(O, 0) and
V' at the origin is 3. The origin A = u = 0 is a separate stratum since the contact there between
H;Ii(O,O) and V is 4. There is also a double root of —w? 4+ pw + XA = 0 at w = 4 when
p? + 4\ = 0, resulting in ordinary tangency between H/\_,t(O, 0) and V at (u,w) = (0, 3x). This
gives a stratum g2+ 4\ = 0 of the bifurcation set, with y > 0 since w = y? > 0, which intersects
every neighbourhood of (0,0) in the plane of the unfolding parameters (A, ). The various
possibilities are sketched in Figure 1 where the intersection number between Hy , = 0 and V is
indicated against each intersection point. For real solutions (x,y) we require these intersection
points to be in the quadrant u > 0,w > 0 of the (u,w) plane. The resulting bifurcation set is
also drawn in Figure 1, with four strata of positive codimension in the (A, ) plane.

3. CLASSIFICATION OF THE CONTACT MAPS UP TO y/-EQUIVALENCE

We consider map germs R3 — R? with coordinates u,v,w in the source (u = 22, v = xy,

w=y? as above), under contact equivalence which preserves the homogeneous variety
V :uw — v? = 0. Vector fields generating those tangent to this variety are given by the Euler
vector field and the three hamiltonian vector fields:

(3) u%+va% —|—w%7 21}(%—&—10%, u%%—?v%, u%—w%.

The tangent space to the K orbit at H(u,v,w) is dH (0y )+ H*(m2)E2, where dH is the jacobian
matrix of H and fy is the £ module generated by the above vector fields.
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w w
2\/ w 2

u u

A A<0 %bo
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p=0 p>0

FIGURE 1. The unstable intersections between the curve v = 0, v = w® — Aw — pw?
and the cone V : v? = uw for various values of A, . These give 0- and 1-dimensional
strata of the bifurcation set of the family H(u,v,w) = (v,u — w® 4+ pw 4+ Aw?), shown
in the boxed diagram at bottom right. Intersections corresponding to real values of
(z,y) are in the quadrant u > 0,w > 0 of the u, w-plane.

The classification which we need is summarized in Theorem 3.1, which is proved by the
method of complete transversals [3] and the finite determinacy theorem for X equivalence [5].
Comments on this classification and application to our geometrical situation are in the remainder
of this section. (We remark here that a different but related classification of maps involving only
odd degree terms is obtained in [9].)

Theorem 3.1. The abstract classification of map germs H : R3 — R2 up to K-equivalence
preserving the half-cone V : v2 —uw = 0, uw > 0, w > 0 starts with the classes given in Table 1.
The classes of symmetric germs h : R? — R% where h(z,y) = h(—z,—y), up to K-equivalence

preserving the symmetry are obtained by replacing u,v,w by x2, xy,y? respectively. O
’ type \ normal form \ vIC codimension \ versal unfolding \ geometry
(H) (w,u) 0 — hyperbolic point
(E) (u—w,v) 0 — elliptic point
(P) (v,u £ w?) 1 (0, Aw) ordinary parabolic point
(SP) (v,u £+ w?) 2 (0, \w + pw?) special parabolic point
(IR) | (v,u® + 2buw + w?) 3 (0, buw + Au + pw) inflexion of real type
b2 £ 1 for +
(1) | (u+w, ku® + uv) 3 (0, ku? + Mu + pv) | inflevion of imaginary type
or (u + w,uv + kv?) 3 (0, kv? + Au + pw)

TABLE 1. The lowest codimension singularities in the K classification of map
germs R3, (0,0,0) — R2 (0,0).

We shall see that the moduli b and k in the normal forms above do not affect the geometry of
the situation. Note that the two forms (v,u 4 w?) are not equivalent since u > 0 so we cannot
replace u by —u. The same applies to the two forms (v,u + w?). Note that the germs (P) and
(SP) are the first two in a sequence (v,u+w"*), k > 2, distinguished by the contact between the
zero-set of the germ and the cone V : v? — uw = 0.
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The contact maps are invariant under affine transformations of the space R* in which our
surface M lies, so that we may first put M in a standard form at the origin in (a, b, ¢, d)-space.
We can assume the tangent plane at the origin is the (¢, d)-plane and the quadratic terms fa, go
of f, g are reduced by the action of GL(2,R) x GL(2,R) on pairs of binary quadratic forms to
a standard form. Finally a linear transformation of R* reparametrizes M as (x,y) — (f,g,2,v)
where now f and g have their quadratic parts in standard form. See for example [4, pp. 182-183]
for the standard forms of 2-jets of surfaces in R%.

There is a convenient way to recognize the types (P) and (SP) of the contact map

(u,v,w) = (C1(u,v,w), Ca(u,v,w)),
which will be useful below.

Lemma 3.2. In each case the zero set C1 = Co = 0 in R? is a smooth curve at the origin and
(P): has exactly 2-point contact (ordinary tangency) with the cone V : v? = uw at the origin,
(SP): has exactly 3-point contact with the cone V' at the origin. O

3.1. First stable case: hyperbolic point. A standard form for the 2-jet of the surface at a
hyperbolic point is (y2, z2, z, y), or in a less reduced form (fi12y + foov?, ge02?, z, y) where
fo2 # 0,920 # 0. The contact map at the origin of R*, ignoring the factor 2 in (2), has 1-jet
Fy = (fi1v+ foow, goou) (or just (w,w) in the reduced form). This is y K-stable and is the case
where the kernel of the linear map Fj : R® — R2 intersects the cone V C R? only in the origin.
The bifurcation set germ is empty.

3.2. Second stable case: elliptic point. A standard form for the 2-jet of the surface is
(22 —y?, 2y, x, y), or in a less reduced form (fa0z? + fo2u%, 9117y, 2,Y), foofoz < 0,911 # 0
as in [4]. This corresponds to 1-jet Fy = (faou + foow, ¢g11v) (or (u —w, v) in reduced form).
This is v K-stable and it is the case where the kernel of the linear map Fj : R?® — R? intersects
the cone V in two distinct generators. The bifurcation set germ is empty.

3.3. Codimension 1 case: ordinary parabolic point. A standard form of the 2-jet of M at
a parabolic point, up to affine transformations of R%, is

(fllxya 920.’E2, z, y)a

where fi11 # 0, goo # 0. The corresponding 1-jet in (u,v,w) coordinates is (v,u) from the
abstract classification, with gives 2-jet (v,u £ w?) which is 2-y K-determined. The two cases,
with signs 4, are not equivalent. Note that with 1-jet (v, u) the kernel of the linear map from
R? to R?, (u,v,w) — (v,u), is along the w-axis, which is a generator of the cone V.

For the contact map F\y ) we obtain (fi1zy, 92022 £ goay*), provided the coefficient goy of y*
is nonzero, with two cases according as gapgos > 0 or < 0. (It can be checked that in reducing
to this form the coefficients of (0,22) and (0,y*) are not changed, in particular the final values
are not influenced by the coefficients in the polynomial f, provided of course that f1; # 0.) The
coefficient of 2 in the expansion of the second component of F(x,y,p,q) is 2g12p + 6gosq; thus
provided g12 # 0 or gos # 0 the family (1) with parameters p, g gives a versal unfolding (note
that these are odd degree terms of g(x,y)). We call such points, where the expansion of M at
the origin has the 2-jet (fi12y, g207?, , y) and

(4) f11 #0, ga0 #0, goa # 0, g12 or goz # 0,

ordinary parabolic points of M. The last condition is equivalent to the smoothness of the para-
bolic set of M at the origin (see below) but the condition gos # 0 does not arise from the flat
geometry of M and is analogous to the condition found in [6] for an ‘ordinary’ (A3) point of the
parabolic set of M C R3.
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A standard result is that the global equation of the parabolic set of a surface M in the form
(f(z.y), 9(z,y),2,y) is

(5) (fngyy - fyygmw>2 = 4(f:1:ygyy - fyyg:ry)(fzmgmy - fzygza:)

This can be proved by considering the 3-parameter family of height functions at any point of M,
say H(z,y, A\, p,v) = Af(2,y) +9(z,y) + pr+vy or H(z,y, A\, p,v) = f(z,y) + Ag(z,y) + px +vy
and writing down the condition that there is a unique direction (A, 1, u,v) or (1, \, u,v) with
the height function having a non-Morse singularity, that is H, = H, = H,.H,, — H, fy =0. (All

normal vectors to M have one of these two forms.) We note below in §3.4 that the formula also
follows from our analysis of contact functions.

In the present case the lowest terms in the equation of the parabolic set at the origin are,
from (5), 162 g20(g122 + 3go3y), so that the parabolic set is smooth at the origin if and only if
g12 Or go3 is nonzero: the last condition of (4). We can unambiguously label smooth segments of
the parabolic set with the sign + or — according as, with 2-jet of (£, g) equal to (f112y, g207?),
both coefficients being nonzero, the product goggos of the coefficients of (0, 22) and (0, y*) is > 0
or < 0. We shall see below when the sign of the parabolic set changes.

For the bifurcation set, we consider the map (u, v, w) — (v, u4w?+ Aw) and the multiplicity
of the zero set of this in an arbitrarily small neighbourhood of the origin. Since v = 0 the
intersection lies in the (u,w) plane, at points of the u- and w-axes. The curve u = Fw? — \w is
tangent to the w axis if and only if A = 0 and then the multiple value of w is 0 so the tangency
is at the origin. In the geometrical case of a surface, as above, the condition A = 0 is replaced by
2g12p + 69o3q = 0, which is the tangent line to the parabolic set at the origin. Thus the germ of
the bifurcation diagram in the (p, ¢) parametrization plane of the surface consists of the tangent
line to the parabolic set:

Proposition 3.3. At an point of the parabolic set satisfying (4) the bifurcation set B is locally
exactly the parabolic set. We can give a sign to each such point of the parabolic set by the sign

of 920904 when the 2-jet of (f,g) is reduced to (fi12y, go0x?).

Points off the parabolic set have stable contact maps, in fact they are elliptic or hyperbolic
points as in §§3.1 and 3.2.

3.4. Formulas for loci of types (P) and (SP) in Table 3.1. We can use the criterion in
Lemma 3.2 to obtain the equation (5) for the parabolic set on a general surface in Monge form,
and then find an additional equation which holds at special parabolic points. We shall use these
in §4 to analyse some examples of special parabolic points.

For the contact map (1) at the point of M with parameters p, ¢ write f11 for f..(p,q), fi2 for
foy(Py Q)5 fizoz for fryyy(p,q) and so on. Then the 2-jet of the first component of the contact
map F = F{; 4 in terms of u, v, w is (taking into account the factor 2 which automatically arises)

Ci(u,v,w) = (fiiu + 2fi12v + faow) +

ﬁ (fnnu2 + 4 f1112uv + 6 fri20uw + 4 fra00vw + f2222w2) )
with a similar formula for the second component.

We can now solve the equations C; = Cs = 0 for say u and v in terms of w up to order 2,
and substitute in the equation v? = uw of the cone V to obtain the order of contact of the zero
set of C' with V. The condition for the order of contact to be at least 2, that is the condition
for the coefficient of w? after substitution to be zero, then works out at exactly (5) where f,
appears as fi1; and so on.

The additional condition for the contact to be of order at least 3, that is for the coefficient
of w? also to be zero, is naturally more complicated and requires solving for u and v as above
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to a higher order. But it is possible to use this condition in explicit examples and it is stated in
appendix A. This formula is used in examples in §4.

3.5. Codimension 2 case: special parabolic point. This degeneracy occurs for the abstract
map R?> — R? when the coefficient of w? in §3.3 equals zero but there is a nonzero coefficient
of w3. The kernel of the 1-jet map R3 — R?, (u,v,w) — (v,u) is still 1-dimensional and along
a generator of the cone V. The bifurcation set of the abstract germ in the case (v,u — w?) was
analysed in §2 and is illustrated in Figure 1. The other case, (v,u + w?), is similar and the full
picture of the bifurcation set is in Figure 2.

In our geometrical situation, on the surface M the above degeneracy corresponds to a parabolic
point with the 2-jet of (f,g) being (fi12y, g207?) and gos = 0. The additional condition
which ensures that the contact singularity is no more degenerate is g?; — 4g20g06 7 0, that is
the even degree terms goox? + g137y> + gosy® do not form a perfect square. (This condition
remains unchanged when the higher terms of f are eliminated, in particular the condition to
avoid further degeneracy does not involve the higher degree terms of f.) We call these special
parabolic points'. The further condition that in the family of contact maps the parameters p, g
give a versal unfolding is 5912905 — 3903914 7 0.

(b)

FIGURE 2. (a) The bifurcation set of the unfolding

(v, wtw® + M+ pw?) = (zy, 2° £9° + X® + '),
as in §3.5 (special parabolic points), with +w® on the left and —w® on the right. The
bifurcation set in each case consists of a germ of the p-axis and a half parabola. In the
geometrical situation the p-axis corresponds to the parabolic set of M and the sign,
+ or —, against this axis is the sign attached to that segment of the parabolic set as
in §3.3. Further E and H refer to the parts of the (A, 1) plane which correspond with
elliptic and hyperbolic points of M, respectively, using the normal forms of §§3.1,3.2.
The left-hand figure of (a) corresponds with 4g20gos — g73 > 0 and the right-hand
figure with 4g20g06 — g7s < 0.
(b) Similarly for the bifurcation set of (v,u* % w? + Au 4 pw) as in §3.6 (inflexions of
real type), corresponding to 4g40gos — ga2 > 0 on the left and < 0 on the right in the
geometrical situation.

The two cases, distinguished by the sign of g7; — 4g20gos in the geometrical situation, differ as
to the region of M, elliptic or hyperbolic, in which the ‘half parabola’ branch of B lies. Figure 2(a)
shows the two cases. Furthermore, at points along the parabolic set, the local expansion of the
surface has gos # 0 and go4 changes sign at special parabolic points. Thus if we label points of
the parabolic set by + or — then the sign changes at special parabolic points. See Figure 2(a).
Summing up the conclusions of this section:

1n the case of a surface in R3 they had an alternative name, “A3 points”, referring to the fact that the contact
between the surface and its tangent plane at any parabolic point is a function of type A2, but this notation is
not appropriate here.
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Proposition 3.4. A parabolic point of M, with the 2-jet of (f,g) in the form (fuizy, ge07?)
is called a special parabolic point if the coefficient goa of y* in g is zero and g5 — 4ga0gos # 0.
The sign attached to ordinary parabolic points close to this one, as in Proposition 3.3, changes
at a special parabolic point. Provided 5g12905 — 3903914 7 0 the p,q parameters versally unfold
the contact singularity in the family F as in (1) and the bifurcation set is the union of the
parabolic set and a “half-parabola” lying in the hyperbolic or elliptic region according to the sign
of 4920906 — 935, as in Figure 2(a).

We do not know whether there is any significance attached to the sign of 5912905 — 3903914-

3.6. First codimension 3 case: inflexions of real type. The 2-jet of (f,g) at inflexion
points of real type (also called real inflexions or umbilic points) on M has the form (f11zy, 0),
where f11 7é 0.

The abstract map R® — R?, (u,v,w) +— (v,0) has a 2-dimensional kernel which intersects the
cone V along two generators. The abstract normal form is (v, u? + 2buw 4-w?) where the second
component should not be a perfect square, that is b # +1 (for the — case this is no restriction).
An abstract yK-versal unfolding is given by (v, u? 4+ 2buw 4 w? + Au + pw), that is b is a smooth
modulus in this case. The bifurcation set B is found by considering the contact of the curve
u? + 2buw £+ w? + M + pw = 0 with the u and w axes in the (u,w) plane. The condition for
tangency comes to ;= 0 or A = 0, irrespective of the sign in the normal form and the value of
b. Thus B consists of the complete A and p axes (not half-axes), and does not depend on the
modulus b. Note that although uw = v? on the cone V our map germs are defined on R? and
not just on the cone, so we cannot use left-equivalence to remove the modulus term 2buw.

Remark 3.5. We do not know if b has any geometrical significance. However, taking the two
components of the map (v, u? 4 2buw £ w?), the intersection of the cone V with the plane v = 0
gives two lines in the plane, u = 0 and w = 0, and the second component gives two more lines
which are real when b*> > 41 (no restriction for the — sign). The cross-ratio of these four lines
will be responsible for the existence of a smooth modulus.

The contact singularity for A =0, # 0 or = 0, A # 0 is equivalent to that for a parabolic
point as in §3.3. Thus the two crossing branches of B represent, in our geometrical situation,
the parabolic set on M. Indeed at a generic inflexion of real type the parabolic set does have a
transverse self-crossing. Furthermore, as A\ passes through zero the normal form for the contact
singularity at a parabolic point changes from the + case to the — case or vice versa; similarly
when p passes through zero. So the sign attached to the parabolic set changes along each branch
of B at an inflexion point of real type.

In the geometrical situation, on the surface M the bifurcation set divides the surface locally
into four regions, two opposite regions being hyperbolic and two elliptic. The configuration
corresponding to the two normal forms is shown in Figure 2(b). The condition to avoid further
degeneracy is g3, — 4gs090a # 0 and the condition for p,q in the family of contact maps to
versally unfold the singularity is 9930903 — 912921 # 0. Perhaps surprisingly, this latter condition
is the same as that for an inflexion point of real type to be R™ versally unfolded by the family
of height functions. (See® [8, Prop.7.9, p.224].) As above, the bifurcation set consists of the
two intersecting branches of the parabolic set, and passing through the crossing point on either
branch the “sign” of the parabolic set, as in §3.3, changes. See Figure 2.

2Translating notation from this to our notation we have azo = foo = 0,a02 = fo2 = 0,a21 = fo1,
bzo = g30,b31 = g21,b32 = g12,b33 = go3. The condition in [8] for a versally unfolded D4 then reduces to
our %fll(—gg3ogog + g21912) # 0. Of course we do not have a Dy singularity, that is the nondegeneracy of the
degree 3 terms of g does not apply. Instead we have a nondegeneracy condition on the degree 4 terms of g.
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Proposition 3.6. At a generic inflexion point of real type on M the vIC bifurcation set of the
family of contact maps consists of the two branches of the parabolic set through the inflexion
point. The sign as in §3.3 changes along each branch. See Figure 2(b). With 2-jet of (f,g) equal
to (fiiwy, 0), where fi1 # 0, the conditions are g3, — 4gs0g0a 7# 0 and 9930903 — g12g21 # 0.

3.7. Second codimension 3 case: inflexion point of imaginary type. The 2-jet of (f,g)
at inflexion points of imaginary type on M (also called imaginary inflexions or umbilic points)
has the form (fa02? + fo2y?, 0), where faqfo2 > 0.

The abstract map R3 — R? has kernel of the linear part (u+w, 0), a plane meeting the cone V
only in the origin, and reduces to the abstract normal form H (u,v,w) = (u+w, au?+2buv+cv?),
subject to the conditions b? — ac # 0 and also 4b* 4 (a — ¢)? # 0, that is b and a — ¢ are not both
0. This time there is no explicit requirement that a, ¢ are nonzero, indeed a = ¢ = 0,b # 0 gives
a 2-y K-determined germ.

We can however reduce to two alternative normal forms, as in Table 1, as follows. Applying
the four vector fields (3) to dH the quadratic form ¢(u,v) = au? + 2buv + cv? can be changed
to any linear combination of ¢ and ¥(u,v) = ug, — vé, = bu? + (c — a)uv — bv?, provided the
conditions above are not violated. Using b¢ + ¢t we can obtain ku? 4 uv for some k, provided
20? +c(c—a) # 0, and using bé—a1) we can obtain uv+kv? for some k provided 2b® —a(c—a) # 0.
If both these reductions fail then it is easy to check that a = ¢ and b = 0 which violates the
original condition on ¢.

Remark 3.7. We do not know whether this remaining smooth modulus £ has any geometrical
significance. However, as in the real inflexion case (Remark 3.5), a smooth modulus is to be
expected in view of the presence of four concurrent lines in the intersection of the cone V' and
the zero-set of the map (u,v,w) — (u + w, ku? + uv), to take one of the above alternatives.
Setting u + w = z, the equation uw = v? becomes u(z — u) = v? and setting z = 0 we have four
lines in this plane, u? +v? = 0 and u(ku + v) = 0. Of course the first pair of these lines are
never real.

A v K versal unfolding is given by
(u+w, ku? +uv +du+ v +vu?) or (u+w, uww+ kv? + A+ po + vv?),

where k is a smooth modulus. There are no restrictions on the value of k; in particular it can
be 0. The K bifurcation set B in this case consists of the origin only in the (A, )-plane since
u 4+ w = 0 is possible only for x =y = 0, hence u = v = w = 0.

In the geometrical case we require g3; — 4910922 # 0, and g1, faogea — fo2g40 are not both
zero. For p,q in the family of contact maps to versally unfold the singularity we require®

931 — 3912930 # 0.

The inflexion points of imaginary type are isolated points of the parabolic set of M. They also
lie on the curve on M defined by the vanishing of the normal curvature k of M. This is the
same as saying that the curvature ellipse collapses to a segment (and so has zero area). See [2,
pp. 9, 17]. Points of the kK = 0 curve on M other than the inflexions of imaginary type are not
distinguished by the family of reflexion maps since in general x = 0 is not an affine invariant of
M.

Proposition 3.8. At an inflexion point of imaginary type on M, with 2-jet of (f,g) equal to
(fo0x? + fooy?, 0), where faofoa > 0, the vK bifurcation set consists of the point only. A

3This is not the same condition as that in [8, Prop.7.9, p.224] which in our notation becomes
f02(3g30912 — 93,) + f20(3921903 — 915) # O
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generic point of this kind is an isolated point of the parabolic set of M. The conditions are
931 — 4910922 # 0, g22, gao — ga2 are not both zero and g3, — 3g12930 # 0.

4. EXAMPLES

In this section we show how to calculate special parabolic points in practice over a whole
surface M given in Monge form.

A good source of examples where something interesting is happening is [4, pp.189-90]. In
these examples the parabolic set undergoes a transition as M changes in a 1-parameter family,
so that a loop appears (either an elliptic island in a hyperbolic sea or vice versa), or a crossing
on the parabolic set separates in a Morse transition. In fact from our point of view the examples
of [4] are not quite generic since at special parabolic points, when these exist, our family of
contact maps does not versally unfold the singularity according to the criterion of §3.5. However
this is easily remedied by additing an extra term to one of the defining equations.

For us it is not generic for a crossing or isolated point on the parabolic set to be in addition
a special parabolic point, since special parabolic points are isolated on the parabolic set. Thus
when a loop of parabolic points appears on M the loop will generically have no special parabolic
points on it but these can develop as the loop expands, as the examples show. We can check
numerically that the sign of the parabolic curve, in the sense of §3.3, changes at a special point,
and we can calculate the type of the special point, as defined in §3.5.

Example 4.1. Consider the family of surfaces given in Monge form by

flay) =zy+13, glz,y) =2*+ 2%y + 2y’ — 3y + 51° + py?, where the term in y° is added
to the formula in [4, p.189] (with A = —3) to make the special points generic from the family of
reflexion maps, and small negative values of the parameter u produce a loop on the parabolic
set. Figure 3 illustrates the formation of two special points on the parabolic set as p becomes
more negative.

02 -0 01 R 03 04 0. 01 0 01 0. 03 04

025 -025

FIGURE 3. The parameter plane of the curve of Example 4.1 near the originxz =y =0
for, left to right, u = —%, uw = —2—19, = —%. The figure shows a loop on the
parabolic set and the additional curve whose intersections with the parabolic set give
special points, as in §3.4, §A. Two special points appear at about u = —%. The
signs of the parabolic set arcs are marked in the third figure and the elliptic region
E and the hyperbolic region H. The right-hand figure is a schematic representation of
the germ of a “semi-lips” which joins the two bifurcation sets of the special parabolic
points immediately after their creation. Note that this is consistent with Figure 2(a)
with the —w? sign.

We can calculate the type of the special points, and the sign of the parabolic curve on either
side of them, as follows, where the calculations are necessarily numerical rather than exact.
Having calculated numerically the parameter values (p, q) of a special point, that is where the
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two curves in Figure 3 intersect we ‘move the origin’ to this point. This re-parametrizes M near
(f(p, ), 9(p, q),p, q) as the set of points (f(z'+p, ¥'+q)—f(p,q), 9(='+p, ¥ +q)—9(p, ), =', V')
where (2',y’) are the new coordinates in the parameter plane, with origin at z = p,y = q¢. We
can now proceed to reduce the quadratic terms of this parametrization to (2'y’,2'?), ignoring
any linear terms which can be removed by a global affine transformation of R*. Having done
this, we can apply the formulas of §3.5 to determine the type of special parabolic point (elliptic
or hyperbolic) and to check that it is nondegenerate and that the family of contact maps is
versally unfolded. All these calculations are straightforward and were performed in MAPLE.
The same method can be used at an ordinary parabolic point to determine whether it is positive
or negative in the sense of §3.3.

For the example above we find that the special parabolic points are both elliptic, that is the
germ of the bifurcation set is inside the elliptic island of M. We find that after reduction of the
quadratic terms of f, g the conditions gos = 0, 4920906 — 933 < 0, 5912905 — 3903914 # 0 in the
notation of §3.5, all hold at both special points. The latter condition does not hold without the
addition of the term in %° to g.

We also find that the sign of the parabolic points on the loop is negative for small u before
the special points appear; this is to be expected since the sign of y* in g(z,y) is < 0. The arc of
the parabolic set between the special points consists of positive parabolic points.

Example 4.2. A second example, also adapted from [4], is provided by

fla,y) =2y + 4% g(z,y) = 2® + 2%y — 32°y% + 3y +y° + py®.
See Figure 4 for an illustration. Calculation as above stows that the special parabolic point
is elliptic and is versally unfolded by the family of contact maps so that the bifurcation set is
as described in §3.5. Also, the signs of the parabolic set are as in the figure. Note that this

transition on the parabolic set via a self-crossing is not to be confused with the inflexion point
of real type as in §3.6.

- - - - 0
RN R N N4
-0.1
ol H
-0.2
02

FIGURE 4. The parabolic set in the parameter plane for Example 4.2, with (left)
uw= —% and (right) pu = %. The special parabolic points where the two curves meet
are of elliptic type; H stands for the hyperbolic region, E for the elliptic region and
+, — refer to the sign of these sections of the parabolic set, computed using the method
explained above.

5. CONCLUDING REMARKS

We have shown how the family of contact maps by reflexion in points of a surface M in R*
identifies the parabolic set of M and also some special but still smooth points of the parabolic
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set which are not part of the flat geometry of M but are affine invariants of M. We do not know
of a different characterisation of these points.

In [6] it was possible to extend the bifurcation set of the family of contact maps on a surface
M in R3? to a global bifurcation set, even though it was not entirely clear what geometrical
significance this had away from the parabolic set on M. In the present case, for M a surface in
R*, we do not know of any reasonable way to make the bifurcation set global.

Because of the sign attached to points of the parabolic set which changes at special parabolic
points and also at self-crossings of the parabolic set, it is possible to formulate some statements
about the numbers of special points. For instance, on a smooth closed loop of the parabolic
set there must be an even number of special parabolic points (possibly zero). Similarly on a
figure-eight component of the parabolic set there must be the same parity of special parabolic
points on each loop.

It is possible in principle to extend the explicit calculations of special parabolic points, as in
84, to the case when the surface is parametrized in a general way, as

(A(z,y), B(z,y),C(z,y), D(z,y)).
However there is a significant difficulty in writing down the contact map, as in (1) which is
valid for the case C(z,y) = =, D(x,y) = y, without an expression for M as the zero set of a
submersion R* — R2. We need to construct the contact map from parametrizations of both M
and its reflexion M™ in a point of M. Extension to a general parametrization would allow us to
examine examples such as those in [1]. Even more challenging is the explicit calculation of the
contact map for a surface which is given in implicit form as the zero set of a submersion.

APPENDIX A. THE ADDITIONAL FORMULA FOR THE LOCUS OF SPECIAL PARABOLIC POINTS

Consider a surface in Monge form (f(x,y), g(z,y),z,y). For our purposes it does not matter
whether f, g have linear terms since they can be removed by a global affine transformation of R*
which will not affect the parabolic curves or special parabolic points. The additional condition,
besides (5), for a point with parameters (p, q) to be a special parabolic point, is as follows. We
use the notation of §3.4.

Let

©1 = f12g22 — f22912, O2 = f11922 — f22911, O3 = f11912 — f12911
Oy = fr1g11922 — 2f119%0 + 2 12911912 — fa2gh
Dy = fr1911.f22 — 2fTag11 + 211 fr2g12 — fT1922
Then the condition is

OI®) f1111 — 20102®1 fi112 + 60103P f1192 — 20203P1 fra20

+O3®1 fazor + OFPagii11 — 20102P2g1112 + 60103P2g1122

—20503P2g1922 + OF P2 G222 = 0.

In the case that f11 =0, f12 # 0, fag = 0,911 # 0, g12 = 0, g22 = 0 this reduces to gagooe = 0, as
we expect from §3.5 where the condition appears as ggs = 0 when we are working at the origin.
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EQUIDISTANTS FOR FAMILIES OF SURFACES

PETER GIBLIN AND GRAHAM REEVE

ABSTRACT. For a smooth surface in R3 this article investigates certain affine equidistants,
that is loci of points at a fixed ratio between points of contact of parallel tangent planes (but
excluding ratios 0 and 1 where the equidistant contains one or other point of contact). The
situation studied occurs generically in a 1-parameter family, where two parabolic points of
the surface have parallel tangent planes at which the unique asymptotic directions are also
parallel. The singularities are classified by regarding the equidistants as critical values of a
2-parameter unfolding of maps from R* to R3. In particular, the singularities that occur
near the so-called ‘supercaustic chord’, joining the two special parabolic points, are classified.
For a given ratio along this chord either one or three special points are identified at which
singularities of the equidistant become more special. Many of the resulting singularities have
occurred before in the literature in abstract classifications, so the article also provides a natural
geometric setting for these singularities, relating back to the geometry of the surfaces from
which they are derived.

1. INTRODUCTION

A smooth closed surface in affine 3-space will contain pairs of points at which the affine tangent
planes are parallel; indeed the tangent plane at a given point may be parallel to that at several
other points if the surface is non-convex. Associated with these pairs of points, and the chords
joining them, there are a number of affinely invariant constructions. The affine equidistants are
the loci of points at a fixed ratio A : 1 — A along the chords, and the centre symmetry set is the
envelope of the chords, which can be locally empty. These constructions have been examined
from the point of view of singularity theory in the last few years by several authors; there are
many connexions with earlier work such as the ‘Wigner caustic’ of Berry [2] which, for a curve in
the plane, is the equidistant corresponding to a ratio A = %, that is the midpoints of the parallel
tangent chords, and the bifurcations of central symmetry of Janeczko [11]. Notable among recent
studies is the work of Domitrz and his co-authors, for example [3].

A generic surface M in affine 3-space will generically have pairs of points at which the tangent
planes are parallel and for which both points in the pair are parabolic points of M. For the locus
of parabolic points of M is generically a 1-dimensional set, a union of smooth curves, and
requiring parallel tangent planes imposes two conditions on a pair of points of this set, so that
a finite number of solutions can be expected. In this article we investigate one possible local
degeneration of this generic situation by requiring also that the unique asymptotic directions
coincide at such a pair of parabolic points with parallel tangent planes. For this to occur the
surface M must be contained in a smoothly varying family M. of surfaces. Since our investigation
is local we shall in fact consider two surface patches My and Ny which vary in a 1-parameter
family M., N.. A similar degeneracy was investigated for plane curves in [6]; we sometimes call
it a ‘supercaustic’ situation. This term is defined in §2.3.

2010 Mathematics Subject Classification. 57R45, 53A05.
Key words and phrases. affine equidistant, surface family in 3-space, critical set, map germ 4-space to 3-space.
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We find the values A # 0,1 for which the ratio A : 1 — A determines an equidistant at which
the structure undergoes a qualitative change. There are one or three of these values, depending
on the relative orientation of My and Ny. One ‘degenerate’ value always exists and results in a
high codimension singularity; we are able to give a partial analysis of this case. When the other
two values exist we call them special values (Definition 2.6), and a complete analysis is given.

The article is organized as follows. In §2 we introduce the family of surfaces we shall work with
(§2.1), and the maps which we shall classify up to A-equivalence to study the equidistants (§2.2,
§2.3). We also show how some of the conditions that arise later can be interpreted geometrically
in terms of a scaled reflexion map (§2.4, Definition 2.5). In §3 we find normal forms of maps
up to A-equivalence that generate the equidistants: they are the sets of critical values of these
maps. We examine in that section general values of the ratio (Generic Case 1.1) and the two
‘special’ values (Special Case 1.2), leaving the ‘degenerate’ value (Degenerate Case 2) to §4.

The main results are contained in Proposition 3.2 and the accompanying Figure 1 for Generic
Case 1.1; Proposition 3.4 and the accompanying Figure 4 for Special Case 1.2, and Table 1
in §4.6 for Degenerate Case 2.

2. THE GENERAL SETUP

2.1. A generic family of surfaces. Consider the parabolic set P (assumed to be a nonempty
smooth curve) of a generic smooth closed surface M in R3. We can expect generically to find
a finite number of pairs of distinct points on P for which the tangent planes to M are parallel,
since the two points give us two degrees of freedom and it is two conditions for the tangent planes
to be parallel. However it will not be generically true that the unique asymptotic directions at
such a pair of points are parallel. For that we require a 1-parameter family of surfaces and it is
this situation which we study here.

Our considerations are local, and also affinely invariant. For this situation we have two
surfaces, M. and N., varying in a 1-parameter family; using a family of affine transformations of
R? (coordinates (z,y, z)) we can assume that the origin lies on M., that the origin is a parabolic
point of M. and that the unique asymptotic direction there is always along the y-axis, for all &
close to 0. Further we can assume that the point (0,0, 1) lies on N for all small € and that for
¢ = 0 this point is parabolic, has horizontal tangent plane parallel to the (z,y)-plane, and has
unique asymptotic direction parallel to the y-axis. We realise this setup by the surfaces

M. :z=f(x,y.6) = faox®+ fa002” + for02’y + frzozy® + fosoy® + ...
(1) + e(fs012° + fonzPy +...) + &% (fro2z® +..) + ...,
No:z=1+g(x,y,e) = 149202+ gs00r® + g2107”y + g1207y> + gosoy” + - ..
+ (91012 + go11y + 92012 + G112y + o1y + . -.)
(2) + €2 (gr02T + Goroy + )+ ...

For terms other than fa9, g20, subscripts ijk indicate that the corresponding monomial is e¥z?y7 .
We make the following assumptions about these expansions.

Assumptions 2.1. (i) fao # 0,920 # 0, that is neither My nor Ny is umbilic at its basepoint
(0,0,0) or (0,0,1).

(i) foso # 0, goso # 0, that is the parabolic curves of My at the origin and Ny at (0,0, 1) are
smooth and not tangent to the asymptotic directions there (i.e. these points are not cusps of
Gauss). We shall take fpsp > 0 without loss of generality, and we sometimes write

foso = f3, gozo = £93

when a definite sign is needed, to avoid square roots appearing in the formulas.
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2.2. Family of maps for the equidistants. The M-equidistant for a fixed ¢ is the locus of
points in R? of the form (1 — \)p + A\q where p € M., q € N. and the tangent planes to M. at
p and N, at g are parallel.

We always assume A # 0, X\ # 1 in what follows.

We use s = (s1,82) as parameters on M. and similarly ¢ = (¢1,t2) for N.; we have a 2-
parameter family of maps R* — R3:

(3) R4 X R2 — R37 (87t7€7>\) — (]- - )‘)(517827f(817827€)) + )\(t17t271 +g(t17t275))'

Then it is straightforward to check that, for fixed € and A, the set of critical values of this map
is the A-equidistant of M. and N.. We are therefore interested in this family of maps up to
A-equivalence. We make the change of variables

(1= A)s1 + Aty = ug, (1 — A)s2 + Aty = ug, and write A = Ag + a,
replacing ¢, and ¢, to rewrite (3) as a map of the form (for any Ay # 0,1)
(4) H:R*xR*> =R H{(s1,s2,u1,uz, € &) = (u1,ug, h(s1, 82, u1,u2,€, Ao + @)).

regarded as a 2-parameter unfolding of the map Hy(s1, s2,u1,u2,0, \g). Therefore we have the
following.

Proposition 2.2. The \-equidistant for fived ¢ is the set of points (ui,uz,h) € R for which
0h/0sy = Oh/0sy = 0. For fized )\ the union of all the equidistants, spread out in R*, the planar
sections of which are the ¢ = constant equidistants, is the set of points (u1,us,h,e) € R* for
which the same conditions Oh/0sy = Oh/Jsy = 0 hold.

2.3. Maps and supercaustics. Let ¢ : R* — R? be given, for fixed A and ¢, by
¢(Sla S2,U1, ’LLQ) = (hsl 5 hSQ)a

subscripts denoting partial derivatives as usual. Then the corresponding equidistant, given by
#71(0,0), is singular when there is a kernel vector of d¢ with image under dH equal to 0, these
being evaluated at a point of ¢~1(0,0). This requires that

h8131 h’8182 hslul h31u2

h5251 hSQSQ h52u1 hsz’u.g

rank J < 4 where J = 0 0 Py Py ,
0 0 1 0
0 0 0 1

that is hg, s, heys, = b2

S182

(5) {(u17u27 h(Sla S2,U71, UZ)) : hsl = h52 = h5151h5252 - h2 = 0}

$182

. The singular points of the equidistant for fixed A and ¢ are therefore

We note here that, for fixed e, the ‘centre symmetry set’ of the pair of surfaces M, N [8], which
is the locus of singular points of the equidistants for varying A, is given by the same formula (5)
where h is now a function of s1, s, u1, us, A but with e still fixed.

It is possible that some singular points of the equidistant arise from singularities of the critical
set itself in R*. In our case this requires, for fixed A and e, that the top two rows of the above
matrix J are dependent. Indeed, evaluating these rows at (s1, $2,u1, us, A,€) = (0,0,0,0, A, 0)
the second row is entirely zero. This means that, for all A, but ¢ = 0, the critical set itself is
singular at the origin of R*.

Definition 2.3. In the above situation, the A-axis is called a supercaustic; see [6]. The whole
of this axis maps to singular points of the equidistants.
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Remark 2.4. This depends crucially on the special nature of our surfaces, with not only parallel
tangent planes at parabolic points of My and Ny but also the asymptotic directions at those
points being parallel. If instead we assume that the asymptotic directions are distinct (without
loss of generality we can take them along the z and y axes) then the top two rows of J become
independent for s; = sy = u; = us = € = 0 and arbitrary A. In fact, writing ggoo for the
coefficient of %2 in the parametrization of Ny and putting g9 = 0 these rows become

2(1 =X\ fao 0 0 0
0 29020(1=2)? () _2g020(1=A) | -
A A

In this case the ‘supercaustic’ is empty.

2.4. Scaled reflexion map and contact. Consider the affine map S : R? — R? given by
S(x,y, 2z) = (ux, py, p(z — 1)) where p = ﬁ # 0. This leaves the point (0,0, \) fixed and maps
(0,0,1) to the origin. We can measure the contact between S(Ny) and My by composing the
parametrization of S(Ny) given by (ux, py, ug(x,y,0)) with the equation of My, say

Z - f(X,Y,0) = 0.

Definition 2.5. The scaled contact map is the contact map germ

A
K : Rza (070) — R?Ov K(.I',y) = N!](%yaO) - f(ﬂxnuya())v n= ﬁ as above.

We shall find this contact map useful in interpreting the conditions which arise from e-families
of equidistants as ¢ passes through 0.

The 2-jet of K is Ka(x,y) = p(gao — ff20)2 so that in our situation K is always non-Morse;
it has corank 1 and is of type Ay at (0,0) for some k, provided faoA + g20(1 — A) # 0 (when this
fails we call this the ‘Degenerate Case 2’; see §4). The coefficient of ® in K is u(goso — 1% fo30)
so that K is then of type exactly Az provided foz30A? — gozo(1—A)? # 0. If fo30, gozo are nonzero
and have opposite signs then of course this coefficient can never be zero.

Definition 2.6. Assume as above that fogA + goo(1 — A) # 0. When fo30, goso have the same
sign (without loss of generality, positive), and the above coefficient fo30A? — gozo(1 — A)? of 2 is
zero, then we refer to the two resulting values of \ as special values. Writing foso = f3, goso = g3

g3
. (We shall usuall
g3 f3 ( Y
assume f3 # g3 to avoid one of the special values ‘going to infinity’.) These special values of A
give rise to what we shall call Special Case 1.2. This is examined in detail in §3.2.

where we may take fs > 0,93 > 0, these special values of A\ are

g3

, the condition for K to have exactly type Az at (0,0)
g3+ f3

When A has a special value, say

works out to be

(6) (49040920 — G120)f3 + 49040 f20 £595 +2f1209120 f3.95 + 4 fo10920 395 + (4 foa0 f20 — fia0)95 # O.

This condition will be satisfied by a generic pair of surfaces My, Nyg. With the other special value
the signs in front of the coefficients of f3gs and f3g3 both change to minus.
When the quadratic terms of the contact map K vanish identically, that is when

f20A + g20(1 = A) =0,

the cubic terms will in general be nondegenerate and K will generically have type fo, that is
R-equivalent to x3 & zy2. The polynomial in the coefficients of f and ¢ which distinguishes the
two cases is rather complicated but, remarkably, it has a different interpretation which we give
in §4 in the context of self-intersections of the equidistant. See Remark §4.3.
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3. THE EQUIDISTANTS: NORMAL FORMS

For a general study of the equidistants we need to expand the function h in (4) using the
parametrizations (1) and (2). We begin with e = 0 and write, for a fixed A,

Hox(s,u) = (u, hor(s,u)) = H(s,u,0, ).
The coefficient of sisiukub in hoy will be written Cijke- We find:
The 2-jet of hoy at s =u = 01is (1 — A)(Afao + (1 — A)ga0)sT — 292052 s1us.

Note that the coefficient of sju; is nonzero.

The main subdivision is between those A for what A fa0+(1—A)g20 is nonzero (Generic Case 1)
or zero (Degenerate Case 2). We cover the Generic Case here and the Degenerate Case in §4
below.

Case 1 Afoo+ (1 — A)gao # 0. From §2.4 this is also the condition for the contact function K
to have type Ay for some k.

We can now redefine the variable s; (‘completing the square’) to eliminate all terms containing
s1 besides s? in hgy. The coefficient of s3 then becomes

co300 = 52 (fo30A% — gozo(1 — A)?).

3.1. The general values of A\. Generic Case 1.1 cy3gp # 0, that is, @ # 0 where
(7) Q = fo30A — goso(1 — A).

From §2.4 this is also the condition for the contact function K to have type A and that \ is
not a special value.

Consider the 3-jet of Hpy. There are six degree 3 monomials which do not involve s; and which
do involve s (any monomial in uj, us alone can be eliminated by a ‘left-change’ of coordinates).
We still have the freedom to change coordinates in so (involving so, u1, ug) and in g, ug (involving

u1,us only). Using only the first of these the terms in s3u; and s3us can be eliminated, leaving

(8)  (ur,uz, (1 = A)(Afao + (1 — A)g20)sT + cozo083 + s2 (corz0uf + cor11uus + co102u3)) -

(The coefficients c;;,¢ need to be updated to take account of the substitutions.) The quadratic
form in u; and wy can be diagonalised, eliminating the term in ssujus so that, scaling s1, the
last coordinate in R3 and s,, we have 3-jet, say

(w1, ug, 83 4 85 + asou? + bsoul).
Suppose that the quadratic form in parentheses in (8) is not a perfect square, that is
G111 — 4co120C0102 # 0.
Then a and b above are nonzero. The condition for this is R # 0 where

9) R = 3 fos0 (9120 — 392109030) — 9509030 (f120 — 3f210f030) -

Since this condition does not involve A it will be satisfied by a generic pair of surfaces My, Ny.
Note that the condition separates into a quantity for M, unequal to the same quantity for Ny.

Proposition 3.1. The condition R # 0 can also be interpreted as saying that the images under
the Gauss map of the parabolic curves on My and Ny have ordinary tangency (that is, 2-point
contact) in the Gauss sphere. These images are smooth by Assumptions 2.1.
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Proof The parabolic curves on the two surfaces are given by

f:vzfyy - ny =0 and GrxGyy — giy =0
for My and Ny respectively. The surface My has a parabolic point at the origin and Ny has
a parabolic point at (0,0,1) and since they have parallel asymptotic directions at these points
the images of the respective parabolic curves under the Gauss map are tangent. We shall use
the modified Gauss maps, that is (z,y) — (X,Y) = (fs, fy) and similarly for g. By a direct
calculation, for My the image of the parabolic curve, parametrized by z, under the modified
Gauss map has an equation, up to terms in X2, of the form

Y = 3f030f210 — f1220 X2

123 foso
with a similar result for Ny. The coefficients of X2 are unequal, that is the images have ordinary
tangency, if and only if the condition R above is nonzero. O

Further scaling allows this case to be reduced to
(10) Hox(s,u) = (u1,ug, 87 + 55 + sou? + spud),

where the & signs are independent, but by interchanging vy and us we reduce to three cases, as
follows.

Proposition 3.2. The normal form (10) is as follows, using the notation of (7) and (9). See
Figure 1.

Subcase 1.1.1 (positive definite): Hox(s,u) = (u1,uz, s + 3 + sau? + sau3).

The condition for this is fos0g030 < 0 and QR > 0. Bearing in mind the assumptions 2.1 the
latter condition is equivalent to R > 0. This subcase will also be referred to as A2++,

Subcase 1.1.2 (negative definite): Hox(s,u) = (u1,ug,s7 + s3 — squ? — squ3).

The condition for this is fozogoso > 0 and QR > 0. This subcase will also be referred to as Ay~
Subcase 1.1.3 (indefinite): Hox(s,u) = (u1,ug, 87 + s3 + squ? — sou3).

The condition for this is QR < 0. In the case when fo30g9030 < 0 the condition becomes R < 0.
This subcase will also be referred to as A3, O

The values of fy30, gos0 and R are fixed by the two surfaces My and Ny. However, assuming
fosogoso > 0, special values of A exist at which @ as in (7) is zero. Then, as A passes through
such a special value, the normal form changes between negative definite and indefinite, so that
the family of equidistants, for € passing through 0, changes accordingly.

Using standard techniques it can be checked that (10) is 3-.A-determined, and that an A.-versal
unfolding is given by adding a multiple of (0,0, s3) to the above normal form:

(11) H.x(s,u) = (u1,us, 83 + 85 + sou? & soul + e52).

In terms of the original surfaces the coefficient of €so is —gp11(1 — A), and therefore we require
go11 # 0 for a versal unfolding by the parameter €.

Remark 3.3. It is interesting to relate the above classification to that of the regions on M and
N which contribute to the pairs of parallel tangent planes (compare Prop.2.4 and Figure 3 of
[5]). A schematic diagram of the common regions for M and N on the Gauss sphere is given
in Figure 2 below. The relationship between these and the classification of Proposition 3.2 is as
follows.

Subcase 1.1.1 (positive definite, fo30g030 < 0 and R > 0): This is (d).

Subcase 1.1.2 (negative definite, fozogoso > 0 and QR > 0): This is (ac).

Subcase 1.1.3 (indefinite): This can arise in two ways, as either (ac) or (b)
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o
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Positive def., e < 0 Negative def., e < 0 Negative def., e =0

Indefinite, e < 0 Indefinite, e =0 Indefinite, € > 0.

FIGURE 1. The various subcases of Proposition 3.2: Positive definite (for € > 0 the
equidistant is empty and for ¢ < 0 has a compact cuspidal edge); 1.1.2 Negative definite,
where for € > 0 there is a compact cuspidal edge; 1.1.3 Indefinite, which has two cuspidal
edges for € # 0 that form a crossing when € = 0.

(ac) when foz09030 > 0 and QR < 0,
(b) when fo309030 < 0 and R < 0.

Let us call a pair of points, one from M. and the other from N, at which the tangent planes
are parallel, ‘mates’. Consider for example the top left diagram of Figure 2 and assume that the
upper curve is the image of the parabolic curve of N. in the Gauss sphere. Each point above
this curve is the image of two points of N, and two points of M. giving altogether four mates.
Each point on the upper curve is the image of two points of M. and a single parabolic point of
N, which is a mate for both of them. On the surface M, itself there will be a region close to
the base-point (0,0,0) consisting of those points of M, with at least one mate, and usually two
mates, on N.—a region ‘doubly covered by mates on N.’. This region will have a local boundary
corresponding in the way just described to the parabolic curve on N.. Turning to the upper
right diagram of Figure 2 the hatched region representing mates now contains a segment of the
parabolic curve of M.. On the surface N, this will result in a closed loop on the boundary of
the region of points having mates on M.. The situation on the surfaces themselves is illustrated
schematically in Figure 3.

3.2. The ‘special values’ of A\. Special Case 1.2 cy390 = 0, that is A has one of the two
special values as in §2.4. Note that this requires fo30 and gg3o to have the same sign, which we
take as positive, and write fo30 = f7, goso = g5 where f3 > 0, g3 > 0.

This case will be examined by choosing one of the special values for A given by cg300 = 0,
g3

s We can eliminate the terms in szu% and ssujus by a substitution of the
gs 3

namely \ =
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(b)% U U
o, NN

FIGURE 2. Schematic diagrams of the images of the Gauss map for the surfaces M. and
N.. The curves represent the parabolic curves of these surfaces, along which the Gauss
map has a fold, and the hatched regions represent the regions where the images of the
Gauss maps of M. and N, intersect, that is the regions of the Gauss sphere representing
parallel normals (or parallel tangent planes). Left to right of each row shows varying ¢,
with the middle diagram ¢ = 0, and the three possible cases are labelled (ac), (b), (d) as
described in the text, to accord with Figure 3 in [5]. Note that the two curves for ¢ = 0
have ordinary tangency—see Remark 3.1.

form so = s}, + auy + bus, assuming only the condition Afog 4+ (1 — A)gag # 0 of Generic Case 1.
The coefficient of s3us then becomes 3f7 # 0 and the remaining degree 3 terms in hgy, namely
s%ul, s%ug and szu% can therefore be reduced to the last two by redefining us, at the same time
making the coefficient of s3us equal to 1. The 3-jet of Hyy is now of the form (scaling s;)

2, .2 2
(u1, ug, £87 + s3us + co12052u7),

where the updated cp129 is nonzero if and only if R # 0 as in (9), and for generic My, Ny this
will be satisfied.

Passing to the 4-jet of Hpy, we can first remove all monomials divisible by s; besides 4-s? by
completing the square, and then eliminate all degree 4 monomials besides s5 and s3u;, without
adding any new monomials of degree 3. This can be done, for example, by substitutions of the
form so = s, 4+ quadratic terms in s}, uf, ub, u; = uj + quadratic terms in u}, uf, and similarly
for ug. A left change of coordinates will then restore the first two components of Hyy to (ug, us).

The 4-jet is now reduced to

2, 2 2 4 3
(Uh Uz, 87 + S5u2 + Co120S2u7 + Coa00S2 + 0031082U1) .

This is 4-A-determined provided all the coefficients are nonzero. The coefficient cg4q¢ is nonzero
if and only if the ‘exactly A contact condition’ (6) holds. Unfortunately we do not know a
geometrical criterion for the coefficient of s3us to be nonzero; it involves only the coefficients in
the functions f, g which define the surfaces My, Ny.

Scaling reduces all but the coefficient of s3 to 1 and we summarize this discussion as follows.
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égq
-

Case (ac)
M

Proj(M, N)

Case (b)

Case (d)

FIGURE 3. In this diagram, the Gauss map of the surfaces M. and N. is represented by
vertical projection and the surfaces in this schematic representation are labelled M, N.
The rows and columns are arranged as in Figure 2. See the above text for further expla-
nation.

Proposition 3.4. For Special Case 1.2, that is fozo0 = f2,9030 = g3, a special value of
A = g3/(gs £ f3) (Definition 2.6 or Q@ = 0 as in (7)) but Afao + (1 — N)g20 # 0, the func-
tion Hoy reduces under A-equivalence to the normal form

(12) Hox(s1, 82, u1,u2) = (ul, Uy, £57 + sauy + sou? + 53 + s3uy + (psa + qsg)) ,

provided the geometrical conditions R # 0 (9), and ‘exactly As-contact’ (6) hold, together with
a third condition on My, Ny which will be generically satisfied. The terms pss + qs3 in brackets
represent an Ae-versal unfolding provided the geometrical condition go11 # 0 in (1) holds. See
Figure 4 for a ‘clock diagram’ of the equidistants in the (p, q)-plane. O

A similar normal form, without the fourth variable s;, but with an additional ambiguity of
sign, occurs as 43 in [12]; see also [9]. The sign in front of s3 will not affect our results since the
critical set of Hyy has s; = 0. The versal unfolding condition means that as € changes through
0 the normal to N tilts in a direction with a nonzero component along the y-axis, which is the
asymptotic direction at € = 0.

When A\ moves away from a special value then, in (12), p remains at 0 while ¢ becomes
small and nonzero. We can then reduce (12) as in Generic Case 1.1, as follows. The 3-jet of (12)
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becomes (u1, us, 52+ s3us + sou? +¢s3) with ¢ # 0. Replacing sy by msy +nus where 3gn+1 = 0
and ¢gm? = 1, and then removing terms in the third component involving only u,ug, reduces
this to

1 1
<U1,U2, 8% + WSQU% — SqT/ngu% + s%) .

The product of terms in front of syu? and squ3 therefore has the sign of —q and hence changes
as g passes through 0. Furthermore it is not possible for both signs to be positive. We deduce
the following.

Corollary 3.5. Moving A through a special value A = g3/(g93 £ f3) but keeping € = 0 the
type of equidistant always changes between Subcase 1.1.2 (negative definite) and Subcase 1.1.8
(indefinite) as in Proposition 3.2. It is not possible to realize the positive definite Subcase 1.1.1.

Figure 4 shows a typical way in which equidistants near to a special value evolve as A\ and ¢
change.

3.3. Some further details of Special Case 1.2. We take \g = ggg+3f3 as a special value,
assuming fao # 0,920 # 0, f3 > 0,93 > 0, Ao f20+ (1 — Ao)g20 # 0, i.e. f2093 + g20f3 # 0, and also
R #0 (9) hold. We write A = A\g + « for nearby values, and examine the full versal unfolding H
of H, as follows.

Thus the family of equidistants can be reduced to
(13) E’(Sh S2,U1,U2,D,q) = <U17U27 57 + s3us + soui + 53 + Ssus + psa + qs%) = (u1,ug, FL)»

say, where p, ¢ are unfolding parameters that are closely related to e, o respectively.

As an aid to understanding the equidistants for (e, @) close to (0,0) we can calculate the loci
in the (p,q)-plane at which the structure of the singular set or the self-intersection set on the
equidistant changes.

(1) Singular set For fixed p, ¢ the singular set is the image under H of the set of points
(using suffices for partial derivatives)
(0, s2,uz,us) such that BSQ = i~15252 =0.
Eliminating wuo, the equations reduce to
ui = 3s3ur + (p — 35 — 8s3) = 0,
and the condition for this to have real solutions for u; is
9s3 + 32s5 + 12¢s2 — 4p > 0.

We are therefore interested in finding the pairs (p, ¢) for which there is a change in the
number of real intervals in the set of sy satisfying this inequality. This will occur when
the discriminant with respect to so vanishes, and that gives a locus of the form

(14) p=0orp=2+¢+ 250" +....
See Figure 5.

(2) Self-intersection locus Suppose (0, s21,u1,u2) and (0, S22, u1,uz) are both in the
critical set of H (hs, = 0 gives s; = 0) and have the same image under H. Then with
a little more trouble we can eliminate the u variables and obtain a condition in so1, Soo
alone. It is slightly more convenient to write so; = vy + v2, Soo = v1 — v9; then in fact
we require vy (4v3 4+ 160? + 8quy +p+ ¢*) > 0. The number of v;-intervals on which this
holds will change when the discriminant with respect to v; vanishes. One case here gives
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0(=0.075

0(=0.05

Oo=0
0(=-0.05
0(=-0.075

€ =-0.00001 E=0 €=0.00001

FIGURE 4. Special Case 1.2. A typical ‘clock diagram’ of equidistants close to a special
value of Ao = g3/(gs = f3). The vertical axis represents A = Ao + « and the horizontal axis
the parameter € in the family of surfaces.

the same condition as (i) above, but we are concerned with the remaining possibility:
taking into account that v1,v2 must both have real solutions the locus in the (p, ¢)-plane
is

(15) p= _q27 q Z 0’
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FIGURE 5. Special Case 1.2. A schematic drawing of two curves in the p, ¢g-plane at which
the structure of the equidistant in the family (13) changes, either because the cuspidal
edge set changes (solid curve, together with the g-axis) or the self-intersection set changes
(dashed curve).

where of course the double root is v; = 0, that is s95 = —s21. (The other potential double
root when p = —¢? leads to ¢ = 2 and is therefore not relevant to a neighbourhood of
the origin in the (p, ¢)-plane.) See Figure 5.

4. DEGENERATE CASE 2

In this section we give some details of Degenerate Case 2, that is Afag + (1 — X)geg = 0. This

20 .
p— g o (If fao = goo then, using Afag + (1 — A)gao = 0,
20 — f20
it follows that fag = go0 = 0, contrary to our assumptions.) Thus whatever surfaces My, Ny

we start with there will be an equidistant which falls into this case. It turns out to be a rich
area for investigation; here we shall give some invariants which help to separate out the many
subcases. One of these invariants classifies the effect of changing A slightly from the degenerate
value, while preserving the geometrical situation of two surfaces with parallel tangent planes
at parabolic points where the asymptotic directions are parallel, that is e = 0 in (1), (2). See
Proposition 4.1.

gives a unique value of A\, namely A =

4.1. A normal form for Degenerate Case 2. The 2-jet of Hyy is now (uy,us,2fo081u1).
Writing the third component as uq(s; + h.o.t.)+ terms independent of u; and then using the
bracketed expression to redefine s; we can eliminate u; from the higher terms. Then replacing
s9 by an expression of the form sy + aus we can remove the degree 3 terms slug and $1S9us.
When this is done, the coefficient of s3ugy becomes 3go30fay/930 # 0 and the coefficient of syu3
becomes 3 f209030(g20 — f20)/959 # 0. We shall also assume that the coefficient of s} is nonzero
to avoid further degeneration. We can now use scaling to reduce the 3-jet of Hp)y to

(ul, Uz, S1Ul + sf + s%ug + 32u§ + bs%sz + cs%uz + dsls% + esg) ,
for coefficients b, ¢, d, e. The 4-jet can then be reduced by similar arguments, including scaling,
to
(w1, uz, h) = (u1,us, syuy + 7 + sjus + sau3 + bsiss + csiug + dsys5 + ess + st + (ps2 + ¢s1))

provided the coefficient of s} is nonzero: this and the 4-A-determinacy of this 4-jet hold generi-
cally, by standard calculations. The terms in brackets, ps; +¢s?, represent an A-versal unfolding
of this germ. We have not been able to reduce the number of coefficients b, ¢, d, e. We shall work
with (4.1) as a ‘normal form’ and when appropriate interpret the coefficients in terms of the
surfaces My, Np.
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The equidistant for My, Ng and A = ga9/(g20 — f20) is then locally diffeomorphic to the image
under (4.1) of the set {(s1, 82, u1,uz2) : hs, = hs, = 0}. Here, hy, = 0 defines u; as a smooth
function of the other three variables, while hs, = 0 can be written
Oh
Dsy
say where T is a quadratic form in s1, ss which we shall assume to be nondegenerate, that is
d% —b(3e — 1) #0.

(16) = (89 4+ ug)? + bs? + 2dsys2 + (3¢ — 1)s3 = (52 +u2)? — T(s1,52) = 0,

4.2. Plotting the equidistants. It is also useful to rewrite the equation of the quadric cone
C, given by hg, = 0, where p = ¢ =0 in (4.1), and provided b # 0, as

d \* [3be—b—d?
(17) C: (s2+uz)®+b <51 + b52> + <b> s2=0.
Note that this is a single point at the origin if and only if all coefficients are > 0 (since the first
one is > 0), that is
b>0, d>+b—3be <0

compare Proposition 4.1.

The equidistant (for p = ¢ = 0) is the image of C' under the map R? — R? given by

(51,52, u2) = (u1,ug, h(s1, 52, uz))

where on the right-hand side u; is eXBressed in terms of s1,$2,u2 using hs, = 0 and this is
substituted into h, giving the function h.

We can find a ‘good’ parametrization of the equidistant by using coordinates (x1, x2, s2) and
writing (17) as

2 2 2 —b—d?
x] + bxs + ks3, where k = w, T1 = So + U, To :51"‘%52.

Thus the substitution to use in h is uy = z1 — S2, S1 = o — %32. The equidistant is then plotted
as follows.

(1) If b> 0 and C is not a single point then k < 0 (i.e. d> + b — 3be > 0) and we write
o +baj = (—k)s3,

so that for any (z1,z2) # (0,0) we have two distinct values for so: there is no restriction
on the values of x1,x5. We use x1,xs as parameters and the two ‘halves’ of C' are given
by the two values of ss.

(2) fb < 0,k > 0 (ie. d® +b— 3be > 0) then we similarly write 23 + ks3 = (=b)z3, so
that for any (z1, s2) # (0,0) we have two distinct values for 5. Here 21, so are used as
parameters.

(3) Finally if b < 0,k < 0 (i.e. d*> + b — 3be < 0) then we write 23 = (—b)z3 + (—k)s3
and for any (x2,s2) # (0,0) we have two distinct values for z1. Here xq, so are used as
parameters.

For values of (p,q) other than (0,0) the equation of C' acquires an extra term —p on the
right-hand side, thus creating a hyperboloid of one or two sheets (or an ellipsoid when C' is a
single point). In fact the hyperboloid has one sheet when bkp > 0, that is (d? + b — 3be)p < 0),
and two sheets when bkp < 0, that is (d? + b — 3be)p > 0). In the two-sheet situation the same
method as above plots the equidistant, without restrictions on the values of the parameters. In
the one-sheet situation the points in the parameter plane lie outside an ellipse, the ‘waist’ of the
hyperboloid. This ellipse is given in the three situations above by 2 +bx3 = —p, 22 + ks3 = —p
and (—b)z3 + (—k)s3 = p respectively. In the situation where C is a single point, and p < 0,
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the points in the parameter plane lie inside an ellipse. In all situations, ¢ does not affect the
hyperboloid or ellipsoid, but of course its value affects the function h.

4.3. Nearby non-special values of \. Here, we examine the effect of adding in the term ¢s?
in (4.1). This represents changing A\ from the value go9/(g20 — f20) to a nearby value, which
will be of the type considered in Generic Case 1.1, provided the coefficient e of s3 in (4.1) is
nonzero, and to avoid further degeneracy we shall assume this to be true. We determine here,
in terms of b, ¢, d, e, which subcase of Proposition 3.2 is obtained, and then refer this back to
the surfaces My, No. (The subcase does not depend on the sign of ¢ in the added term gs?.)
To do this we reduce (4.1), with p = 0 but with gs? present, to the normal form found above
for Generic Case 1.1, by making the ‘left’ and ‘right’ changes of coordinates as sketched above.
We can restrict attention for this to the terms of (4.1) of degree < 3 since the Generic Case 1.1
germ is 3-A-determined. Thus we start by redefining s; (‘completing the square’) to change the
degree 2 terms to s?, remove the terms in ui,us only, remove the remaining terms besides s?
that are divisible by s; and then redefine sy by adding suitable multiples of u; and uy. The
result of this is to reduce the 3-jet of (4.1) by A-equivalence to the form

52

2 3
(Uh U1, gsy+esy+ 12eq?

((3be — d®)ui + 4qduius + 44> (3e — 1)u§)> .

The discriminant of the quadratic form in uy,ug is (d% + b — 3be)/3eq?, so this form is definite
if and only if e(b + d? — 3be) < 0. Scaling so that the terms in s?, s3 have coefficients equal to
1 multiplies the quadratic form in u;,us by (¢%¢)~'/3, and from this we deduce the following,
where (i) and (ii) are derived by direct calculations from the parametrizations of My and Np.

Proposition 4.1. The normal form (4.1) for Degenerate Case 2, with p =0 but ¢ nonzero and
small, corresponding to a small change in X\, gives the following subcases of Generic Case 1.1
(general \):

Subcase 1.1.1 (positive definite, ++): e > % and d?> +b— 3be < 0,

Subcase 1.1.2 (negative definite, ——): e < & and e(d* + b — 3be) < 0,

Subcase 1.1.8 (indefinite, +—): e(d?* + b — 3be > 0.

In terms of the surfaces My, Ny,

(i) When fosogoso > 0, so foso = f3, goso = g3, € < 5 and has the sign of fa0g3 — g20f3 while
d? + b — 3be has the sign of —R as in (9).

(ii) When foz09030 < 0, so fozo = f2, goso = —g3, € > % and d?> + b — 3be has the sign of R.

4.4. Invariants distinguishing subcases of Degenerate Case 2. We shall use the following:

(1) The number of cuspidal edges on the equidistant for p = ¢ = 0, which can be 0, 2 or 4
(see below);

(2) The number of self-intersection curves on the equidistant for p = ¢ = 0, which can be 0,
1, 2 or 3 (see §4.5);

(3) The subcase of Generic Case 1.1 given in Proposition 4.1 which is obtained by changing
A slightly.

This might give 3 x 4 x 3 = 36 subcases but fortunately many of these combinations cannot be
realized. We shall give values of b, ¢, d, e realizing of all possible subcases in §4.6, Table 1 below.

For given values of these invariants, the interval in which e lies, either e < 0 or 0 < e < % or
e > % could in principle affect the equidistant but so far as we are aware the basic geometrical
structure—the qualitative nature of the equidistant—is not affected.
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The number of cuspidal edges, that is 1-dimensionial singular sets, on the equidistant, can
be calcuated as follows. We can regard h,, = 0, as in §4.2 above, as the equation of a quadric
cone C' in R3 with coordinates (s, s2,uz2). The quadric cone C' is nondegenerate since 1" in (16)
is a nondegenerate quadratic form, and consists of the origin alone if and only if T is negative
definite (that is, d® < b(3e — 1) and b > 0), otherwise it is a real cone, or equivalently a real
nonsingular conic in RP2.

When T is not negative definite, the equidistant therefore has two ‘branches’, which are the
images of the two halves of the cone; these branches may intersect (apart from at the origin) and
will generally themselves be singular. Writing the equation of C' more briefly as v(s1, s2,u2) = 0,
the singular set of the equidistant is the image of certain curves on C, given by the additional
equation

hsiVsy — hsyys, = 0.
(This can be written in terms of h itself as hg, s, hs,s, —h2 , =0.) The lowest terms of the left
hand side are of degree 2 in s, s3, uz and therefore give another conic Cy in RP?. The equation

of C5 is in fact
(b — 3d)s? + (bd — 9e)s152 — (cd + 3)s1up + (d* — 3be)ss — (3ce + b)sgus — cu3 = 0.

This meets the nonsingular conic v = 0 in 0, 2 or 4 real points. (The conic Cy cannot in fact
be a single point: examination of the matrix of the above quadratic form in variables s1, s2, U2
defining C'5 shows that its determinant is always < 0 so the quadratic form cannot be positive
definite, and negative definiteness is also ruled out by examining the signs of the other leading
minors. The leading 1 x 1 minor cannot be < 0 at the same time as the leading 2 x 2 minor
is > 0.) There are therefore 0, 2 or 4 curves through the origin on C whose images are the
singular points, the cuspidal edges, of the equidistant. These cuspidal edges pass through the
origin, lying on both ‘sheets’ of the equidistant.
The number of cuspidal edges can be calculated for example by substituting

(51; 52, UQ) = (mt7 ’I'Lt, t)

in the equations of C' and Oy, taking out the factor ¢? and finding the common solutions of the
two resulting quadratic equations in m,n. Eliminating one of m,n gives a degree 4 equation
in the other and there are standard algebraic techniques for computing the number of real
solutions of a quartic equation—or for given (b, ¢, d, e) we can solve numerically. The results for
the Classes I-X are given in Table 1 below.

4.5. Self-intersections of the equidistant in Degenerate Case 2. We start with the normal
form (4.1) in §4, namely

3, .2 2 2 2 2 3, 4 2
(u1,us, h) = (ul7 Uz, S1U1 + S] + S5Us + Saus + bsysa + csjug + ds185 + es; + s7 + psa + qsl) ,

subject to the critical set conditions hs, = hs, = 0. We include the unfolding terms pss + ¢s?
though we are particularly interested in the self-intersections for p = ¢ = 0. We can immediately
solve hg, = 0 for u;:

uy = —2bs189 — 2¢s1ug — ds% — 35% — 45‘;’ — 2qs1,

so that the equations which state that two domain points (s, s2, u1,us2) and say (t1,ta, w1, us)
have the same image take the following form.

(SI1): the above formula for u; gives the same answer for both domain points;

(SI2): the formula for h above gives the same answer for both domain points;

(SI3): hs,(s1,s2,u1,uz) = 0; and

(814) th (tl, t27 uy, UQ) =0.
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It is convenient to make the substitution s; = z1 +y1,t1 = 1 — Y1, S2 = To + Y2, o = To — Yo,
so that the ‘trivial solution’ s; = t1, S5 = t5 becomes y; = y» = 0. Furthermore replacing y; by
—y1 and yo by —y2 interchanges (s1, s2) and (¢1,t2), that is interchanges the two domain points
(s1,82,u1,uz) and (t1,ts,u1,uz) with the same image in R® under the normal form map (4.1).
With this substitution the equations become say (SI1’), etc., and we use (SI3')-(SI4’) to solve
for usg:

bxi1y1 + dx1ys + dxayr + 3exays
Y2 ’
where the denominator ys is harmless since it is easy to check that if yo = 0 then the other
equations imply that y; = 0 too. Note that this expression does not involve p, q.
We can solve (SI1’) for zs:

U =

_bexyi + cdziyrys — briyi — 6zy1y2 — 2ytye — 3T1y1y2 — qy1Y2

a —cdyi — 3ceyryz + byryz + dy3 '

This time we may need to investigate the vanishing of the denominator, but assuming the
denominator is nonzero and substituting for x5 we find that the equation (S12')-yo((SI3)+(S14"))
reduces to

(18) SI5 : byiyo + dy1ys + eys + dzyi + 5 = 0.

This is to be treated as the equation of a surface in 3-space (x1,y1,y2) which contains the x-axis,
since (z1,0,0) is always a solution. The surface will have a certain number of ‘sheets’ passing
through the origin, equal to the number of values of & which make the first coordinate zero in
the following parametriztion of SI5 by k and y;.

ek3 + dk? + bk + 1
(19) ( 4 , Y1, kyl) .

If y; = 0 in (18), then yo = 0 and x; is arbitrary; and indeed, being cubic in k, (19) gives all
points (x1,0,0), possibly for more than one (real) k. If y; # 0 then we solve (18) for x; and
writing y2 = ky; produces the given value —i(ek?’ + dk® 4+ bk + 1) for z;. Conversely, every
point (19) satisfies (18) by substitution. Hence (19) parametrizes the complete surface (18).
Two examples are shown in Figure 6.

Note that the surface (18) and the parametrization (19) are independent of the unfolding
parameters p, q.

€2

Proposition 4.2. The number of smooth real sheets of the surface (18) through the origin in
(z1,y1,Yy2)-space is 1 or 3 according as

27¢* 4 2b(2b* — 9d)e + d*(4d — b*) > 0 or < 0 respectively.

This number is therefore the maximum number of self-intersection branches of the equidistant,
for any p,q. If b* < 3d then the displayed expression is > 0 for all values of e.

Proof This is a matter of calculating the discriminant of the cubic polynomial ek?+dk24bk+1
in k, and the discriminant 16(b? — 3d)3 of the displayed quadratic polynomial in e. The sheets
will be smooth provided the cubic in k£ has no repeated root, that is provided the discriminant
is nonzero. (]

Remark 4.3. In §2.4 we noted that, in the current Degenerate Case 2, the sign of a certain
polynomial in the coefficients of the two surfaces My, Ny determines whether the ‘scaled contact
map’ has type D4+ or D, . By reducing to normal form as in §3 we can re-express this polynomial
in terms of the coefficients b, ¢, d, e of the normal form. When this is done, we find that the
condition for one (resp. three) sheets as in the above proposition coincides with the condition
for D (resp. D; ) in the scaled contact map. We do not know the full significance of this fact.
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FIGURE 6. The surface given by (18) or (19), for (left) b = 8,¢c = —4,d = —3,e = —1,
with three smooth sheets through the origin, which is marked by a black dot; (right)
b= —-8,c=4,d = —3,e = —1, with one smooth sheet. (See Proposition 4.2.) These are
respectively Class IIT and Class IX in Table 1 below. Note that in the first of these there
are nevertheless only two self-intersection curves of the equidistant for p = ¢ = 0, using the
criterion of Proposition 4.6. In fact the picture for Class II is very similar to the left-hand
figure, but there is only one self-intersection curve of the equidistant for p = ¢ = 0.

Substituting x; = —i(ek?’ + dk? + bk + 1) and y2 = ky; in one of the conditions on x1,y1, Yo
not fully used yet (for example, SI2') we obtain a single equation in y;, k (involving now p and ¢)
which determines the branches of the self-intersection set of the equidistant. We are interested
in values of k close to a zero kg of the polynomial ek® 4+ dk? 4 bk + 1, so we now write k = ko + z
say where z, as well as y1,p, ¢, will be small. Since kg satisfies a cubic equation we can express
k3 in terms of ko and k3, namely as k3 = (—dkZ — bko — 1) /e, and therefore all higher powers of
ko can be expressed in terms of ko, k3 as well.

Definition 4.4. For a chosen value of kg, the polynomial in yq, 2z, p, q just formed, the zero
set of which determines the solutions to (SI1)-(SI4) or their equivalents (SI1’)-(SI4’), and hence
determines the points corresponding to self-intersections of the equidistant, will be called L(kg).
In the special case p = ¢ = 0, we shall write Lo(kg) for the polynomial in y; and z.

We deduce the following; the statements 2-5 are easily checked by direct calculation.

Proposition 4.5. (1) For each real root ko of ek® + dk® + bk + 1 = 0 one smooth sheet
of the surface (18) is parametrized by (y1,z) and the points which correspond to self-
intersections on the equidistant for any p,q are given by the additional equation
L(ko) = 0.

(2) The polynomials L(kg) and Lo(ko) contain only the powers y? and yt of y1. For any p,q
the zero-set of L(kg) is symmetric about the yy-axis in the (y1, z)-plane.

(3) The other variable z occurs to powers < 14 in L(ky). The coefficient of z** is in fact
27¢%(3e — 1) which will not be zero since e = 0, % are excluded values.

(4) The linear part of L(ko) has the form constant xp. The nonzero quadratic terms are in
y3, 22, zp, 2q and ¢>.

(5) The 2-jet of Lo(ko) has the form coy? + c222.

The last statement above implies that, for p = ¢ = 0, a given sheet of the surface (18), that
is a given value of kg, will correspond to a branch of the self-intersection set of the equidistant
if and only of ¢y, co have opposite signs. When coca > 0 there is only an isolated point at
y1 = z = 0. When ¢gca < 0 the two real branches of the set Lo(ko) = 0 (forming a crossing at



114 PETER GIBLIN AND GRAHAM REEVE

the origin y; = z = 0) will give only one branch of the self-intersection set because, as noted
above, replacing y; by —yi1, and hence yo = ky; by —y2 = k(—y1), merely interchanges the
domain points contributing to the self-intersection.

Each of ¢, co is quadratic in kg; multiplying them gives an expression of degree 4 which can
be reduced to degree 2 again using the equation ek?® + dk? + bk + 1 = 0. Writing the resulting
quadratic expression as N = No(b, ¢, d, e)+ N1 (b, ¢, d, e)ko+ N2(b, ¢, d, )k we have the following,
which is used to determine the number of self-intersection branches of the equidistant in the ten
classes of Table 1.

Proposition 4.6. The number of real branches of the self-intersection set of the equidistant for
p = q =0 is the number of solutions k = ko of ek 4+ dk? 4+ bk +1 = 0 at which the quadratic N
15 < 0.

As (p, ¢) moves away from (0, 0) we can still trace the zero set of L(yp) in the (y1, z)-plane. An
isolated point may disappear or open into a symmetric loop, which represents a self-intersection of
the equidistant having two endpoints, if the loop crosses the y;-axis, and a closed self-intersection
curve if it does not. A crossing will become a ‘hyperbola’; if it crosses the y;-axis then the cor-
responding self-intersection curve will have two endpoints and if not then it will be an unbroken
arc. This is illustrated in the next section.

4.6. Examples. Considering different realizable values of the three invariants in §4.4, we have
the ten classes of equidistant given in Table 1. It is also possible in some of these classes to allow
values of e in different ranges e < 0, 0 < e < %, e > % but this does not appear to affect the
equidistant in any qualitative way. We can compute the curves in the (p, ¢)-plane alomg which
the cusp edges or the self-intersection curves on the equidistant underfgo a qualitative change.
(The ten cases of the table in fact have ten distinct configurations of these curves.)

Class | Cusp edges | self-int Subcase b c d e
(Prop. 4.1)
I 0 0 ++ 8 41| -3 1
II 0 1 +— 8| —4|-3 %
111 0 2 —— 8| —-4|-3| -1
v 2 0 +— —-13 6|—-3|-5
A% 2 1 —— 1 2 3] -1
VI 2 2 +- 8 4[-3] ¢
VII 2 3 —— -13[-6] 1] ¢
VIII 2 3 +— -8 4 1 %
IX 4 1 +— -8 4|1 -3 -1
X 4 3 +— -8 6|—-3]| 10

TABLE 1. Ten distinct classes of Case 2, giving all possible realizations of the three
invariants of §4.4, and examples of values of b, ¢, d, e which realize these invariants. The
fourth column refers to the ‘non-special’ type which results from changing  slightly from
the degenerate value.

We shall now give more detail on Case II of the table, showing how the cuspidal edges and
self-intersections of the equidistant evolve as (p, g) in (4.1) makes a circuit of the origin. Figure 8
shows the transformations in the cuspidal edge as (p, ¢) moves in such a circuit and Figure 9 gives
schematic diagrams of the corresponding equidistants, indicating their self-intersections and cusp
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FIGURE 7. Cases II, III, IV and VI from Table 1, for p = ¢ = 0. The origin is marked
for Case VI, where there are two very narrow swallowtails passing through the origin,
contributing two cusp edges and one self-intersection, and the other self-intersection is
visible where the sheets pass through one-another.

edges. We use the following labelling on these figures to indicate transitions (perestroikas) in
the structure of the equidistant.

Notation 4.7. Af™*, A;~, A7~ refer to Subcases 1.1.1, 1.1.2 and 1.1.3, as in Proposition 3.2.
The corresponding transitions have also been described as ‘Zeldovich’s pancakes’ or ‘flying
saucers’, ‘the death of a compact component of an edge’, and ‘the hyperbolic transformation
of an edge’, respectively. See also [9, 10].

A;‘, A3 refer to the ‘swallowtail-lips’ and ‘swallowtail-beaks’ singularity respectively.
Dj refers to the ‘pyramid’ singularity (and D; would similarly be the ‘purse’ singularity).

TA3', called such in [10, 1] (see also [9]) refers to the situation where three smooth sheets of
the equidistant are pairwise transversal to each other, but the curve of intersection of any two
of them is tangent to the third sheet at the moment of bifurcation.

5. CONCLUSION AND FURTHER WORK

There have been many recent studies of singularities of (affine) equidistants of surfaces. For
a single equidistant of a fixed surface, the generic singularities are Ay, A, A3 (see for example
[8, 4]); for a fixed surface, but allowing the ratio A defining the equidistant to vary, the generic
singularities are now A, (smooth surface), Ay (cusp edge), Az (swallowtail), AT (swallowtail
beaks/lips transition), A4 (butterfly) and also D (purse/pyramid) (compare [7]). The context
of the present paper is to extend this to l-parameter families of surfaces, the parameter in
the family being € in our notation, so that there are now two parameters to consider, A and
€. The particular degeneracy in the e family studied here comes from a ‘supercaustic chord’,
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FIGURE 8. Pre-images of the cuspidal edges on the equidistants in Class II of Table 1
for unfolding parameters (p, q) making a circuit of the origin. The colours correspond to
either the two parts of a hyperboloid of two sheets as in §4.2 or to the two parts into
which a hyperboloid of one sheet is cut by the plane through the ‘waist’. For the labelling
of transitions, see Notation 4.7.

that is a chord joining two parabolic points with parallel tangent planes and parallel asymptotic
directions. This occurs generically only in a 1-parameter family of surfaces. Along such a chord
there may be special values of A where singularities become more degenerate, depending on
the relative local geometry of the surface patches at the ends of the chord. When two such
special values exist (our Case 1.2) this corresponds to the intersection of an As stratum with
the supercaustic. In addition, there always exists a value of A, which we call the degenerate
Case 2. This corresponds to the intersection of a D, stratum with the supercaustic, and we
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FIGURE 9. Schematic diagram of the equidistants for Class IT of Table 1, with the unfold-
ing parameters (p, ¢) making a circuit of the origin. The figure shows cuspidal edges (thick
lines) and self-intersections (thin lines) with solid and dashed curves indicating visibility
from one direction. For the labelling, see Notation 4.7.

NN

elucidate ten geometrically distinct cases. Our paper also gives a natural geometric setting for
many singularity types which belong to the list of corank 1 maps from R3 to R3 ([12, 9]), with
the addition of a quadratic term in the extra variable which does not affect the critical set. The
cases where equidistants are defined by A = 0 or 1 remain to be studied.
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A second natural 1-parameter family of surfaces is derived from the ‘tangential’ case in which
two surface pieces share a common tangent plane (see for example [8]); here boundary singu-
larities occur in the generic case, so that making one contact point parabolic in a 1-parameter
family will introduce additional boundary singularities. The full adjacency diagram for singular-
ities of equidistants of 1-parameter families of surfaces, not restricted to the supercaustic case,
also remains to be found.

ACKNOWLEDGEMENT We are grateful to Aleksandr Pukhlikov for helpful discussions on calcu-
lating self-intersections.
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ON THE COLENGTH OF FRACTIONAL IDEALS

E. M. N. DE GUZMAN AND A. HEFEZ

ABSTRACT. The main goal of this paper is to give a recursive formula for the colength of a
fractional ideal in terms of some maximal points of its value set and of its projections. The
fractional ideals are relative to a class of rings called admissible, a more general class of one
dimensional local rings that contains those of algebroid curves. For fractional ideals of such
rings with two or three minimal primes, a closed formula for the colength is provided.

1. INTRODUCTION

The computation of the colength of a fractional ideal of a ring of an irreducible algebroid
plane curve in terms of its value set was known since the work of Gorenstein in the fifties of
last century, at least (cf. [6]). Such computation was performed for a larger class of analytically
reduced but reducible rings by D’Anna in [2, §2], where colengths of fractional ideals and lengths
of maximal saturated chains in their sets of values are related. D’Anna’s method requires the
knowledge of many elements in the set of values, a disadvantage that would be desirable to
overcome to increase computational efficiency. In fact, in the particular case of an algebroid
curve with two branches, Barucci, D’Anna and Froberg, in [1], were able to give an explicit
formula for the colength of a given fractional ideal in terms of some maximal points of its value
set.

Local rings of algebroid curves and the class studied by D’Anna in [2] belong to the larger
class of admissible rings considered in this paper. By such a ring, we mean a one dimensional,
local, noetherian, Cohen-Macaulay, analytically reduced and residually rational ring such that
the cardinality of its residue field is sufficiently large (see [8] for more details). For simplicity
and without loss of generality (cf. [2, §1]), we will also assume that our rings are complete with
respect to the topology induced by the maximal ideal. In such case, a sufficiently large residue
field means that its cardinality is greater than or equal to the number r of minimal primes of
the ring.

One of our main results, Theorem 10, gives a recursive formula on the number r for the
colength of a fractional ideal in a complete admissible ring. The important feature is that
the computation requires only few special points of the value set, namely, its relative maximal
points and those of its projections. The other main result is Corollary 20 that provides a closed
formula for the colength in the case of three minimal primes. It is worth noting that such a
closed formula for three minimal primes is not a straightforward consequence of the recursive
formula established in Theorem 10, since its proof demands a careful analysis of the geometry
of the maximal points of the value set.

The outline of the paper is as follows. Section 2 collects some preliminaries and notation
regarding the general background of the article. Section 3 is concerned with the definition of
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value sets, recalling three useful analog properties to ones obtained for semigroups of values by
Delgado and Garcia (cf. [3] and [5]). Section 4 introduces and analyzes different kinds of maximal
points in the value set to get enough tools to pass to Section 5 that is eventually concerned with
the announced recursive formula for the colength of fractional ideals in admissible rings. To ease
the comparison with the previous results due to Barucci, D’Anna and Froberg, we first analyze
their recipe for r = 2, while we devote Section 5.2 to the case r > 3. The closed formula for
r = 3 is finally dealt with in Section 6 where a fine detailed analysis of the geometry of the
maximal points is offered in a series of lemmas, culminating with Lemma 18 that unavoidably
leads, after the case by case analysis, the statement and proof of Theorem 19 that confirms a
conjectural formula by M. Hernandes (cf. [7]).

2. GENERAL BACKGROUND

In this section we refer to [2] for our unproved statements. Let gi,..., o, be the minimal
primes of an admissible complete ring R. We will use the notation I = {1,...,r}. We set
R; = R/p; and will denote by m;: R — R; the canonical surjection. Since R is reduced, we have
an injective homomorphism

TR < Ry x---xR,
h +—  (m(h),...,m(h)).

More generally, if J = {j; < --- < js} is any subset of I, we may consider R; = R/ N;_; p;,
and will denote by 7;: R — R; the natural surjection.

We will denote by K the total ring of fractions of R and when J C I we denote by K; the
total ring of fractions of the ring R;. Notice that Ry = R and Ky = K. If J = {i}, then Ry, is
equal to the above defined domain R; whose field of fractions will be denoted by K;. Let }~3~be
the integral closure of R in K and R; be that of Ry in ;. One has that Ry ~ R;, X --- X R;_,
which in turn is the integral closure of R;, x --- X R;_in its total ring of fractions. We have the
following diagram:

ICJ ~ Ilex---xleS

J _ _

RJ ~ Rj X X st
T

RJ — Rj Xoee ><RjS

Since each 1?{: is a DVR, with a valuation denoted by wv;, one has that /C; is a valuated field
with the extension of the valuation v; which is denoted by the same symbol. This allows one to
define the value map

v K\ Z(K) — z
h = (vi(m(h), . ve(me(R))),

where 7; here denotes the projection K — C;, which is the extension of the previously defined
projection map m;: R — R; and Z(K) stands for the set of zero divisors of K.

An R-submodule Z of I will be called a regular fractional ideal of R if it contains a regular
element of R and there is a regular element d in R such that dZ C R.

Since dZ is an ideal of R, which is a noetherian ring, one has that Z C K is a nontrivial
fractional ideal if and only if it contains a regular element of R and it is a finitely generated
R-module. _ _

Examples of fractional ideals of R are R itself, R, the conductor C of R in R, or any ideal of R
or of R that contains a regular element. Also, if 7 is a regular fractional ideal of R, then for all
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() # J C I one has that m;(Z) is a regular fractional ideal of Ry, where, this time, 7;: K — K
denotes the natural projection.

3. VALUE SETS

If 7 is a regular fractional ideal of R, we define the value set of Z as being

E=vZ\ZK))cCZzZ".
If J={j1 <---<js} CI, then we denote by pr; the projection Z" — Z*,
(a1, a0) = (0, .., 0,).

Let us define
Ey=v(r,(Z)\ Z(K,)).

Ifjed={j,....jt:- .- Js} C I, with j; = j, for « = (¢, ,...,;,) € E, then we define

Ii‘j(a) = G5, = Qj.

We will consider on Z" the product order < and will write (a1, ...,a,) < (b1,...,b,) when
a; < b, foralli=1,...,r.

Value sets of fractional ideals have the following fundamental analog properties to those of
semigroups of values described by Garcia for r = 2 in [5] and by Delgado for r > 2 in [3] (see
also [2] or [1]):

Property (A). If a = (aq,...,a,) and 8= (f1,..., ) belong to E, then
min(a, B) = (min(aq, B1), ..., min(a,, ) € E.

Property (B). If a = (a1,...,.),8 = (B1,...,58) belong to E, a # B and o; = B; for some
i € {1,...,r}, then there exists v € E such that v; > o; = 8; and v; > min{a;j, B;} for each
J # 14, with equality holding if o; # ;.

Property (C). There ezist o € Z" and v € N” such that
vy+N' CcCECa+7Z".

Properties (A) and (C) allow one to conclude that there exist a unique mg = (mq,...,m;)
such that 8; > m;, i =1,...,r, for all (81,...,05,) € E and a unique least element v € E with
the property that v+ N" C E. This element is what we call the conductor of £ and will denote
it by c¢(E).

Observe that one always has

e(Ey) < pry(e(E)), VI L.
One has the following result:
Lemma 1. If 7 is a fractional ideal of R and O # J C I, then pr;(E) = Ej.

Proof. One has obviously that pr;(E) C E;. On the other hand, let oy € E;. Take h € Z such
that vy(my(h)) = ay. If h € Z(K) we are done. Otherwise, choose any h' € 7\ Z(K) such that
pry(v(h')) > @y, which exists since E has a conductor. Hence, vs(h + h’) = ay, proving the
other inclusion. (]
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4. MAXIMAL POINTS

We now introduce the important notion of a fiber of an element o € E with respect to a
subset J C I that will play a central role in what follows.

Definition 1. Given A C Z", a € Z" and 0§ # J C I, we define
Fj(A,a) ={B € A;pr;(B) = pr,(a) and prp ;(8) > prp s(@)},

Fj(A o) ={B € A;pr;(8) = pr;(a), and prp s (B) = prp s(@)},
The set F(A,a) = J,_; Fy;;(A, o) will be called the fiber of « in A.

The sets Fp;3(A, a) and F{i}(A,a) will be denoted simply by F;(4,«) and F;(A, «). Notice
that F7(Z",a) = F1(Z",a) = {a}.

Definition 2. a € A is called a mazimal point of A, if F(A,«) = 0.

This means that there is no element in A with one coordinate equal to the corresponding
coordinate of a and the others bigger.

From now on, E will denote the value set of the regular fractional ideal Z of R. From the
fact that F has a minimum m and a conductor v = ¢(F), one has immediately that all maximal
points of E are in the limited region {(x1,...,2,) € Z"; m; < z; <, ¢ =1,...,r}. This
implies that E has finitely many maximal points.

Definition 3. We will say that a maximal point a of E is an absolute mazimal if Fj(E,a) =0
for every J C I, J # I. If a maximal point « of F is such that F;(E,a) # 0, for every J C I
with #J > 2, then « will be called a relative mazrimal of E.

F{lv'z}(’f a)=0 Fruoy(B,a) #0
sl }(E, a)=10 ). )(L a)=10
‘FZ(E’ (Y) =0+ (; """""""""""" ‘_F(L?f}(E’ a) = 0 Fy(E,a) = 04— (i """"""""""" ‘—F(l‘:;)(E, @) # 0
SFy(E,a) =0 TSFy(E,a) =0
as Fragy (B, o) # 0| a
(yl eeersneresatoniisesscatnsisesissensserrersniter’

« absolute maximal point « relative maximal point

FIGURE 1. Maximal points

In the case where r = 2, the notions of maximal, relative maximal and absolute maximal
coincide. For r = 3 we may only have relative maximals or absolute maximals, but in general
there will be several types of maximals.

We will denote by M (FE), RM(E) and AM (E) the sets of maximals, of relative maximals and
absolute maximals of the set E, respectively.

The importance of the relative maximals is attested by the theorem below that says that the
set RM(E) determines E in a combinatorial sense as follows:

Theorem 2 (generation). Let o € Z" be such that pj(a) € Ey for all J C I with #J =r — 1.
Then
ace B« a¢F(Z,pB), V6 € RM(E).
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We will omit the proof since this result is a slight modification of [3, Theorem 1.5] with
essentially the same proof.
The following two lemmas give us characterizations of the relative and absolute maximal
points that will be useful in Section 4.
Lemma 3. Given a value set E C Z" and o € Z" with the following properties:
i) there is i € I such that F;(E,a) =0,
i) Fij(E,a)#0 forall j € I\ {i}.
Then « is a relative mazimal of E.

Proof. Follows the same steps as the proof of [3, Lemma 1.3] O

Lemma 4. Given a value set E C Z" and o € E, assume that there exists an index i € I such
that Fj(E,a) =0 for every J C I withi € J. Then « is an absolute mazimal of E.

Proof. We have to prove that Fi(F,a) = for all K C I with : ¢ K.

Assume, by reductio ad absurdum, that there exists some K C I with i ¢ K such that
Fr(E,a) # (. Let 8 be an element in Fg(E,«), then 8, = o, Vk € K and 3; > «;j, for
all j ¢ K. Applying Property (B) for o, 8 and any index k¥’ € K, we have that there exists
0 € E such that 0 > B = ap, 6; > min{ay, G}, VI # k' and 6; = «; for all j ¢ K . If
B = (I\K)U{l € K,0, = oy}, then we have § € Fg(E,«a)(# (), with i € B, which is a
contradiction. O

5. COLENGTHS OF FRACTIONAL IDEALS

Let R be a complete admissible ring and let J C Z two regular fractional ideals of R with
value sets D and F, respectively. Since J C Z, one has that D C E, hence ¢(F) < ¢(D). Our
aim in this section is to find a formula for the length (r(Z/J) of Z/J as R-modules, called the
colength of J with respect to Z, in terms of the value sets D and E.

The motivation comes from the case » = 1, that is, when R is a domain. In this case, as
observed by Gorenstein [6], one can easily show that

(r(Z/T) =#(E\ D).
When r > 1, then E'\ D is not finite anymore.
For a € Z" and 7 a fractional ideal of R, with value set E, we define
Z(a) = {h € Z; v(h) > a}.
It is clear that if mp = min E, then Z(mg) = 7.
One has the following result:

Proposition 5. ([1, Proposition 2.7]) Let J C T be two fractional ideals of R, with value sets
D and E, respectively, then

i 7z J
lrl=)=tr| =] —tr| =
: (J) § (Iw) " <~7(7)> ’
for sufficiently large v € N" (for instance, if v > ¢(D)).

If e; € Z" denotes the vector with zero entries except the i-th entry which is equal to 1, then
the following result will give us an effective way to calculate colengths of ideals.

Proposition 6. [2, Proposition 2.2] If « € Z", then we have

tn (I(I@‘)> L if Fa(B,0) #0,

a+tei) 0, otherwise.
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So, to compute, for instance, {r ( )7 one may take a chain

A
()
mp=a’<a'<...<a™ =4,

where o/ € Z" and o/ — a?~! € {e;, i = 1,...,7}, and then using Proposition 6 by observing

that -
w(aty) = (367) - S (i)

T
D’Anna in [2] showed that g (M) is equal to the length n of a saturated chain

mp<a’<al<-..<a=x

in E. The drawback of this result is that one has to know all points of E in the hypercube with
opposite vertices mpg and 7.
The fact that F is determined by its projections E; and its relative maximal points, suggests

T

that (g (I()) can be computed in terms of these data. In fact, this will be done in Theorem 1
gl

below.

In what follows we will denote £r simply by /.

5.1. Case r=2. This simplest case was studied by Barucci, D’Anna and Froberg in [1] and we
reproduce it here because it gives a clue on how to proceed in general.
Let a® = mp and consider the chain in Z?2

¥ < <a™=y=(y,72) > c(E)

such that

a’ = (a?,a9), al = (o +1,a9),...,a° = (71,0a9),

a*tt = (y1,03 +1), &+ = (31,08 +2),...,a™ = (71,72),
and consider the following sets
Ly ={a’a',...,a*} and Ly = {a®,a*™ ... 0™}
By Proposition 6, we have
¢ (I(I'y)) = #L, —#{a € Ly; F1(E,a) =0} +
#Lo — #{a € Ly; Fa(E, ) = 0}.

Now, because of our choice of L, denoting by G(FE;) the set of gaps of E; in the interval
(min(E;), +00), we have that

Va€ Ly, Fi(BE,a)=0 < pri(a) € G(E1),
hence
#{Oé c Ll; Fl(E,Oé) = @} = #Q(El)
Observe that not all a € Ly with Fa(FE, ) = () are such that pry(a) € G(E2), hence
#{a € Ly; Fa(E,a) =0} = #G(Ez) — ¢,

where ¢ is the number of o in Ly with pry(a) € Ey and Fo(E,a) = (). But, such a are in
one-to-one correspondence with the maximal points of E, hence £ = #M (E).
Putting all this together, we get
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Proposition 7. If v > ¢(E), then
1 0
) £(507) = On = D) + (o - )~ #0(51) ~ #G(Ex) ~ #M(E)

5.2. Case r > 3. Let us assume that Z is a fractional ideal of R, where R has r minimal primes.
Let

mp=a’<a' <---<a™=nv2>¢E),

be the chain in Z", given by the union of the following paths (see Figure 2, for r = 3):

1 _ 40 0Ve, — 0 0
Li: o’ at=a +ep,...;a%t =a + (v —af)er = (71,09, ...,aY),
C oSl — 0y nsr1t+l — ose _
Ly a1t = (y1,...,yr_1,ad), a8 1Tl =qasr=1 e .. a™ =7.
s

FIGURE 2. The chain for r = 3

For i € I, let us define [1,4] = [1,i+ 1) = {1,...,i}. We will need the following result:
Lemma 8. For any o € L1 U...UL,_1, and fori € [1,7), one has
Fi(Eva) 7é ) — Fi(E[l r)s pI‘ 1 7‘)( )) 7é 0.

Proof. (=) This is obvious.
(<) Suppose that

(917“’707’71) EFZ(E[l r)s prlr)( )) #@

Since by Lemma 1 one has that pr[l,r)(E) = Ep,p), then there exists 6 = (61,...,0,-1,0,) € E.
Since o € L; for some i = 1,...,r — 1, it follows that a, = a°

»- Then one cannot have
0, < a, = ag, because otherwise
0 0 (0
(af,...,ap_1,0,) =min(a’,0) € E

which is contradiction, since o is the minimum of E. Hence 6, > o, so 6 € Fi(E, a), and the
result follows. O
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Lemma 8 allows us to write:

i _ 77[1,r)(I) —a% - o - a) =
@ g(zw)‘K<w[l,r><z><pr[1,r)<w>>>“”’" ool e b (8 0) =0}

Hence to get an inductive formula for ¢ (%), we only have to compute

#{a€L,; F.(E a)=0},
and for this we will need the following lemma.

Lemma 9. Let a € Z", then F;(E,a) = 0 if and only if either o; € G(E;) or there exist some
J C T with {j} C J and a relative maximal 3 of E; such that pr;(8) = a; and pr;(8) < o, for
alicJ, itj.
Proof. (<) (We prove more, since it is enough to assume § is any maximal of E;) It is obvious
that if aj € G(E}), then F;(E,«) = ). Let us now assume that there exist J C I, with {j} € J
and 3 € M(Ey), such that pr;(8) = a; and pr,(8) < a, for all i € J, i # j.

Suppose by reductio ad absurdum that F;(E,«) # 0. Let 6 € F;(E, ), that is, §; = a; and
0; > a;,Vi € J\ {j}. Now since, Vi € J,i # j,

pr;(pry(0)) = 0; = a; = pr;(B) and pr;(pr;(0)) = 0 > a; > pr;(6),

then pr;(0) € F;(E;, 5), which contradicts the assumption that 5 € M(Ej).
(=) Since F;(E,a) = 0 implies F;(E,«) = 0, the proof follows the same lines as the proof of
[4, Theorem 1.5]. O

Going back to our main calculation, by Lemma 9, if o € L, is such that F,.(E,«) = (), then
either . € G(E,.), or there exist a subset J of I = {1,...,r}, with {r} C J, and 8 € RM(E}),
with pr,.(8) = «, and pr;(8) < o for i € J,i # 7.

Notice that for « € L, one has «; = ~; for i # r, so the condition pr;(8) < a; fori € J, i #r
is satisfied, since 8 € M(Ej). So, we have a bijection

{a € Ly; Fr(B,0) =0} «— G(E)U |J br.(RM(E))).
{rycict
Since for all J, with {r} € J C I, the sets G(E,) and pr,.(RM(E;)) are disjoint, it follows
that
®) Hae LT, (Ba) =0t = #08)+#( U m(Ra(E)).
{r}CJcI
Let us define

© =0, and ©;=# |J pr,RM(E)), 2<i<r
{i}GICIL,i)

Now, putting together Equations (2) and (3), we get the following recursive formula:

Theorem 10. Let T be a fractional ideal of a ring R with r minimal primes with values set E.
If v > ¢(E), then

I N\_ m(1.r)(Z) a0y _
@ f(zm))‘g(ml,,«)(z)(pru,r)w)))””T ) TG O
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Corollary 11. With the same hypotheses as in Theorem 10, one has the formula

T

£(555) =20 (- at = #6(E) - 6).

=1
6. A CLOSED FORMULA FOR 7 = 3

In this section, we provide a nicer formula than Equation (4), when r = 3. To simplify nota-
tion, for any J C I = {1, 2,3}, we will denote by RM ;, AM; and M the sets RM (E;), AM(Ey)
and M(Ej), respectively. Notice also that if #J = 2, then RM; = AM; = M.

From Formulas (1) and (2), for v > ¢(E), one has

T
£(25) = (n-al) = #6(E) + (- of) - #0(E) — #Msar+
(s — a8) — #{a € Ls; F3(E,a) = 0}.
We will use the following notation:
Lé = {Oé S Lg;Fg(E,O() = @}

Now, from Lemma 9, the points o = (a1, a2, a3) € Lj are such that ag € G(E3) or they are
associated to maximal points of either Ey; 3y, Eq3 3y, or E with last coordinate equal to as. So,
we have

(5) #Ly = #G(E3) + #M1 3y + #M2,3, + #RM —n,
where 77 is some correcting term which will take into account the eventual multiple counting of
maximals having the same last coordinate.

To compute 17 we will analyze in greater detail the geometry of maximal points.

If a, 8 € M with ag = 3, then a; # 1 and ag # Ba. If a; < 1, then necessarily By < as.

We say that two relative (respectively, absolute) maximals o and § of E with ag = 3 and
ay < By are adjacent, if there is no (01,62, a3) in RM (respectively, in AM) with oy < 67 < 54
and Bo < 0y < s.

We will describe below the geometry of the maximal points of E

Lemma 12. If « € AM, then one of the following three conditions is verified:

(i) there exist two adjacent relative maximals 8 and 0 of E such that pryy 53(8) = pryy 53 ()

and pr{2’3}(9) = PI'ia 3y ();
(i) there exists B € RM such that pryy 51(8) = prygy(a) and prigsy(a) € Mgy, or

Pris3)(B8) = prys sy (@) and pryy 53(a) € My 335
(iii) Pr{1,3}(a) € Myy 3y and Pr{z,g}(a) € M2 3y

Proof. Let o = (a,an,a3) € AM, then F(E,a) = ). We consider the following sets:

Ry ={B€Z% Bs=as3,B1 >0, B < a}
and

Ry = {9 S ZS; 03 = as, 0, < ay,0; > Ozg}.
Then there are four possibilities:

RlﬂE;«é(Z)anngﬁE;é(Z), RlﬂE#@anngﬂE:@.

RiNE=0and RoNE#0, RiNE=0and RoNE = .
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Suppose Ry NE # () and Ro N E # (. Choose 8 € Ry NE and # € Ry N E, such that as — B2
and a; — 67 are as small as possible. Then by Property (A), we have min(«, 3), min(«, 0) € E.
Obviously pry; 51(8) = pryy 33() and prys 53(0) = prys 33 (). Moreover, according to Lemma
3, these are relative maximals because F5(F, min(«, 5)) and F3(E, min(a, §)) are empty and the
sets Fyy 31 (F, min(a, B)), Fyy 3y (F, min(a, 0)), Fyz3)(E, min(a, §)) and Fyp 31 (F, min(a, 0)) are
nonempty. It follows that min(a, 8) and min(c, 8) are adjacent relative maximals.

Suppose R1 N E # () and Ro N E = (). Choose 8 € Ry N E such that as — B2 is as small as
possible, then, as we argued above, we have that min(a, 3) € RM and pryy 53(8) = pryy 33(a).
Moreover, as Ry N E = (), it follows that P23} () € Mgz 3.

The case Ri N E = () and Ry N E # () is similar to the above one, giving us the second
possibility in (ii).

Suppose Ry N E = () and Ry N E = (). It is obvious that

priisy(a) € M3y and  pry gy(a) € My 3y
O
Given two points 01,02 € Z3 such that pry(0') = prs(6?), we will denote by R(6,6?) the

parallelogram determined by the coplanar points 61,02 min(6!,6?) and max(6*,6%). We have
the following result:

Corollary 13. Let 61,6 € AM be such that pry(0') = pry(0?). Then one has
R(0*,6%) N RM # 0.

Proof. Because 01,0% € AM, it follows immediately that (iii) of Lemma 12 cannot happen,
therefore, the existence of the relative maximal is ensured by (i) or (ii). O

Lemma 14. If 8 and B’ are adjacent relative mazimals, with B3 = 3%, then max(8,5’) is an
absolute mazimal of E.

Proof. We may suppose that 81 > 3] and S2 < B5. As 8 and ' are adjacent, we have that

F3y(E,B) N Frazy(E, 8) # 0, because otherwise, take a' € Fyy 51(E, ), with aj the greatest

possible and o € Fra5,(E, B'), with a? the greatest possible. From Lemma 4 it follows that !

and a? are absolute maximals of E, then by Corollary 13 there exists a relative maximal in the
region R(at, a?), this contradicts the fact that 3 and 8’ are adjacent relative maximals.

Then, effectively, Fi1 3y (E, 8) N Fia3y(E, ') = {max(3, #)}, which is an absolute maximal.

O

Recall that the elements in L} are of the form (v1,72, a3), with af < as < v3.
Lemma 15. Let o € LY be such that
ag € (pry(My 3y) \ pra(Myasy)) Nprg(RM) or  az € (pry(Myasy) \ pra(Mya,sy)) N pry(RM).

Then there are the same number of relative as absolute maximals in E with third coordinate equal
to as.

Proof. We assume that as € (pr3(Myysy) \ pr3(Mya,3y)) N pr3(RM), since the other case is
analogous.

Since a3 € pry(RM), we may assume that there are s (> 1) relative maximals 81,..., 3% in
E with third coordinate equal to a3. We may suppose that 5} < 82 < --- < 5, so the 3"’s are
successively adjacent relative maximals, hence, by lemma 14, we have that

max(3, 3%),...,max(B°"', 3%) € AM.

This shows that there are at least s — 1 absolute maximals in £ with third coordinate «s.
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Now as prz(a) € pry(My 3y), then there is a (n{, a3) € My 33 with 71 < a1 (= 71), because
c(Eq3y) < pryygy(c(E)) = (11,73). Because of our hypothesis, the elements d in the fiber
Fp151(E, %) are such that 37 < §; < ni. But we must have §; = 1}, because, otherwise, there
would be a point n' = (ni,nl, a3) € pr{711’3}(17%, a3), with n3 < 83, and a point n? € Fio 3y (E, 8%)
with 7 < n{ and 2 = B5. These n* and n? are absolute maximals, due to Lemma 4, then from
Corollary 13, there would exist a relative maximal in the region R(n',n?), which contradicts the
fact that we have s relative maximals. This implies that (37,73, a3) is an absolute maximal of
E.

We have to show that there are no other absolute maximals. If such maximal existed, then one
of the three conditions in Lemma 12 would be satisfied. Obviously conditions (i) and (iii) cannot
be satisfied, but neither condition (ii) can be satisfied, because otherwise az € pr3(Mya 3y),
which is a contradiction.

Lemma 16. Let oo = (a1, a2, a3) € Ly be such that as € (pra(My1 3;) Nprs(Masy)) \prg(RM),
then there exists one and only one absolute maximal of E with third coordinate equal to as.

Proof. As

ag € pry(Myy 3y) Nprs(Mz 3y),
then there exist (81,as) € M3y and (83,03) € Mgy such that ff < aq(= 1) and
B3 < az(= 72), because one always has that c(Ey; ;1) < pry; ;3 (c(E)).

Consider the element 6 = (31,33, a3). If @ € E, since it is easy to verify that F;(E,6) = 0
for 3 € J C {1,2,3}, it follows by Lemma 4 that # is an absolute maximal of F, which is unique
in view of Corollary 13 and the hypothesis that a3 & prs(RM).

If 0 ¢ E, then take 0; = (81,03, a3) € pr{_113}(ﬁ11,oz3) N E, and

82 = (5%a ﬁ%v a3) € pr{72173} (ﬂ%a 043) nE.

We have that 67 < 5} and d3 < 3, because otherwise § € E or, (31, a3) and/or (33, as) would
not be maximals of Ey; 3y and/or E{; 33. Choose 62 and 63 the greatest possible, then it is easy
to verify that F;(F,0;) =0 for i = 1,2 and 3 € J C {1,2,3}. Hence from Lemma 4, 6; and 6
are absolute maximals of F, therefore from Corollary 13 there would be a relative maximal of
FE with third coordinate equal to a3, which is a contradiction. (I

Lemma 17. Let o € Ly be such that az € pr3(Myy sy) N pr3(Myasy) Npry(RM). If there exist
s relative maximals with third coordinate equal to as, then there exist s + 1 absolute mazimals
with third coordinate equal to ag.

Proof. Following the proof of Lemma 15, we have s — 1 absolute maximals obtained by taking
the maximum of each pair of adjacent relative maximals. The conditions a3 € pry(M; 33) and
as € pra(Mya31) give us two extra absolute maximals, and the same argument used there, shows
that there are no other. O

Lemma 18. Let o € L be such that oz € pry(RM)\ (prg(M1,3)) Uprs(Mya3y)). If there exist
s relative mazimals with third coordinate equal to ag, then we have s — 1 absolute marimals with
third coordinate equal to as.

Proof. The arguments used in the proofs of the last two lemmas give us the result. O

Going back to Formula (5), we want to calculate . From Lemma 9 we can ensure that
a€ Ly ={a€Ls; F3(E,a) =0} \ G(E3), only if « falls into one of the following five cases:
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(i) a3 € (Fty(M15)) \ B3 (Mia,3))) O pry (RM).

If there exist such «, then they are related to a unique element of My, 3y and if there
are sp relative maximals with third coordinate «g, then in our formula o was counted
s1+ 1 times. By Lemma 15 we know that there exist s; absolute maximals of F with third
coordinate a3. So, we subtract s; from our counting to partially correct the formula.

(i) s € (Prs(Ma) \ Prs(My1)) N prs(RM).

Analogously to (i), « is related to a unique element of My, 3y and if there are s, relative
maximals with third coordinate a3, then o was counted ss + 1 times in the formula. Again,
by Lemma 15 we know that there are so absolute maximals of F with third coordinate as.
So, we subtract ss from our counting to partially correct the formula.

(ili) a3 € (pra(My1,sy) NPra(Myz3y)) \ pra(RM).

In this case, « is related to a unique elements in M 33 and in My, 3}, so in the formula
we are counting « twice. By Lemma 16 there is a unique absolute maximal of E with
third coordinate o such that its projections pryy gy and pryy gy are in My 3y and My 33,
respectively. So, we correct partially the formula by subtracting 1, which corresponds to
this unique absolute maximal.

(iv) as € prg(M{,3}) Npr3(Myz3y) Nprs(RM).

In this case, « is related to a unique element of My, 3y, to a unique element of Mys 3,
and, let us say, s3 elements of RM, so in our counting, o was counted sz + 2 times. By
Lemma 17 there exist s3+ 1 absolute maximals of F with third coordinate ai3. In this case,
the correcting term is s3 + 1, equal to the number of these absolute maximals.

(v) az € prg(RM) \ (prs(M1,3)) U prs(M{z,3))-

In this case, « is related with, let us say, s4 elements of RM with third coordinate equal
to ag, so we are counting it s4 times. By Lemma 18 there exist s4 — 1 absolute maximals
with third coordinate c3. This is exactly the correcting term we must apply to our formula.

Observe that the above cases exhaust all absolute maximals of F, implying the following
result conjectured by M. E. Hernandes after having analyzed several examples (cf. [7]):

Theorem 19. Let R be an admissible ring with three minimal primes and let T be a fractional
ideal of R with values set E. If v > ¢(FE), then

l (%) = 22:1 ((%‘ —af) - #Q(Ei)) - Zl§i<j§3 #Myi ) —
#RM + #AM.

Corollary 20. Let J C T be two fractional ideals of an admissible ring R, with three minimal
primes. Denote by E and D, respectively, the value sets of T and J. Then

‘n (I> = 33 ((8Y - al) + (#G(Di) — #G(Ey)) +

J
Zl§i<j§3 #M{i,j}(D) - Zl§i<j§3 #M{i,j}(E)‘f'

#RM(D) — #RM(E) + #AM(E) — #AM(D),

where a® = min(E) and $° = min(D).
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ABSTRACT. In this paper, we shall discuss the duality of singularities for a class of flat surfaces
in Euclidean space. After introducing the definition of the conjugate of a tangent developable,
we show that, if a tangent developable admits a swallowtail, its conjugate has a cuspidal cross
cap. Similarly, we prove that the conjugate of a tangent developable having cuspidal S;r
singularities has cuspidal butterflies, and that cuspidal beaks have self-duality. We also show
that cuspidal edges do not possess such a property, by exhibiting an example of a tangent
developable with cuspidal edges whose conjugate has 5/2-cuspidal edges. Finally, we prove
that conjugates of complete flat fronts with embedded ends cannot be complete flat fronts.

1. INTRODUCTION

We denote Euclidean 3-space by R®. Tt is well-known that, for a minimal surface
f=(z1,22,23) : M = R,

its coordinate functions z; (j = 1,2,3) are harmonic functions on M. Then, the harmonic

conjugates xg ( = 1,2,3) define another minimal surface f# = (xﬁ,xé,x%), which is called the

conjugate minimal surface. Similarly, for maximal surfaces in the Lorentz-Minkowski 3-space L?,
we can define the conjugate. Since the only complete maximal surfaces are spacelike planes [2],
we need to consider maximal surfaces with singular points. Umehara—Yamada [23] introduced a
class of maximal surfaces with admissible singularities called mazfaces, which satisfy the following
property so-called the duality of singularities:

Fact 1.1 ([23, 4]). Let f : M — L* be a mazface, f* : M — L* its conjugate, and p € M
a singular point. Then, f at p is A-equivalent to the cuspidal edge (resp. swallowtail, cuspidal
cross cap) if and only if f* at p is A-equivalent to the cuspidal edge (resp. cuspidal cross cap,
swallowtail).

The property as in Fact 1.1 is called the duality of singularities. Let S7 (resp. S%) be the de
Sitter 3-space (resp. the 3-sphere) of constant sectional curvature 1. Also, let H} (resp. H?) be
the anti-de Sitter 3-space (resp. the hyperbolic 3-space) of constant sectional curvature —1, and
Q? be the 3-lightcone. It is known that such a duality of singularities holds for various classes
of surfaces as follows:

e timelike minimal surfaces (so-called minfaces) in L* [21] (cf. [1]),
e spacelike surfaces of non-zero constant mean curvature in L? [7],
e spacelike surfaces of constant mean curvature 1 in S} [4],
e timelike surfaces of constant mean curvature 1 in H} [24],
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e spacelike surfaces of zero extrinsic curvature in S3, H3 and Q3 [13],
e surfaces of zero extrinsic curvature in S® [12].

We remark that such a duality is known for more degenerate singularities, such as cuspidal
beaks, cuspidal butterflies and cuspidal S] singularities ([12, 18]).

In this article, we shall study the duality of singularities in the case of flat surfaces with
singularities in R®. Murata—Umehara [17] investigated the global properties of flat surfaces
with singularities called flat fronts (cf. Fact 2.1). In particular, they proved that complete flat
fronts with non-empty singular sets must be tangent developables. Ishikawa [10] investigated the
singularities of tangent developables from the view point of the (real) projective geometry. In
particular, Ishikawa [10] used the Scherbak’s dual curves [20] in the dual projective space to
define the dual tangent developables, and proved the duality of singularities. For more details,
see [10, 11] (cf. [3]). However, to the best of the author’s knowledge, there was no notion like the
conjugate of flat surfaces R® in the setting of Euclidean geometry. Thus, we shall find a suitable
definition of the conjugate of flat fronts which satisfy the duality of singularities.

This paper is organized as follows. In Section 2, we review some basic facts on flat fronts,
singularities of frontals in R?, and frontals in the 2-sphere S2. Then, in Section 3, after review-
ing a-orientable admissible developable frontals introduced by Murata—Umehara [17], we apply
the criteria for cuspidal cross caps to such developable frontals. Comparing the condition for
swallowtails and that for cuspidal cross caps, we give a definition of the conjugates for tangent
developables (Definition 3.6, cf. Corollary 3.9). In Section 4, applying the criteria for other
singularities (cuspidal beaks, cuspidal butterfly, cuspidal Sli, 5/2-cuspidal edge) to such tangent
developables (cf. Propositions 4.2, 4.4, 4.6 and 4.9), we obtain the duality of singularities (The-
orem 4.10). In the case of the cuspidal edge, we exhibit an example which does not satisfy the
desired duality (see Example 4.11). Finally, in Section 5, we glance a global property of such
conjugate operation, by proving that the conjugate of a complete flat front with embedded ends
cannot be a complete flat front (Proposition 5.1).

2. PRELIMINARIES
We denote by R? the Euclidean 3-space. Let M be a connected smooth 2-manifold and
f:M — R?

a smooth map. A point p € M is called a singular point if f is not an immersion at p. Otherwise,
we say p a regular point. Denote by S(f) (C M) the singular set. If S(f) is empty, we call f a
(regular) surface. In this case, at least locally, we can take a smooth unit normal vector field v
along f, that is, for every point p € M, there exist an open neighborhood U of p and a smooth
map v : U — S? such that

(2.1) dfy(v) -v(g) =0 holds for each ¢ € U and v € T, M,
where the dot ¢ is the canonical inner product on R® and S2 is the unit sphere
S? ={xcR;x x=1}.

2.1. Flat fronts. A smooth map f: M — R is called a frontal if, for each point p € M, there
exist a neighborhood U of p and a smooth map v : U — S? which satisfies (2.1). Such a v is
called the unit normal vector field or the Gauss map of f. If v can be defined throughout M,
f is called co-orientable. If (L :=) (f,v): U — R* x S? gives an immersion, f is called a wave
front (or a front, for short).

A front f with a unit normal v is called flat if rank(dv) < 1 on M. Denote by ds? := df - df
the first fundamental form of f. In the case that f is regular, f is flat as a front if and only if
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f is flat as a regular surface (namely, the Gaussian curvature K of ds? is identically zero K = 0
on M).

A smooth map f: M — R? is called complete if there exists a symmetric covariant tensor 7
on M with compact support such that ds? 4+ T gives a complete Riemannian metric on M. If f
is complete and the singular set S(f) is non-empty, then S(f) must be compact.

Murata-Umehara [17] proved the following.

Fact 2.1 ([17]). Let € : ST — S? be a regular curve without inflection points, and o = a(t)dt a
1-form on S' = R/2wZ such that f51 €a =0 holds. Then, f:S' x R — R® defined by

(22) foi=oty+oe) (o= [ atrrir)

is a complete flat front with non-empty singular set. Conversely, let f : M — R be a complete
flat front defined on a connected smooth 2-manifold M. If the singular set S(f) of f is not
empty, then f is umbilic-free, co-orientable, M is diffeomorphic to S' x R, and f is given by
(2.2). Moreover, if the ends of [ are embedded, f has at least four singular points other than
cuspidal edges.

For the definition of umbilic points, see [17] (cf. [5, 6, 8]). The final statement of Fact 2.1 may
be regarded as a variant of four vertex theorem for plane curves.

2.2. Singularities of frontals. Fix a smooth 2-manifold M and take two points p; € M
(i=1,2). Let f; : (M,p;) — (R®, f(p;)) (i = 1,2) be two map germs. We say f is A-equivalent
to fo if there exist diffeomorphism germs

2 (Mvpl) - (M7p2) and @ : (Rgvf(pl)) - (Rsﬂf(p2))

such that ®o fio9™! = fo. Weset for, fsw, focr, fok, foBr, fes#s frop to be the germs
from (R?,0) to (R?,0) given by:

for(u,v) = (u,v?v?%),
Fsw (u,v) == (4u® + 2uv, 3u* + u’v, —v),
feor(u,v) == (u,v?, uv?),
(2.3) fepr(u,v) == (v, —2u® + wv?, —3u* + u?v?),
fesr(u,v) = (u, 50" + 2uv, 40° + uv? — u?),
fcsi(u,v) (u, v, 03 (1 £ 0?)),
frep(u,v) == (u,v*,v%),

respectively, where k is a positive integer. We call the map germ fcg (resp. fsw, foor,
feBk, foBr, fcs,f’ frcr) the cuspidal edge (resp. swallowtail, cuspidal cross cap, cuspidal
beaks, cuspidal butterfly, cuspidal Ski singularity, 5/2-cuspidal edge).

Kokubu-Rossman—Saji-Umehara—Yamada [15] gave a useful criteria for cuspidal edge and
swallowtail. Similar useful criteria for other singularities are given in the following: [4] for
cuspidal cross cap (cf. Fact 3.4); [14] for cuspidal beaks (cf. Fact 4.1); [13] for cuspidal butterfly
(cf. Fact 4.3); [19] for cuspidal Sif singularity (cf. Fact 4.5); and [9] for 5/2-cuspidal edge (cf.
Fact 4.8). To state such criteria, we shall review some basic notions for frontals.

Let f : M — R? be a frontal with the (locally defined) unit normal v. Take a point p € M. Let
(U;u,v) be a coordinate neighborhood of p. We call A := det(f,, fu, v) the signed area density
function. Remark that p is a singular point of f if and only if A(p) = 0. If d\(p) # 0, a singular
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rux

Cuspidal edge fog Swallowtail fsu Cuspidal cross cap foccr

Cuspidal SfL singularity fCS+ Cuspidal butterfly fopr Cuspidal beaks fopg
1

5/2-cuspidal edge frcg

FIGURE 1. The images of standard models of the singularities (fogr, fsw,
fecr, fosys fesr, fesk, frop) given in (2.3).

point p is called non-degenerate. We remark that if p is non-degenerate, then rank(df), = 1
holds. By the implicit function theorem, there exists a regular curve () (|t| < €) on the uv-
plane such that (0) = p and the image of v coincides with the singular point set S(f) near
p, where ¢ > 0. We call ¥(t) the singular curve and +' = dv/dt the singular direction. Then,
there exists a non-zero smooth vector field (¢) along ~(¢) such that {(¢) is a null vector (i.e.,
df (¢(t)) = 0) for each t. Such a vector field ((t) is called a null vector field. On the other hand,
a non-vanishing smooth vector field ¢ = ((u,v) on U so that (|g(s) gives a kernel direction of f
is also called a null vector field. We set the functions 6(¢) and e, (t) as

(2.4) 0(t) :=det (' (), C(£)),  eer(t) :=det ((f 07)'(t), (v o)1), dv(C(2))),

respectively. Later we use these functions in the criteria for various singularity types (cf. Facts
3.4, 4.1, 4.3, 4.5 and 4.8).

2.3. Frontals in 2-sphere. Let .J be an open interval of R. A smooth map & : J — S? is called
a frontal if there exists a smooth unit vector field n along & such that &£ - n = 0 holds. We call
n the unit normal vector field or the spherical dual. The pair (€, 1) gives a Legendre curve in
the unit tangent bundle

T15% = {(p,v) € S* x §?; p-v =0}
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with respect to the canonical contact structure. Since £ - n/ = 0, there exist smooth 1-forms p,
w such that

(2.5) d=pn, dn=-wn,

where we set n:=n x & Then, the frame F(t) := {&(t),n(t), n(t)} satisfies
0 —p O

(2.6) FYF=|(p 0 -wl,
0 w 0

where we used the identity dn = —p € + wn. Conversely, the following holds.

Fact 2.2 ([22, Theorem 2.5]). Let p, w be smooth 1-forms on an interval J. Then, there exists
a frontal & : J — S? with the spherical dual n such that (2.5) holds.

Therefore, we may conclude that there exists a one-to-one correspondence between frontals
with spherical duals and pairs of smooth 1-forms. We call the pair of 1-forms (p,w) the data of
the frontal £ : J — S2.

3. CONJUGATES OF TANGENT DEVELOPABLES

In this section, comparing the criteria for swallowtail and cuspidal cross cap, we give a defi-
nition of the conjugates of developable frontals.

3.1. Developable frontals. Let J be an open interval including 0 € J. Take 1-forms «, 8 on
J and a frontal &€ : J — S? with the spherical dual n. Then a smooth map f: J x R — R?
defined by

(3.1) ft0)=ot)+oe) (o) = [ @&+ 5w, n=nxe)

is a co-orientable frontal in R® so that v(t,v) := m(t) is a unit normal. We shall call f(t,v)
an a-orientable admissible developable frontal and v is called the asymptotic parameter. The
quadruple of the 1-forms (a, 3, p,w) is independent of the choice of the parameter ¢ on J as a
1-dimensional manifold, which we call the data of f(t,v). Here, (p,w) is the data corresponding
to a frontal € in S? with the spherical dual n (cf. (2.5)).

Remark 3.1. We remark that Murata—Umehara defined a-orientable admissible developable
frontals in [17, Definition 2.3|, where ‘a-orientable’ means ‘asymptotically orientable’, see [17,
page 289]. They gave a representation formula in [17, Theorem 2.8]. Our definition is based on
[17, Theorem 2.8].

If f is a cylinder, then & : J — S? is a constant map, that is, 7(¢) = 0 holds for all t € J,
where p = r(t)dt. We call a point pg = (tg,vo) a cylindrical point of f(t,v) if & (ty) = 0 (i.e.,
7(tg) = 0) holds'. We denote by S.(f) (resp. Sn.(f)) the set of cylindrical singular points (resp.
non-cylindrical singular points).

Lemma 3.2 (cf. [17, Proposition 2.16]). Let f(t,v) be an a-orientable admissible developable
frontal whose data is given by (a, B, p,w) = (a(t) dt,b(t) dt, r(t) dt,w(t) dt). Then, a point

po = (to,v0) € J X R
is a singular point of f if and only if b(to) + vo r(tg) = 0. Moreover,
e f is a front at a singular point py = (to,vo) if and only if w(ty) # 0.

1Cylindrical singular points are linear singular points in the sense of [17, Definition 2.15].



DUALITY OF SINGULARITIES FOR FLAT SURFACES IN EUCLIDEAN SPACE 137

e po = (to,vo) is a cylindrical singular point of f if and only if b(tg) = r(to) = 0. Such a
po € Sc(f) is non-degenerate if and only if b’ (to) + vor'(to) # 0. Setting

(3-2) Ve(v) := (o, v),  Ce(v) := O — alto) Du,

we have that v.(v) is a singular curve passing through v.(vo) = po, and (.(v) is a null
vector field along v.(v). Moreover, we have (cf. (2.4))

(3.3) de(v) = det (7,(v), Ce(v)) = —1.
e py = (to,v0) is a non-cylindrical singular point of f if and only if r(tg) # 0 and
vo = —b(tg)/r(to). Such a py € Spc(f) is non-degenerate, and setting
b(t)
A4 = —— =0y —
(3.4 )= (1 =20). Gl =0 - att 0,
we have that Yn.(t) is a singular curve passing through Ync(to) = po, and Cne(t) is a null
vector field along vnc(t). Moreover, we have (cf. (2.4))

35) () = et (1,0, uu(0) = —a(0)+ (45 )

Proof. By (2.5), we have

(3.6) fr=a() &) + () +vr@)n(t), fo=E&®).

So, the signed area density function A is given by

(3.7) A = det(ft, fo,v) = (b(t) +vr(t)) det (n(t), £(t), n(t)) = —b(t) — v r(t).
Thus, we have S(f) = {(t,v) € J x R; b(t) + vr(t) = 0} and

(3.8) - =V (t)+vr'(t), =Xy = 7 (2).

On the singular set S(f), f: — a(t)f, = 0 holds. Thus, setting ((¢,v) := 0y — a(t)9,, we have
df (¢) = 0 at a singular point pg. Since f is front at py € S(f) if and only if

(dL)I)o = ((df)Pov (dy)po)

is injective, this condition is equivalent to (dv)p,(¢) # 0. Since —dv(¢) = —n’ = wn, f is front
at po € S(f) if and only if w(ty) # 0.

If po is cylindrical, r(tp) = 0 holds. Thus, pg is a cylindrical singular point if and only
if r(tg) = 0 and b(to) (= b(tg) + vor(to)) = 0. By (3.8), po is non-degenerate if and only if
b (to) + vor'(tg) # 0. In this case, 7.(v) given in (3.2) is a singular curve passing through
Ye(vo) = po. By (3.6), f: —a(to) fu = 0 holds along ~.(v), and hence we have (.(v) given in (3.2)
is a null vector field along ~.(v).

If pg is a non-cylindrical singular point, (tg) # 0 holds. By (3.8), pp must be non-degenerate.
Then ~,.(t) given in (3.4) is a singular curve passing through v,.(t9) = po. By (3.6),

ft - a’(t) fv =0
holds along ~,.(t), and hence we have (,.(t) given in (3.4) is a null vector field along v,.(t). O

As we seen in Lemma 3.2, the cylindrical and non-cylindrical singular sets, S.(f) and S,.(f),
are written as

(3.9) Se(f) ={(t,v) € J x R; b(t) = r(t) = 0},

(3.10) Snc(f)z{(t,v)eJxR;r(t);éO, v:—},

respectively.
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Murata—Umehara [17] applied the criteria for cuspidal edge and swallowtail given in [15] to
developable frontals as follows:

Fact 3.3 ([17, Proposition 2.16]). Let f(t,v) be an a-orientable admissible developable frontal
whose data is given by («, B, p,w) = (a(t) dt, b(t) dt,r(t) dt,w(t) dt). Then, a point
Po = (to,’Uo) eJxR
is a singular point of f if and only if b(to) + vor(to) = 0. Moreover, for a singular point
po = (to,vo) of f, we have that
o [ at py is A-equivalent to the cuspidal edge if and only if

r(to) #0, alto) # (b(t))

T(t) ’ w(to) 7& 07

t=to

or
T(to) =0, bl(to) + vg T/(to) #0, w(ty) #0.
o [ at py is A-equivalent to the swallowtail if and only if

(3:.11) r(to)) #0, alto) = (b(t)>/ R o) - (ig)”

r(t)

We can observe that swallowtails never appear on the cylindrical singular set S.(f).

) ’LU(to) # 0.

t=to

3.2. Cuspidal cross cap. Here we review the criterion for the cuspidal cross cap given by
Fujimori-Saji-Umehara—Yamada [4].

Fact 3.4 (Criterion for cuspidal cross cap [4]). Let f : U — R? be a frontal defined on a domain
U of R?, with the unit normal v, and p € U a non-degenerate singular point of f. And let y(t)
be a singular curve such that v(0) = p, ((t) a null vector field, 6(t) and e (t) be the functions
defied by (2.4). Then, the map germ f at p is A-equivalent to the cuspidal cross cap if and only
if 6(0) # 0, Yeer(0) = 0 and 10,.,(0) # 0.

Now, we shall apply Fact 3.4 to a-orientable admissible developable frontals.

Proposition 3.5. Let f(t,v) be an a-orientable admissible developable frontal whose data is
given by («, B, p,w) = (a(t) dt,b(t) dt,r(t) dt,w(t) dt). For a singular point py = (tg,vo) of f, we
have that f at pg is A-equivalent to the cuspidal cross cap if and only if

b(t)

(3.12) r(to) £0, alto) £ (@)

Proof. First, assume that pg € Spc(f). By Lemma 3.2, v,,.(t) is a singular curve passing through
Yne(to) = po, and (,.(t) is a null vector field along v,.(t), where v,.(t) and (,.(t) are given by

(3.4). Let dpc(t) be the function given in (3.5). By Lemma 3.2, the function § given in (2.4)
coincides with d,.(¢). On the other hand, setting 4,,.(t) := f(Vne(t)), we have

'%c(t) = _5n0(t)€(t)~
Hence, the function 9. given in (2.4) is
(3.13) Veer(t) = —0ne(t) det (§(1), n(t), 'n/(t)) = —One(t)w(t).
Therefore, f at pg is A-equivalent to cuspidal cross cap if and only if (3.12) holds.
Next, we shall prove that, if pg € S.(f), f at po cannot be A-equivalent to the cuspidal

cross cap. By Lemma 3.2, v.(v) is a singular curve passing through 7.(vg) = po, and (.(v) is
a null vector field along 7.(v), where v.(v) and (.(v) are given by (3.2). By Lemma 3.2, the

. w(to) =0, w(to) #0.

t=to
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function § given in (2.4) is identically —1. On the other hand, setting 4.(v) := f(7.(v)), we have
A (v) = €(to). Hence, the function 9., given in (2.4) is

(314) q/)ccr(v) = det (E(t), n(tO)v w(tO)n(tO)) = w(tO)'
Therefore, 1cer(vo) = 0 and ., (vo) # 0 do not occur at the same time. Thus, f at py cannot
be A-equivalent to the cuspidal cross cap. O

3.3. Observation and definition. For an a-orientable admissible developable frontal
f = f(t,v), we would like to find its conjugate f* which satisfies the so-called duality of singu-
larities as in Fact 1.1 in the introduction.

We shall compare the condition (3.11) for swallowtail and that (3.12) for cuspidal cross cap.
If B = b(t) dt is identically zero, (3.11) is equivalent to

(315) ’I‘(to) 7& O, a(to) = 0, a,(to) 7é O, ’w(to) 7é O7
and (3.12) is equivalent to
(316) T'(to) 7é 0, a(to) 7é 0, ’w(to) = 0, ’w/(to) 7é 0.

Thus, for an a-orientable admissible developable frontal f = f(¢,v) with the data («,0, p,w), if
we set f* to be the a-orientable admissible developable frontal whose data is given by

(aﬁu O>pﬁ7wu) = (w707p7 a)u

we have that f at p is A-equivalent to the swallowtail if and only if f* at p is A-equivalent to
the cuspidal cross cap. Namely, f and f! satisfy the duality of singularities.

A-orientable admissible developable frontals with 8 = 0 are tangent developables. In fact,
when 8 =0, f given in (3.1) is written as

t
(3.17) ft,v) :=0(t) +v&() (a(t) = / a, mi=nx 5) .

0
Since o/ (t) and £(t) are linearly dependent, we may conclude that f is a tangent developable.

Definition 3.6 (A-tangent developable). We call an a-orientable admissible developable frontal
with 8 = 0 an a-tangent developable. For an a-tangent developable f, the triplet of the 1-forms
(o, p,w) is also called the data. Then, the a-tangent developable f* whose data is given by
(af, pt, wh) := (w, p, ) is called the conjugate of f.

We remark that, by Lemma 3.2 and p = p*, the singular set of an a-tangent developable f
coincides with that of the conjugate f# of f, namely S(f) = S(f*) = {(t,v) € Jx R; vr(t) = 0}
holds. In the case that the a-tangent developable f = f(¢,v) is defined on M := S! x R, the
domain of the conjugate f* is the universal covering M = R? of M.

Remark 3.7. An a-orientable admissible developable frontal without cylindrical points is an a-
tangent developable. If (,v) is non-cylindrical, by changing the parameter v — v — b(¢t)/r(t), f
can be written as o)
4 -
F=ot)+ (v- 15 ) &0 =00 + veto
Here we set 5(t) := o(t) — (b(t)/r(t))€(t), which satisfies that &'(¢) and &(t) are linearly depen-
dent.

Let {e1, 2, e3} be the canonical orthonormal basis of R®, namely, (ey, ey, e3) = Id, where Id is
the identity matrix Id := diag(1,1,1). The procedure of constructing the a-tangent developable
from a given data («, p,w) is as follows:

o Take Fy € SO(3) arbitrarily.
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e Let F = F(t) be a solution of (2.6) with the initial value F(to) = Fo.
o Setting &(t) := F(t)ey, then,

o) =ot+vew (o0 = /ae)

is an a-tangent developable whose data is given by («, p,w) such that n(t) :== F(t)es is
a unit normal.

Taking account of the data of the conjugate (af, p*, w) = (w, p, @), we have the following.

Lemma 3.8. Let f = f(t,v) be the a-tangent developable defined on J x R whose data is given
by (o, p,w). Fizty € J. Take a solution F* = F*(t) of the following initial value problem

0 —p O
(3.18) (FHYTMdFf=|p 0 —al,  Fity) =M.
0 « 0

Then setting fu(t) := F¥(t)ey, the conjugate f* is given by
t
(3.19) Fitv) = o (t) + v () <aﬁ(t) = / wgﬁ)
to
such that the data of f* is given by (af, pb,w?) := (w, p,a), and ni(t) := Fi(t)es gives a unit
normal of f*.
By [17, Proposition 2.16] (cf. Fact 3.3) and Proposition 3.5, we have the following:
Corollary 3.9. Let f(t,v) be an a-tangent developable whose data is given by
(o, pyw) = (alt) dt,r(t) dt,w(t) dt).

Take a singular point po = (to,vo) € S(f). Then,
e f at pg is A-equivalent to the cuspidal edge if and only if
vo =0, r(to) #0, alte) #0, w(to)#0,
or
v #0, r(to) =0, 7'(to) #0, w(to)# 0.
e f at pg is A-equivalent to the swallowtail if and only if

(320) Vo = 0, ’I‘(to) 75 0, a(to) = O7 a/(to) 7é 0, ’Ll)(t()) 75 0.
e [ at pg is A-equivalent to the cuspidal cross cap if and only if
(321) Vo = 07 T(to) 75 07 a(to) 7é 0, U)(t()) = O, ’w/(to) 7é 0.

In particular, f at po is A-equivalent to the swallowtail if and only if f* at py is A-equivalent to
the cuspidal cross cap, where f% is the conjugate of f.

As an example, we calculate the conjugate of the standard swallowtail.

Ezample 3.10 (Conjugate of the standard swallowtail). Let fsw be the standard swallowtail
given in (2.3). By a parameter change (u,v) — (¢,y — 6t%), we have

fsw(t,y) = (=83, =3t1,6t%) +y (2t,£2, —1).

Thus, setting v := y 1+ 4t2 +t*, fsw is an a-tangent developable fsw (t,v) = o(t) + vE&(t),
where .

o(t) = (=86%, =3t1.61%),  &(t) = g

(2t,t%,—1).
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Since o' (t) = —12tv/1 4 42 + t* £(t), we have
(3.22) a(t) = =126/ 1 + 462 + ¢4,
Then the spherical dual n(t) of £(¢) and n(t) = n(t) x &£(¢) are given by

M= Trrera )

1
’I’](t): 2 4 2 4
VI+42 + V1 + 2+ ¢

respectively. Hence we have

(1—th 4262t +£%),

21 + 2 + 4 V14412 + 4
(3.23) r(t) = L’ w(t) = _¥’
1+ 482 + ¢4 1+t2 4t

where r(t) = &'(t) - n(t), w(t) = —n/(t) - n(t).
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Then, applying Lemma 3.8 with («, p,w) = (a(t) dt, r(t) dt,w(t) dt) and ¢ty = 0, we obtain
the conjugate fgw(t, v), where a(t), r(t), w(t) are given by (3.22) and (3.23), respectively (cf.

Figure 2).

i

FIGURE 2. The a-tangent developable fgw which is the conjugate of the stan-
dard swallowtail few given by (2.3) (cf. Figure 1). By Corollary 3.9, we have
that fgw at (t,v) = (0,0) is A-equivalent to the cuspidal cross cap. This figure

is plotted by integrating (3.18) and (3.19) numerically.

4. OTHER SINGULARITIES

Here, we shall write down the criteria for other singularities (cuspidal beaks, cuspidal butterfly,

cuspidal SljE singularity, 5/2-cuspidal edge) on a-tangent developables in terms of their data.

4.1. Cuspidal beaks. First, we review the criterion for the cuspidal beaks given by Izumiya—

Saji-Takahashi [14].

Fact 4.1 (Criterion for cuspidal beaks [14]). Let f : U — R® be a front defined on a domain U
of R* with the unit normal v. Also let p € U be a singular point of f and ¢ a null vector field.
Then, the map germ f at p is A-equivalent to the cuspidal beaks if and only if rank(df), = 1,

dA(p) =0, det HessA(p) < 0 and (CA(p) # 0 hold.

Applying Fact 4.1 to a-tangent developables, we have the following.



142 A. HONDA

Proposition 4.2. Let f(t,v) be an a-tangent developable whose data is given by
(o, p,w) = (alt) dt,r(t) dt, w(t) dt).

Then, for a singular point pg = (to,vo) of f, we have that f at py is A-equivalent to the cuspidal
beaks if and only if

(41) Vo = 0, T'(to) = 0, T/(to) # O, a(to) # 0, ’u)(t()) # 0.

Proof. We remark that for any singular point pg of f, rank(df),, = 1 holds (cf. (3.6)). Hence, by
Fact 4.1, f at po is A-equivalent to the cuspidal beaks if and only if dA\(pg) = 0, det HessA(pg) < 0,
CCA(po) # 0, and f is a front at pg. By (3.8), d\(po) = 0 if and only if r(¢g) = 0 (i.e., pp is
cylindrical) and vg r'(tg) = 0. Since the signed area density function A is given by

At,v) = —vr(t)
(cf. (3.7)), we have

>\tv >\vv
Hence, det HessA(pg) < 0 if and only if r'(¢g) # 0. As we see in the proof of Lemma 3.2
C(t,v) :== 0y — a(t)d, gives a null vector field. Since (A = vr/(t) — a(t)r(t), we have

(4.2) CAr=vr"(t) —d (t)r(t) — 2a(t)r'(t).
Therefore, f at pg is A-equivalent to the cuspidal beaks if and only if (4.1) holds. O

det Hess\ = det (Att Atv) = —/\tzv = _(TI)Q-

4.2. Cuspidal butterfly. Next, we review the criterion for the cuspidal butterfly given by
Izumiya—Saji [13].

Fact 4.3 (Criterion for cuspidal butterfly [13]). Let f : U — R® be a front defined on a domain
U of R? with the unit normal v. Take a non-degenerate singular point p € U of f. Let ~(t) be

a singular curve such that v(0) = p and ((t) a null vector field. Then, the map germ [ at p is
A-equivalent to the cuspidal butterfly if and only if 6(0) = §'(0) =0 and §"(0) # 0 hold.

Applying Fact 4.3 to a-tangent developables, we have the following.

Proposition 4.4. Let f(t,v) be an a-tangent developable whose data is given by
(a, p,w) = (a(t) dt, r(t) dt,w(t) dt).

Then, for a singular point py = (to,vo) of f, we have that f at py is A-equivalent to the cuspidal
butterfly if and only if

(43) Vo = 0, T'(to) 75 O7 a(to) = a/(to) = 0, C(,N(to) 7é 0, w(to) 75 0.
Proof. By (4.2), we have
(4.4) G =vr"(t) — " (t)r(t) — 3d' (t)r'(t) — 3a(t)r” (t).

Hence, by Fact 4.3, f at pg is A-equivalent to the cuspidal butterfly if and only if
(i) fis a front at pg = (to,vo) (i-e., w(to) # 0),
(ii) po = (to,vo) is non-degenerate (i.e., r(tg) # 0 or r(tg) = 0, vy r'(tg) # 0),
(ili) vor(to) =0,
(iv) wor'(to) — a(to)r(to) =0,
(v) vor”(to) — a'(to)r(to) — 2a(to)r’(to) =0,
(Vl) Vo T/’/(to) - a//(to)r(to) - 3&’(150)7’/@0) - 3a(t0)r”(t0) 7é 0.
If we assume that py = (tg, vo) is cylindrical (i.e., r(to) = 0), the condition (i) implies vg 7/ (tg) # 0.
This contradicts the condition (iv), vor’(tp) = 0. Thus, we have r(¢y) # 0. Then, we can check
that the conditions (i)—(vi) are equivalent to (4.3). O
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4.3. Cuspidal Sf[ singularity. Now, we review the criterion for the cuspidal Sli singularity
given by Saji [19].

Fact 4.5 (Criterion for cuspidal ST singularity [19]). Let f: U — R® be a frontal defined on a
domain U of R* with the unit normal v. Take a non-degenerate singular point p € U of f. Let
v(t) be a singular curve such that ¥(0) = p and ¢ a null vector field. Then, the map germ f at
p is A-equivalent to the cuspidal Sy singularity (resp. the cuspidal Sy singularity) if and only
if the following (i)-(iv) hold:

(i) 6(0) # 0,
(11) wccr(o) = écr(o) =0 and

(iii) there exist a regular curve ¢ : (—e,e) — U and £ € R such that ¢(0) = p, ¢/(0) is parallel
to €(0), ¢"(0) #0, ¢"(0) = £&"(0) and

(4.6) (dy =) det (dfp(gp; &'(0), 3¢(0) — 100@ (0)) £0

hold, where ¢ := foc and &, = ~'(0),

(iv) the product dids is positive (resp. negative), where dy, do are given by (4.5), (4.6),
respectively. Here, we choose ¢ and ¢ so that ¢/ (0) points the same direction as the null
vector €(0) and that {7'(0), ((0)} is positively oriented.

Applying Fact 4.5 to a-tangent developables, we have the following.
Proposition 4.6. Let f(t,v) be an a-tangent developable whose data is given by
(0, o) = (alt) dt, r(t) dt, w(t) db).

Then, for a singular point py = (to,vo) of f, we have that f at py is A-equivalent to the cuspidal
Sf’ singularity if and only if

(4.7) vo =0, r(to) #0, alto) #0, w(to) =w'(t)) =0, w"(to) #0.

Remark 4.7. It is known that, by Ishikawa’s theorem [10], developable surfaces do not admit any
cuspidal S singularities for k& > 1. We also remark that, by Mond [16] and Saji [19, Theorem
4.1], tangent developable surfaces of a regular space curve do not admit cuspidal S; singularity,
as in the following proof.

Proof of Proposition 4.6. We first show that py is non-cylindrical. If we assume py = (tg,vg) is
cylindrical, we have v.(v) = (to,v) is a singular curve passing through 7.(vg) = pg. Then the
function e, defined as (2.4) is given by tecr(v) = w(to) (cf. (3.14)). Thus,

1ﬁccr(UO) = '(/)écr (’Uo) =0

and 9 (vg) # 0 do not occur at the same time. Therefore, py must be non-cylindrical.

Since 7(tg) # 0 and 0 = A(tg,v0) = —vo7r(to), we have vg = 0. Then, Y,.(t) = (¢,0) is a
singular curve passing through v,,.(t0) = po, and (,.(t) = 9; — a(t)d, is a null vector field along
Yne(t). Then we have 6(t) = det(v,,.(t), Cne(t)) = —a(t) (cf. (3.5)). Thus, the condition (i) of
the criterion in Fact 4.5 implies a(tg) # 0.

Now, assume that a(tp) < 0, namely, {7,,.(t0), Cne(to)} is positively oriented. The function
Peer defined as (2.4) is given by teer(t) = a(t)w(t) (cf. (3.13)). Thus, under the condition (i),
the condition (ii) in Fact 4.5 implies w(tg) = w' (o) = 0 and w” (tg) # 0 hold. The constant d; in
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(4.5) is given by dy = a(tg)w” (tg). With respect to the condition (iii) in Fact 4.5, by a parallel
translation of R®, we may assume that o(ty) = 0 without loss of generality. Then, setting

- o o) €
(48) tr)i= (r o) (o= T
we have ¢(tg) = po. Differentiating ¢(7), we have that ¢/ (tg) = (ue(to). Since
¢"(to) = —af(to)p(to)n(to)

and & (tg) = —(2a(to)p’(to) + a’'(to)p(to))m(to) under the conditions (i) and (ii) in Fact 4.5, we
have

& (to) = £ (1) <e — 2“@0)#”(51(523)Jpr(;légto)ﬂ(to)) |

Moreover, by a direct calculation, we can check that ¢®)(tg) is a constant multiple of 7(t) and

& (to) = kan(to) — 4a(0)p(0)w" (0)n(to)
holds, where k; € R is a constant. Thus, the constant ds in (4.6) is given by

dy = det (a(to)€(to), —a(to)r(to)n(to), —4a(0)r(to)w” (to)n(to))
= 12a(t0)37’(t0)2w"(t0).
Hence, under the conditions (i) and (ii) in Fact 4.5, the condition (iii) is always satisfied.

In the case of a(tp) > 0, we take the null vector field as (,.(t) := —0; + a(t)d, and the
curve ¢(7) as ¢(7) 1= (—7, (7)), where ¢(7) is given by (4.8). Then, by a similar calculation as
above, the constant dy in (4.5) is given by di = —a(to)w” (o), and the constant do in (4.6) is
dy = —12a(tg)3r(to)>w"” (to). Therefore, regardless of the sign of a(ty), we have

didy = 12a(t0)4r(t0)2w”(t0)2 > 0.

Thus, Fact 4.5 implies that any a-tangent developable does not admit cuspidal S; singularities,
and that f at pg = (to,vo) is A-equivalent to the cuspidal S;” singularity if and only if (4.7)
holds. (]

4.4. 5/2-cuspidal edge. Finally, we review the criterion for the 5/2-cuspidal edge given in [9].

Fact 4.8 (Criterion for 5/2-cuspidal edge [9]). Let f : U — R® be a frontal defined on a domain
U of R? with the unit normal v. Take a non-degenerate singular point p € U of f. Let (%)
(It| <€) be a singular curve such that v(0) = p and ¢ a null vector field. Then, the map germ f
at p is A-equivalent to the 5/2-cuspidal edge if and only if the following (i)-(iii) hold:
(i) 6(0) # 0,
(ii) det (%', C*f, C?’f)’(u . 0 holds for each t € (—¢,¢),
(iii) det (3'(0), C*f(p), 3¢°f(p) — 10C ¢ f(p)) # 0.

Here C is a special null vector field such that
(4.9) 7(0)-Cflp) =7(0)-Cflp) =0,  Cfp)=CCfp)
where C' € R is a constant.

We remark that if 4'(0) - * f(p) = 4'(0) - ¢*f(p) = 0 holds, then there exists a constant C' € R
which satisfies (3 f(p) = C(?f(p). Applying Fact 4.8 to a-tangent developables, we have the
following.
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Proposition 4.9. Let f(t,v) be an a-tangent developable whose data is given by
(o, pyw) = (alt) dt,r(t) dt,w(t) dt).

Then, for a singular point pg = (to,vo) of f, we have that f at py is A-equivalent to the 5/2-
cuspidal edge if and only if

w

(4.10) vo #0, 7'(to) #0, 7(to) = w(te) =0, </> _M.

r/ vor’ (to)

t=to

Proof. We first show that pg is cylindrical. If we assume that pg = (tg,v0) is non-cylindrical, we
have that r(tg) # 0 and vy = 0. As we have seen in Lemma 3.2, v,,.(t) = (¢, 0) is a singular curve
passing through v,,.(to) = po and (ue(t) = 0 — a(t)d, is a null vector field. Since the function §
defined as (2.4) is given by 0nc(t) = —a(t) (cf. (3.5)), the condition (i) in Fact 4.8 is equivalent
to a(to) # 0. On the other hand, since (2. f(Yne(t)) = —a(t)r(t)n(t) and

nef (me()) = 2a()r(t)’€(t) — (r(t)a'(t) + 2a(t)m’(t)) m(t) + 2a(t)r(t)w(t)n(t),

we have that the condition (ii) in Fact 4.8 is equivalent to w(t) = 0 for all ¢. Then, setting

C= (1 ) v2) 8 — a(t)d,,

a(to)?

we have (2 f(po) = —a(to)r(to)n(to) and ¢ f(po) = —(a’(to)m(to) + 2a(te)m’ (to))n(to). Hence,
¢ is a null vector field satisfying (4.9) with the constant

C = (d'(to)m(to) + 2a(to)m/(to))/(alto)m(to)).
Then, by a direct calculation, we have ¢*f(po), ¢°f(po) € Span(&(to), n(to)), which implies

det (df (7,.(0)), ¢*f(po), 3¢° f (po) — 10C ¢* f(po)) = 0.

Hence, pg must be cylindrical.

As we have seen in Lemma 3.2, a non-degenerate cylindrical singular point py = (o, vo)
satisfies r(tg) = 0, 7' (to) # 0, vg # 0. Then, v.(v) = (to,v) is a singular curve passing through
Ye(vo) = po and (. = Oy — a(t)0, is a null vector field. Since the function § defined as (2.4) is
given by d.(v) = —1 (cf. (3.3)), the condition (i) in Fact 4.8 is always satisfied. On the other
hand, since (2f(v.(v)) = vm/(to)n(to) and

3 f(ve(v) = (—2a(to)m’ (to) + vm (to)) n(to) — 2vw(te)m’ (to)m(to),

we have that the condition (ii) in Fact 4.8 is equivalent to w(tp) = 0. Then, (. = 9; — a(t)9, is
a null vector field satisfying (4.9) with the constant C' := (vogm/ (to) — 2a(to)m/(tg))/(vm/(to)).
By a direct calculation, we have

det (df (v.(0)), ¢2 f(po), 3¢2 f(po) — 10C ¢2 f(po))
= —12v0m’(t0) (2a(t0)m'(t0)w’(t0) — Uom//(t())’w/(t()) + ’Uoml(to)w//(to)) .

Hence, by Fact 4.8, we have that f at pg = (to,v0) is A-equivalent to the 5/2-cuspidal edge if
and only if (4.10) holds. O
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Criteria
Cuspidal edge vo =0, r(tg) #0, a(ty) #0, w(ty) #0
or vg #0, r(tg) =0, r(to) #0, w(ty) #0

Swallowtail vo =0, r(tg) #0, a(ty) =0, a'(ty) #0, w(te) #0

Cuspidal cross cap vo =0, r(tg) #0, a(ty) #0, w(te) =0, w'(tg) #0
Cuspidal beaks vo =0, r(tg) =0, r'(to) #0, a(to) # 0, w(ty) #0

Cuspidal butterfly vo =0, r(to) #0, alty) =d(to) =0,

a”(to) # 0, w(te) #0

Cuspidal S;™ singularity || vo =0, r(to) # 0, a(to) # 0,
w(to) = w'(ty) =0, w"(ty) # 0
5/2-cuspidal edge vo # 0, r'(to) #0, r(to) = w(ty) =0,

w'\’ 2a(to)w’ (to)
TABLE 1. The criterion for singularities of a-tangent developables. See Corol-
lary 3.9, Propositions 4.2, 4.4, 4.6 and 4.9.

4.5. Duality of singularities. Here, we give a summary of the criterion for singularities of
a-tangent developables. Let f(t,v) be an a-tangent developable defined on J x R whose data is
given by (a, p,w) = (a(t) dt,r(t) dt,w(t) dt). In Corollary 3.9, Propositions 4.2, 4.4, 4.6 and 4.9,
we proved that the singularity type of the germ f at po = (tg,v0) € J X R is determined by the
data as in Table 1.

Since the conjugate f¥ of an a-tangent developable f is given by the data

(aﬁ’ pﬁv wﬁ) = (w, p, ),
exchanging the roles a and w we have the following.

Theorem 4.10 (Duality of singularities for a-tangent developables). Let f : M — R? be an
a-tangent developable, f* the conjugate of f, and py € M a singular point, where M := J x R.
Then, f at py is A-equivalent to the swallowtail (resp. cuspidal cross cap, cuspidal beaks, cuspidal
butterfly, cuspidal Sy singularity) if and only if f* at po is A-equivalent to the cuspidal cross
cap (resp. swallowtail, cuspidal beaks, cuspidal Sfr singularity, cuspidal butterfly).

In the case of the cuspidal edge, there exist examples which do not satisfy the desired duality
of singularities.

Ezample 4.11. Let f = f(t,v) be an a-tangent developable whose data is given by
(o, p,w) = (2t dt, tdt,dt).

By Corollary 3.9, f at (0,v) is cuspidal edge for v # 0 (see Figure 3). The conjugate f# = f¥(t,v)
of f is given by the data (af, p!,w#) = (dt,tdt,2tdt). By Proposition 4.9, f* at (0,v) is 5/2-
cuspidal edge for v # 0 (see Figure 4).

5. CONJUGATE OF COMPLETE FLAT FRONTS

Finally, we observe a global behavior of the conjugate operations among a-tangent devel-
opables.
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FIGURE 3. The image of the a-tangent developable f = f(¢,v) whose data
is given by (o, p,w) = (2tdt,tdt,dt). By Corollary 3.9, we have that f at
(0,v) is A-equivalent to the cuspidal edge for v # 0. This figure is plotted
by integrating (2.6) and (3.17) numerically. The black line is the image of the
cylindrical singular set S.(f) = {(0,v); v # 0}.

FIGURE 4. The image of the conjugate f# = f¥(t,v) of the a-tangent devel-
opable with the data (a,p,w) = (2tdt,tdt,dt). Since the data of f* is given
by (af, pf,w#) = (dt,tdt,2tdt), Proposition 4.9 yields that f at (0,v) is A-
equivalent to the 5/2-cuspidal edge for v # 0. This figure is plotted by integrat-
ing (3.18) and (3.19) numerically. The black line is the image of the cylindrical
singular set S.(f*) = {(0,v); v # 0}.

Proposition 5.1. Let f : M — R? be an a-tangent developable such that f is a complete flat
front with embedded ends, where M := S* x R. Then, the conjugate f¥ of f is not a front. In
particular, the conjugate of a complete flat front with embedded ends cannot be a complete flat
front.

Proof. Let (a, p,w) be the data of f. By Fact 2.1, f has at least four singular points other than
cuspidal edges. In fact, if we denote by o = a(t) dt, it is proved in [17, pp. 311-312] that a(t)
changes signs at least four times on S'. Since the data of f* is given by (af, p¥,w?) := (w, p, @),
and f* is front if and only if w! never vanishes, we have that f* cannot be a front. O
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RECOGNITION PROBLEM OF FRONTAL SINGULARITIES

GOO ISHIKAWA

ABSTRACT. A natural class of mappings, frontal mappings, is explained from both geometric and alge-
braic aspects. Several results on the recognition of frontal singularities, in particular, cuspidal edges, folded
umbrellas, swallowtails, Mond singularities, Shcherbak singularities, and their openings are surveyed.

1. INTRODUCTION

This is a survey article on recognition problem of frontal singularities.

First we explain the recognition problem of singularities and its significance.

Let f: (R",a) — (R™,b) and ' : (R",d’) — (R™,b") be smooth (= C*) map-germs. Then f and f’
are called o7 -equivalent or diffeomorphic if there exist diffeomorphism-germs o : (R",a) — (R",d’) and
7: (R™,b) — (R™,b) such that the diagram

R.a) L (®"b)
lo T
!
®d) L (R
commutes. By a singularity of smooth mappings, we mean an .o/ -equivalence class of map-germs.

Suppose that we investigate “singularities” of mappings belonging to some given class. Then the
recognition problem of singularities may be understood as the following dual manners:

Problem: Given two map-germs f and f’, belonging to the given class, determine, as easily as possible
whether f and f’ are equivalent or not.

Problem: Given a singularity, find criteria to determine as easy as possible whether a map-germ f
belonging to some class has (= falls into) the given singularity or not.

Importance of the recognition problem of singularities can be explained as follows.

Once we establish a classification list of singularities in a situation A, we will face (at least) two kinds
of needs:

1. Given a map-germ in the same situation A, we want to know which singularity is it in the list.

2. For another situation B, we want to know how similar is the classification list of singularities as A
or not.

In both cases, we need to recognize the singularities, as easily as possible, by as many as possible
criteria. For applications of singularity theory, it is indispensable to recognize singularities and to solve
classification problems in various situations.

The recognition problem of singularities of smooth map-germs has been treated by the many mathe-
maticians, motivated by differential geometry and other wide area, and its solutions are supposed to have
many applications.

In fact most of known results of recognition of singularities are found under the motivation of geo-
metric studies of singularities appearing in Euclid geometry and various Klein geometries ([21, 3, 19]).
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Key words and phrases. Jacobi ideal, kernel field, Jacobi module, opening, ramification module, Lorentzian manifold.
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Example 1.1. (Singularities in non-Euclidean geometry) The following is a diagram representing the
history of non-Euclidean geometry found in the reference [26]:

Euclid geometry — Riemann geometry

\ i

Klein geometry —  Cartan geometry

Then it would be natural to ask

Problem: How are the classification results of singularities in Euclid geometry (resp. in Klein geometry)
valid in Riemann geometry (resp. in Cartan geometry)?

In other words,

Problem: Do the classifications of singularities in flat ambient spaces work also for “curved” ambient
spaces?

In fact, we applied the several results of recognition ([21, 3]), for instance, to the generic classification
of singularities of improper affine spheres and of surfaces of constant Gaussian curvature ([13]), and
moreover, to the classification of generic singularities appearing in tangent surfaces which are ruled by
geodesics in general Riemannian spaces ([17, 18]). See also §6.

In this paper we will pay our attention to the class of mappings, frontal mappings, which is introduced
and studied in §2. Then we survey several recognition theorems on them in §3. Note that the recognitions
of fronts or frontals (R”,a) — R™ are studied by many authors ([21, 3, 24, 25, 20]).

To show the theorems given in §3, we introduce the notion of openings, relating it with that of frontals,
in §4. See also [9, 10]. In fact, in §4, we observe that any frontal singularity is an opening of a map-germ
from R" to R" (Lemma 4.3).

Then we naturally propose:

Problem: Study the recognition problem of frontals from the recognition results on map-germs
(R",a) — R", (n = m), combined with the viewpoint of openings.

In this paper, in connection with the above problems, we specify geometrically several frontal singular-
ities which we are going to treat (Example 2.2). Then we solve the recognition problem of such singular-
ities, in §3, giving explicit normal forms. In fact we combine the recognition results on (R?,0) — (R?,0)
by K. Saji (~2010) and several arguments on openings, which was implicitly performed for the clas-
sification of singularities of tangent surfaces (tangent developables) by the author (~1995) over twenty
years, the idea of which traces back to the author’s master thesis [5]. We prove recognition theorems in
§5.

In the last section §6, as an application of our solutions of recognition problem of frontal singularities,
we announce the classification of singularities appearing in tangent surfaces of generic null curves which
are ruled by null geodesics in general Lorentz 3-manifolds ([14, 16]), mentioning related recognition
results and open problems.

In this paper, all manifolds and mappings are assumed to be of class C* unless otherwise stated.

The author truly thanks to the organisers for giving him the chance to write this paper down and he
deeply thanks to anonymous referees for their helpful comments to improve the paper.

2. FRONTAL SINGULARITIES

Let f: (R",a) — (R™,b) be a map-germ. Suppose n < m.

Then f is called a frontal map-germ or a frontal in short, if there exists a smooth (C*) family of
n-planes f(t) C TphR™ along f, t € (R",a), i.e. there exists a smooth lift f: (R*,a) — Gr(n,TR™)
satisfying the “integrality condition”

Tf(TR") C f(t) (C TpR™),
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for any r € R" nearby a, such that 7 of: f:

(R" a) — (R™b).

Here Gr(n, TR™) is the Grassmann bundle consisting of n-planes V C T,R" (x € R™) with the canonical
projection 7r(x,V) = x, and T f : TR" — Ty, R™ is the differential of f att € (R",a).

Then fis called a Legendre lift or an integral lift of the frontal f. Actually fis an integral mapping to
the canonical or contact distribution on Gr(n, TR™) (cf. [8]).

Example 2.1. (1) Any immersion is a frontal. In fact then the Legendre lift is given by f(¢) := T, f(T,R").

(2) Any map-germ (R",a) — (R",b),(n=m) is a frontal. In fact the Legendre lift is given by
f(t) =Ty R"

(3) Any constant map-germ is a frontal. In fact we can take any lift fof f-

(4) Any wave-front (R",a) — (R"*!,b), that is a Legendre projection of a Legendre submanifold in
Gr(n, TR"!) = PT*R"*!, is a frontal. Take the inclusion of the Legendre submanifold as the Legendre
lift.

Example 2.2. (Singularities of tangent surfaces) Let y: (R,0) — R be a curve-germ in Euclidean space.
Then the tangent surface Tan(y) : (R?,0) — R™ is defined as the ruled surface generated by tangent lines
along the curve. Suppose Y is of type L = (£1,02,03,...,),(1 < ¥ <lp <l3<---),ie.

’y([):([él+...’[€2+...,t53+...7 o)

for a system of affine coordinates of R™ centered at y(0). Then it is known that the singularity of Tan(7y)
is uniquely determined by the type L and called cuspidal edge (CE) if L = (1,2,3,...), folded umbrella
(FU) or cuspidal cross cap (CCC) if (1,2,4), swallowtail (SW) if (2,3,4), Mond (MD) or cuspidal beaks
(CB) if (1,3,4), Shcherbak (SB) if (1,3,5), cuspidal swallowtail (CS) if (3,4,5), open folded umbrella
(OFU) if (1,2,4,5,...), open swallowtail (OSW) if (2,3,4,5,...), open Mond (OMD) or open cuspidal
beaks (OCB) if (1,3,4,5,...) (see [8]).

. \

<}

cuspidal edge folded umbrella swallowtail

=

—\
~/

hi

[

Mond singularity Shcherbak singularity cuspidal swallowtail

A
4

open folded umbrella open swallowtail open Mond singularity
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In general, a frontal f : (R",a) — (R™,b) is called a front if f has an immersive Legendre lift f.

Let & :={h: (R",a) — R} denote the R-algebra of smooth function-germs on (R",a).
Denote by I the set of subsets I C {1,2,...,m} with #(I) = n. For a map-germ

f:(R"a)— R™"b),n<m

and I € T', we set D; = det(d f;/dt;)ic1,1< j<n. Then Jacobi ideal J of f is defined as the ideal generated
in &, by all n-minor determinants D; (I € T') of Jacobi matrix J(f) of f. Then we have:

Lemma 2.3. (Criterion of frontality) Let f : (R",a) — (R™,b) be a map-germ. If f is a frontal, then the
Jacobi ideal Jy of f is principal, i.e. it is generated by one element. In fact J; is generated by Dy for
some I € I. Conversely, if J is principal and the singular locus

S(f)={r € (R",a) | rank(T; f : TR" — TyhR™) < n}
of f is nowhere dense in (R",a), then f is a frontal.

Proof: Let f be a frontal and fbe a Legendre lift of f. Take Iy € I" such that f(a) projects isomorphically
by the projection R” — R” to the components belonging to Iy. Let (py)jer be the Pliicker coordinates
of f~ Then py,(a) # 0. This implies that for any 7 € I, there exists h; € &, such that D; = hyDy,. Set
A = Dj,. Then the Jacobi ideal J; is generated by A.

Conversely suppose J; is generated by one element A € &,. Since J; is generated by A, we have that
there exists k; € &, for any I € I' such that D; = k;A. Since A € Jy, there exists ¢; € &, for any ] € T’
such that A = Y ;cr¢;D;. Therefore (1 — Y ;cr¢ik;)A = 0. Suppose (¢1k;)(a) =0 for any I € I. Then
1 — Y jer{ik; is a unit and therefore A = 0. Thus we have J; = 0. This contradicts to the assumption that
S(f) is nowhere dense. Hence there exists Iy € I" such that ({5 ky,)(a) # 0. Then ky,(a) # 0. Therefore
Jy is generated by Dy,. Hence D; = hyDy, for any I € I" with iy (a) = 1. Then the Legendre lift fon
R"\ S(f) extends to (R",a), which is given by the Pliicker coordinates (h;);cr- O

Example 2.4. Define f : (R2,0) — (R3,0) by f(t1,12) := (@(t1), ¢(t1)t2, ¢(—t1)), where the C* func-
tion ¢ : (R,0) — (R,0) is given by @(r) = exp(—1/t?)(t > 0),0( < 0). Then the Jacobi ideal J; is
generated by ¢'(1;) () and therefore J; is principal and J; # 0. However f is not a frontal. In fact, for
t1 >0, (T, 1) )T, JZ)Rz) is given by the plane dx3 = 0 and for 1y <0, (7(;, ,,) /) (T, ?,Z)Rz) contains the
x3-axis. Therefore f can not be a frontal.

Corollary 2.5. Let f: (R",a) — (R™,b) be a map-germ. Suppose f is analytic and Jy # 0. Then f is a
frontal if and only if J; is a principal ideal.

Proof: By Lemma 2.3, if f is frontal, then J; is principal. If J; is principal and Jy # 0, then D; # 0 for
some € I. Since f is analytic, S(f) is nowhere dense. Thus by Lemma 2.3, f is a frontal. O

Example 2.6. Define f: (R?,0) — (R*,0) by f(t1,12,13) := (£}, tit2, 1113, £3). The germ f parametrizes
the cone over a non-degenerate cubic in P(R*) = RP3. Then f is analytic and J s =0 is principal.
However f is not a frontal.

Definition 2.7. Let f : (R",a) — (R",b) be a frontal. Then a generator A € &, of J; is called a Jacobian
(or a singularity identifier) of f, which is uniquely determined from f up to multiplication of a unit in
&y

The singular locus S(f) of a frontal f is given by the zero-locus of the Jacobian A of f.

Definition 2.8. (Proper frontals) A frontal f : (R",a) — (R™,b) is called proper if the singular locus
S(f) is nowhere dense in (R",a).
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Remark 2.9. Our naming “proper” is a little confusing since its usage is different from the ordinary
meaning of properness (inverse images of any compact is compact). Our condition that the singular locus
S is nowhere dense is easy to handle for the local study of mappings.

Lemma 2.10. Let f: (R",a) — (R™,b) be a proper frontal or n = m. Then f has a unique Legendre lift

f:(R",a) = Gr(n, TR™).

Proof': On the regular locus R” \ S(f), there is the unique Legendre lift f defined by f(z) := (T; f)(TR™).
Let f be a proper frontal. Then R"\ S(f) is dense in (R",a). Therefore the extension of f(z) is unique.
Let n = m. Then the unique lift f is defined by f(¢) = Ty,)R™ (Example 2.1 (2)). |

Let f : (R",a) — (R™,b) be a frontal (resp. a proper frontal) and f : (R",a) — Gr(n, TR™) a Legendre

lift of f. Recall that f(¢), (r € (R",a)) is an n-plane field along f. In particular f(a) C T,R™.

Definition 2.11. A system (xj,...,%;,Xn+1,---,%,) Of local coordinates of R™ centered at b is called
adapted to f (or, to f) if

fa = () (5).).

(= {veTR"|dxyt1(v)=0,...,dx,(v) =0}).

Clearly we have

Lemma 2.12. Any frontal f : (R",a) — (R™,b) has an adapted system of local coordinates on (R™,b).
In fact any system of local coordinates on (R™,b) is modified into an adapted system of local coordinates
by a linear change of coordinates.

Remark 2.13. For an adapted system of coordinates (xi,...,Xn,X+1,-..,%,) Of f, the Jacobian A is

given by the ordinary Jacobian ‘?9%:7{:)), where f; = x;o f.

Example 2.14. Let f: (R?,0) — (R?,0) be given by
(u,t) = (x1,x0,x3) = (t +u, 12 +31%u, t*+4r°u),
which is the tangent surface, Mond surface, of the curve 7 — (z,13,1%).
Then the Jacobi matrix J(f) of f is given by
1 1
J(f)=| 3% 32+6tu |,

o 43 483 +121%u
and its minors are calculated as

Dy, = 6tu,
Dz = 12¢%u="2t(6tu),
Dy; = 12t*u = 21‘3(611/{),

Then the Jacobi ideal J; is generated by A = tu. Therefore f is a proper frontal with
S(f) = {(uw,1) [ tu = 0}.
The unique Legendre lift £ : (R2,0) — Gr(2,TR3) of f is given, via the Pliicker coordinates of fibre
components,
D12/D12 =1, D]3/D12 =2t, D23/D12 =273,
The system of coordinates (x;,x2,x3) is adapted for f in the example.
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3. RECOGNITION OF SEVERAL FRONTAL SINGULARITIES

To give our recognition results we need the notion of “kernel fields” in addition to that of Jacobians of
frontals.

Let f: (R",a) — (R™,b) be a map-germ. We denote by ¥, the &,-module of vector fields over (R",a)

and set
Mp={neSnfiely, 1<i<m),

which is an &,-submodule of 7.

Note that, if 1 € 47, then n(¢) € Ker(T,.f : TTR" — Ty(;)R™) for any t € S(f). Moreover note that, if
A eJg thenA-¥, C A}

A map-germ f: (R",a) — (R™,b) is called of corank k if dimg Ker (T, f : T,R" — T,R™) = k.

Then we have

Lemma 3.1. Let f: (R",a) — (R™,b) be a map-germ of corank 1. Then N7 /J¢ -V, is a free &;-module
of rank 1, i.e. N;/J¢- ¥, is isomorphic to &, as &,-modules by [n] — 1, for some n € 7.

Let f: (R",a) — (R™,b) be a frontal of corank 1 and A the Jacobian of f (Definition 2.7). Then by
Lemma 3.1, A} /As - ¥, is a free module of rank 1.

Definition 3.2. A vector field n over (R”,a) is called a kernel field (or a null field) of f if 1 generates
the free &;-module A7 /Af- ¥,

Remark 3.3. The notion of null fields is introduced first in [21].

Proof of Lemma 3.1: Since f is of corank 1, f is «7-equivalent to a map-germ (R",0) — (R™,0) of form

g = (tlv e 7tn717(pn(t)7 M (Pm(t))
Note that .47 /J¢ ¥, is isomorphic to .4, /J#,. Moreover the Jacob ideal of g is generated by

dQy(t)/0ty,...,0Qu(t)/dt,.

Letn =YY" ,md/dt € ¥. Then n € A; if and only if 1y,...,M,—1 € J,. Therefore A, /J, 7} is freely
generated by d/dt,. Thus we have that </Vf /Jr- Y4 is a free £,-module of rank 1,

Now we start to give our recognition theorems on the frontal singularities introduced in Example 2.2.
To begin with, we recall the following fundamental recognition result due to Saji ([24]), which is a
reformulation of Whitney’s original results in [27] for parts (1) and (2).

Theorem 3.4. (Saji[24]) Let f : (R?,a) — (R?,b) be a frontal map-germ of corank 1. Then, for the
Jacobian A and the kernel field 1 of f, we have

(1) f is o -equivalent to the fold, i.e. to (t|,t2) ~ (t1,13), if and only if (NA)(a) # 0.

(2) f is o/ -equivalent to Whitney’s cusp, i.e. to (t1,t2) — (t1,£3 +tit2), if and only if

(dA)(a) #0,(nA)(a) = 0,(nNnA)(a) # 0.

(3) f is o -equivalent to bec & bec (beak-to-beak), (t1,t2) — (t1,15 +tit3), if and only if A has an
indefinite Morse critical point at a and (nmA)(a) # 0.

Remark 3.5. Each condition (1), (2), (3) of Theorem 3.4 is independent of the choice of A and 7,
and depends only on _¢-equivalence class of f which is introduced in Definition 4.13. In fact, if
Fpoc =, then [’ satisfies the condition for A’ =Aoo~ ' and n’ = (To)noo~!. (See §4).
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Remark 3.6. For a map-germ f : (R%,a) — (R?,b) of corank 1, the condition (dA)(a) # 0 is equivalent
to that the Jacobian is J# -equivalent to the germ (#1,#,) — #; at the origin. The condition that A has an
indefinite Morse critical point at a is equivalent to that A is % -equivalent to the germ (z;,t,) — 11, at
the origin.

Remark 3.7. For plane to plane map-germs, the fold (resp. Whitney cusp, bec a bec) is characterized as
a“tangent map” of a planar curve of type (1,2) (resp. (2,3), (1,3)), which is ruled by tangent lines to the
curve ([8, 15]).

Let f: (R?,a) — (R™, b),(m > 3) be a proper frontal of corank 1. We wish to recognize the singularity,
i.e. «/-equivalence class of f by the Jacobian A = A and the kernel field n = ns. Moreover we wish
to recognize the singularity of f as an opening of a plane-to-plane map-germ. To realize this, we will
use an adapted system of coordinates (xi,x2,x3,...,X) for f and set f; = x; o f. Note that we mention
several conditions to recognize singularities in terms of adapted coordinates, however the conditions are,
of course, independent of the choice of an adapted coordinates, and therefore any system of adapted
coordinates can be taken to simplify the checking of a suitable condition.

In general, we use the following notation:

Definition 3.8. For a germ of vector field n € ¥, over (R”,a) and a function-germ 4 € &, on (R",a), the
vanishing order ord] (h) of the function A at the point a for the vector-field 7 is defined by

ord (h) := inf{i € NU{0} | (n'h)(a) # 0}.

Then we characterize the cuspidal edge as an opening of fold map-germ:

Theorem 3.9. (Recognition of cuspidal edge) For a frontal f : (R?,a) — (R3,b) of corank 1, the follow-
ing conditions are equivalent to each other:

(1) f is of -equivalent to the cuspidal edge (CE).

(1) f is of -equivalent to the germ (t1,12) — (t1,63,15).

(2) f is a front and NA(a) # 0.

(3) NA(a) # 0 and ord? (f3) = 3, for an adapted system of coordinates (x1,x2,x3) of (R3,b).

Theorem 3.9 is generalized by

Theorem 3.10. (Recognition of embedded cuspidal edge) For a frontal f : (R?,a) — (R™,b),3 < m of
corank 1, the following conditions are equivalent to each other:

(1) f is o/ -equivalent to the cuspidal edge, i.e. the tangent surface to a curve of type (1,2,3,...).

(1°) f is of -equivalent to the germ (t1,t3) — (tl,t%,tg,o, ...,0).

(2) f is a front and nA(a) # 0.

(3) nA(a) # 0 and ord] (f;) = 3 for some i,3 < i < m, for an adapted system of coordinates
(x1,%2,%3,...,%) of (R™,b).

The following is a recognition of the folded umbrella due to the theory of openings:

Theorem 3.11. (Recognition of folded umbrella (cuspidal cross cap)) Let f : (R?,a) — (R3,b) be a
frontal of corank 1. The following conditions are equivalent to each other:
(1) f is o/ -equivalent to the folded umbrella (FU), i.e. the tangent surface to a curve of type (1,2,4).
(1°) f is of -equivalent to the germ (t1,1y) — (11, t%, tlté’).
) nA(a) #0,(n°f3)(a) = 0 and (dA Ad(n’ f3))(a) # 0.

Remark 3.12. It is already known another kind of recognition of folded umbrella by [3].

As for cases of higher codimension, we have
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Theorem 3.13. (Recognition of open folded umbrella (open cuspidal cross cap))

Let f : (R?,a) — (R™, b),(m > 4) be a frontal of corank 1. Then the following conditions are equiva-
lent to each other:

(1) f is o -equivalent to the open folded umbrella, i.e. the tangent surface to a curve of type
(1,3,4,5,...).

(1°) f is of -equivalent to the germ (t1,t2) — (11, t%, tltg, tg, 0,...,0).

) (MA)(a) #0, (M3fi)(a) =0,(3 <k < m), and there exist 3 <i< j<mand A € GL(2,R) such
that, setting (fi, £;)A = (fi, £1), (d2 AT £3)(@) £ 0,(dA A £) (@) = 0, (1 £}) (@) £ 0.

As for openings of Whitney’s cusp mapping, we have

Theorem 3.14. (Recognition of swallowtail) Let f : (R?,a) — (R3,b) be a frontal of corank 1. Then the
following conditions are equivalent to each other:

(1) f is o/ -equivalent to the swallowtail (SW), i.e. the tangent surface to a curve of type (2,3,4).

(1°) f is of -equivalent to the germ (t1,t) — (11, t; +111p, %t; + %tlt%).

(2) f is a front, (dA)(a) # 0 and ord] (1) = 2.

(3) A is A -equivalent to the germ (t1,12) — 1 at 0, ord)] (A) = 2 and ord] (f3) = 4, for an adapted
system of coordinates (x1,x2,x3).

As for cases of higher codimension, we have

Theorem 3.15. (Recognition of open swallowtail) Let f : (R?,a) — (R™, b) be a frontal of corank 1 with
m > 4. Then the following conditions are equivalent to each other:

(1) f is o -equivalent to the open swallowtail, i.e. the tangent surface to a curve of type (2,3,4,5,...).

(1) f is o -equivalent to the germ (t1,t2) — (t1, 15 + 1112, %t; + %tﬂ%, %tg + %tltg, 0,...).

(2) The Jacobian A is ¥ -equivalent to the germ (t1,t;) — t; at the origin, ord](1) = 2,

(M3f)(a) = 0,(3 < k < m), and there exist 3 < i < j < m and A € GL(2,R) such that, setting
(fis f)A = (f3,12), ord] (f3) =4, ord] (f3) = 5.
Remark 3.16. Though we treat the open swallowtail as the singularity appeared in tangent surfaces,
first it appeared as a singularity of Lagrangian varieties and geometric solutions of differential systems
([1, 4]). The open swallowtail and open folded umbrella appear also in the context of frontal-symplectic
versality (Example 12.3 of [12]).

As for openings of bec a bec mapping, we have

Theorem 3.17. (Recognition of Mond singularity (cuspidal beaks), (1)(2) [19]) Let f : (R?,a) — (R>,b)
be a frontal of corank 1. Then the following conditions are equivalent to each other:

(1) f is & -equivalent to Mond singularity (cuspidal beaks), i.e. the tangent surface to a curve of type
(1,3,4).

(1°) f is of -equivalent to the germ (t1,t;) — (11, tg +t1t22, %tg + %tltg).

(2) f is a front, A is ¢ -equivalent tt; at the origin, and ord]] (A) = 2.

(3) A is A -equivalent 11ty at the origin, ord]] (1) = 2 and ord]l (f3) = 4.

Moreover we have:

Theorem 3.18. (Recognition of open Mond singularities (open cuspidal beaks)) Let f : (Rz,a) — (R™,b)
be a frontal of corank 1 with m > 4. Then the following conditions are equivalent to each other:

(1) f is o/ -equivalent to the open Mond singularity, i.e. the tangent surface to a curve of type
(1,3,4,5,...).

(') f is of -equivalent to the germ (t1,12) — (11, 13 + 1113, 313+ 3n13, 365+ ey, ...

(2) A is  -equivalent to (t1,t2) — tita at the origin, ord? (1) =2, (n*f)(a) = 0,(3 < k < m),
and there exist 3 <i+# j <m and A € GL(2,R) such that, setting (f;,f;)A = (f}, /1), ord] (f}) =4,
ord] (f}) = 5.
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To conclude this section, we give the result on recognition of Shcherbak singularity:

Theorem 3.19. (Recognition of Shcherbak singularity) Let f : (R?,a) — (R3,b) be a frontal of corank
1. Then the following conditions are equivalent to each other:

(1) f is o/ -equivalent to Shcherbak singularity, i.e. the tangent surface to a curve of type (1,3,5).

(1°) f is of -equivalent to the germ (t1,ty) — (11, t% —|—t1t22, %tg + %tlté‘) at the origin.

(2) A is A -equivalent to the germ (t1,12) — tify at the origin, ord]l(A) = 2, ord (f3) > 4 for any
point ¢ on a component of the singular locus S(f), and ord]] (f3) = 5.

Note that Shcherbak singularity necessarily has the (2,5) cuspidal-edge along one component of the
singular locus, while it has the ordinary (2,3) cuspidal edge along another component.

4. FRONTALS AND OPENINGS

To understand the frontal singularities and to prove the results in the previous section, we introduce
the notion of openings and make clear its relation to frontal singularities (see also [11]).
Let f: (R",a) — (R™,b) be a frontal (resp. a proper frontal) and f : (R",a) — Gr(n, TR™) any
Legendre lift of f. Let
(xl soe s Xny Xn41,y. .- 7xm)

be an adapted system of coordinates to f(resp. to f) (Definition 2.11). Then, setting f; = x;o f,1 <i<m,
we have

dfi=hadfi +hodfr+ - +hipdfn, (n+1<i<m)
for some h;; € &,,hij(a) =0,n+1<i<m,1 <j<n.

Definition 4.1. In general, for a map-germ f = (fi,...,fn) : (R",a) — (R™,b), we define the &,-
submodule

Fri=Y budfj=Ed(fE)
j=1
of the &,-module of differential 1-forms Q! on (R",a). We would like to call _Z the Jacobi module of
I

Note that _#; is determined by the Jacobi matrix J(f) of f. Returning to our original situation, we
define the following key notion:

Definition 4.2. We call a map-germ f : (R",a) — (R™,b) an opening of a map-germ
g: (R"a) = (R",g(a))
if f is of the form (g1,...,8n, fa+1,.--,fm) Withdfj € Z,,(n+1 < j <m) via a system of local coordi-
nates of (R™,b).
Then we observe the following:
Lemma 4.3. Any frontal f : (R",a) — (R™,b) is an opening of g := (f1,...,fn) : R",a) — (R" g(a))
via adapted coordinates to a Legendre lift of f. Conversely, any opening of a map-germ
g:(R"a) = (R, g(a))
is a frontal. An opening of g is a proper frontal if and only if g is proper; i.e. S(g) is nowhere dense.

Proof : The first half is clear. To see the second half, let f = (g1,...,&n, fu+1,---,fm) be an opening of g.
Then

dfi=hpdfi+hpdfo+---+hipdfy, (n+1<i<m)
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for some h;; € &,n+1 <i<m,1 < j<n. Then a Legendre lift f: (R",a) — Gr(n, TR™) is given, via
Grassmannian coordinates of the fiber, by

s (0. (gt )

where E, is the n X n unit matrix and H(z) is given by the (m —n) x n-matrix (h;;(t)). Therefore f is
a frontal. Note that an adapted system of coordinates for f is given by (x1,...,%n,Xn+1,---,%,) With
Xi =x;— Y7, hij(a)xj (n+1 <i<m). The last statement follows clearly. m|

Here we recall one of key notion for our approach to the recognition problem of frontal singularities.
Definition 4.4. ([8]) An opening
f : (]RWVa) — (Rm7b)7f = (g;fn+17 e 7fm)7
of a map-germ g : (R",a) — (R",g(a)) is called a versal opening if, for any h € &, with dh € _Z,, there
exist ko,k1, .. ;km—n € En g(4) such that

h= g*(kO) +g*(k1)fn+1 + - '+g*(km7n)fm-

We will use the following result which is proved in Proposition 6.9 of [8].

Theorem 4.5. Any two versal openings f, f' : (R",a) — (R™,b) (having the same target dimension) of
a map-germ g are < -equivalent to each other.

Recall, for a map-germ f : (R",a) — (R™,b), we have defined 7y = &,d(f*&),) (Definition 4.1).

Lemma 4.6. (1) Let f: (R",a) — (R™,b), f': (R",a) — (R™,b") be map-germs. If f and f' are £-
equivalent, i.e. if there exists a diffeomorphism-germ T : (R™ b) — (R™ b') such that f' = to f, then

I
(2) Let f: (R"a) = (R™b), f": (R",d’) — (R™,b) be map-germs. If f and f' are Z#-equivalent, i.e.
if there exists a dlﬁeomorphlsm -germ ¢ : (R",a) — (R",d’) such that f' = f oo, then 6*(_7y) = Zp.
d(f*

Proof: (1) Since f*&, = " &y, we have 7y =&, &) =Ed(f"Ey) = Fp.

(2) Since f'* &, = 6*(f*&}), we have
Sy =Epd(f" &) = Eyd(0*(f*E})) = 07 E,0d(f* &) = 0¥ (&ud(f*Ep)) = ™ (7).

The equality of Jacobi modules _# has a simple meaning:

Lemma 4.7. Let f : (R,a) — (R™,b), f: (R",a) — (R™ 1) be map-germs.

Then the following conditions (1), (ii) are equivalent:

(i) The Jacobi module Jy= Zp.

(ii) There exist an m' X m-matrix P and an m x m'-matrix Q with entries in &, such that the Jacobi
matrix J(f') = PJ(f) and J(f) = QJ(f").

In particular, (i) implies that the Jacobi ideal Jy = Jp.

Moreover, if the target dimension m = n', then the following condition (iii) is equivalent to (i).

(iii) There exists an invertible m X m-matrix R with entries in &, such that J(f') = RJ(f).

To show Lemma 4.7, we recall the following fact in linear algebra.

Lemma 4.8. (cf. [22]) Let A, B be m x m-matrices with entries in R. Then there exists an m X m-matrices
C with entries in R such that C(E,, — BA) + A is invertible.
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Proof of Lemma 4.7:

The inclusion #p C ¢y is equivalent to that there exist p;; € &, such that df] =Y ;_n p;jdfj,
(1 <i < m), namely that J(f') = PJ(f) by setting P = (p;;). Similarly, the inclusion #; C #p is
equivalent to that there exist g;; € & such thatdf; =Y ;_n qijdf]’-, (1 <i<m),namely thatJ(f) = QJ(f")
by setting Q = (g;j). Therefore the equivalence between (i) and (ii) is clear.

Suppose m = m’. By Lemma 4.8, there exists an m x m-matrix C with entries in R such that

C(Em—Q(a)P(a)) +P(a)

is invertible. Then R := C(E,, — QP) + P is an invertible m x m-matrix with entries in in &,. Then we
have (E,, — QP)J(f) =J(f) — QJ(f’) = O and therefore RJ(f) = C(E,, — QP)J(f)+PJ(f)=J(f'). O

Remark 4.9. Related to Jacobi modules, we define the ramification module % C &, for a map-germ
[+ (R",a) = (R",b) by
%f = {heéﬂdhe jf},

using the Jacobi module #;. Then %y = % if and only if ¢y = _#p. See, for details, the series of
papers [6, 7, 8,9, 10, 11].

Lemma 4.10. Let f: (R",a) — (R™,b), f': (R",d') — (R™ ,b) be map-germs. If Jr= Jp, then
I=dp Np= S

Proof': The equality J = J follows from Lemma 4.7. For any 1) € ¥, the condition 1) € .47 is equivalent
to that @(n) € Jy = Jp forany € Zy = 7y, which is equivalent to that ) € .4}. Therefore we have
Ny =N ]

Lemma 4.11. Let f, f: (R",a) — (R™,b) be proper frontals of corank 1. Then the conditions
lf'éaa:),f/-@ﬁa, %:J’?/,
imply that ¢ = Zp.

Proof: By the assumption we may take Ay = Ay and 1y = 1. and 1y = d/dt, for a system of coor-

dinates 11,...,t,—1,t, of (R",a). Note that, by the assumption, the zero-locus of A is nowhere dense.
Then f.(9/dt1),...,f:(d/dti—1),(1/As) fi(9/Ity,) are linearly independent at a as elements of &". Take
additional &, 1,...,&, to complete a basis of &". Moreover by the assumption

f1.0/0t),....f(9/0tun), (1/2¢)f.(9/Ot)

/

i 1s- -2 G to complete a basis of &".

are linearly independent at a as elements of &". Take additional £
Then define R : (R",a) — GL(m,R) by

Rf.(9/0t:) = f'.(3/dt:),1 <i<n—1, R(1/As)fo(d/0t,) = (1/Af)f" (9 /01n), REj =&} ,n+1<j<m.
Then Rf.(d/0dt,) = f',.(d/dt,) and we have RJ(f) = J(f'). By Lemma 4.7, we have ¢y = #p. O

We utilize the following in the next section:

Lemma 4.12. Let f: (R",a) — (R™,b) be an opening of g : (R",a) — (R",g(a)) with respect to an
adapted system of coordinates (X1, ...,Xn,Xn41,-..,Xm). Then f and g are frontals and fy= Z,. They
have common Jacobian, same corank, and Ny = ;. If they are of corank 1, then they have common
kernel field.
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Proof: By Lemma 4.3, we have /f = /g Then J; = J, therefore PLf = kg. Moreover, by Lemma 4.7,
Ker(T,f) = Ker(T,g) C T,R". Therefore f and g have the same corank. Furthermore, for any 1 € %, the
condition that df;(n) € J¢,1 <i < mis equivalent to that dg;(n) € Jy = J,,1 <i < n. Hence A} = 4.
0O

Definition 4.13. Let f : (R",a) — (R™,b) and ' : (R",a’) — (R™ ') be map-germs. Then f and f’ are
called # -equivalent if there exists a diffeomorphism-germ & : (R",a) — (R",a’) suchthat Zp.s = 7.
Note that m and m’ can be different.

By Lemma 4.6 and Lemma 4.11, we have

Corollary 4.14. Let f : (R",a) — (R™,b) and f' : (R",d') — (R™ ,b') be map-germs. If f and f' are
< -equivalent, then f and [’ are ¢ -equivalent.

Corollary 4.15. Let f, f' be proper frontals. If f and f" are ¢ -equivalent, then (As - &, A7) is trans-
formed to (Ay - &y, Np) by a diffeomorphism-germ o : (R",a) — (R",d’). In particular Ay and Ay are
J -equivalent.

Moreover if f is of corank 1 and (As - &, A7) is transformed to (Ay - &y, Nyr) by a diffeomorphism-
germ o : (R",a) — (R",d’), then f and f’ are g -equivalent.

On the vanishing order of a function for a vector field introduced in Definition 3.8, we have:

Lemma 4.16. Ifh = ph,E = V& for some p,v € & with p(a) # 0,&(a) # 0, then ord; (h) = ord (h).
If h=hoo,E=(To ) o&oo for some diffeomorphism-germ o : (R*,a') — (R",a), then
ordf/ (h) = ords (h).

By Lemma 4.16 we have

Corollary 4.17. Ler f : (R",a) — (R™,b) be a proper frontal of corank 1. Then ord}} (1) is independent
of the choices of the Jacobian A and the kernel field 1 of f. If ' : (R",d') — (R™ 1) is 7 -equivalent
to f, then f' is a proper frontal of corank 1 and ordgl(l’ ) is equal to ord]} (1), for any Jacobian A" and
any kernel filed ' of f'.

5. PROOFS OF RECOGNITION THEOREMS

In this section we give proofs of Theorems 3.9, 3.10, 3.11, 3.13, 3.14, 3.15, 3.17, 3.18, and 3.19.

Proof of Theorem 3.9: The equivalence of (1) and (1) is classically known (see [6]). The equivalence of
(1’) and (2) is proved in [21].

To study the condition, we set g = (f1, f2). Then for the Jacobian A and the kernel field 1 of g we also
have N (a) # 0 (see Lemma4.12). By Theorem 3.4, g is 7-equivalent to the fold. Then the condition (3)
means that f is a versal opening of the fold g. Since the cuspidal edge is characterized as the (mini)-versal
opening of the fold map-germ, we have the equivalence of (3) and (1) by Theorem 4.5. O

Proof of Theorem 3.10: The equivalence of (1) and (1’) is proved in Theorem 7.1 of [8]. The condition
(3) means that f is a versal opening of the fold g. Since the embedded cuspidal edge is characterized as
the versal opening of the fold map-germ, we have the equivalence of (3) and (1) by Theorem4.5. On the
other hand, under the condition A (a) # 0, the condition ord]! (f;) = 3 for some ,3 < i < m is equivalent
to that the Legendre lift fis an immersion i.e. f is a front. Therefore (3) and (2) are equivalent. O

Proof of Theorem 3.11. The equivalence of (1) and (1°) is due to Cleave (see [8]).
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Suppose the condition (2) is satisfied. Then f is .7-equivalent to the germ g(t1,1) = (11,12, f3(t1,12))
at the origin with A = t,,1 = 9/dt2, (1°f3)(0) = 0 and (dA Ad(n>f3))(0) # 0. Since dfs € _Z,, in
other word since f3 € %, (Remark4.9), there exist functions A, B on (RZ, 0) such that

f3(t17t2) :A(tl,lzz) -‘rB(l],tzz)tg.
Then the condition (173 f3)(0) = 0 is equivalent to B(0,0) = 0, and the condition

(dA Ad(n°f3))(0) #0
is equivalent to 3—2(0,0) # 0. Define diffeomorphism-germs o : (R?,0) — (R?,0) by

G(tlat2) = (B(tlvt%)atz)
and 7: (R3,0) — (R3,0) by
T(x1,%2,x3) = (B(x1,%2),X2,X3 —A(X1,X2)).

Then (t1,3,t113) 0 6 = To (t1,£3, f3) holds. Therefore f is .7-equivalent to folded umbrella. Hence we
see that (2) implies (1). Conversely (1) implies (2) for some, so for any, adapted coordinates. O

Proof of Theorem 3.13: The </ -determinacy of tangent maps to curves of type (1,2,4,5,...) is proved in
Theorem 7.2 of [8]. Let y: (R,0) — (R™,0) be the curve ¢ + (¢,£%,*,£°,0,...). Then the tangent map
Tan(y) : (R?,0) — (R™,0) is given by

Tan(y)(t,u) = (t+u, 1> 4 2ut, 1* +4ur®, 1> +5ur*, 0, ...).
Then it is easy to see that Tan(y) is &/-equivalent to (t;,2) — (11, t3, 1113, 15, 0,...,0). Hence we have
the equivalence of (1) and (1).

Suppose f satisfies (2). Then f is an opening of (f1, f2), which is a fold by Theorem3.4. Therefore f
is 7-equivalent to a frontal of form (tl,tzz, /3, f1,...) for an adapted coordinates. The Jacobian is given
by A =1, and the kernel field is given by 11 = d/dt,. We write f; = Ai(tl,tzz) —&—Bi(tl,tzz)tg for some A;, B;
with A;(0,0) = 0,B;(0,0) =0, (3 <i <m). Then f; = A;(11,13)1113 + Bi(t1,£3)13. Then the condition (2)
is equivalent to that, for some i, j with 3 <i < j <m,

A;(0,0)  B;(0,0)
( 4,(0,0) B;(0,0) ) GLEZR).

Then f is «7-equivalent to (71, t%, tltg’, tg, 0,...,0). Therefore (2) implies (1’). The converse is clear. O

Proof of Theorem 3.14: The equivalence of (1) and (1°) is proved in Theorem 1 of [6]. The equivalence
of (1’) and (2) is proved in Proposition 1.3 of [21]. The condition that A is .# -equivalent to #; and
ord (1) = 2 is equivalent, by Theorem 3.4, to that f is an opening of Whitney’s cusp

g(tl,tz) = (ll, t; +l1t2).
The Jacobian is given by A = 3¢ +¢; and the kernel field is given by 1 = d/dt,. Set

3 1 3 1
U =>4+ -1112,Uy = =5 + ~1115.
1 42"‘21272 52+312

Then it is known that the ramification module %, is generated by 1,U;,U, over g* (see [6]). Since
f3 € Z, is the third component for an adapted system of coordinates, f3 is written as

fr=Aog+(Bog)U;+(Cog)ly,
for some functions A,B,C with A(0,0) = 0, 94(0,0) =0, 94(0,0) = 0. By the condition
1 X2

ord] (f3) =4, we have B(0,0) # 0. Then, by a change of adapted system of coordinates, We may suppose
f=1(g,f3) with f3 = U; +®, where ® = (Bog)U; + (D og)U, with B(0,0) = 0. Then we set the family
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F; = (g,U; +s®). By the same infinitesimal method used in [6], we can show that the family Fj is trivi-
alized by o7 -equivalence. Hence f = F) is ./ -equivalent to Fy, that is the normal form of (2). Therefore
(3) implies (2). The converse is clear. O

Proof of Theorem 3.15: The equivalence of (1) and (1°) is proved in [8]. The condition (2) implies,
by Theorem 3.4, that f is an opening of Whitney’s cusp. Using the same notations as in the proof of
Theorem 3.14, we write f; as fr = Ay o g+ (Br o g)U; + (Cr 0 g)Ua, for some functions Ay, B, Cy with
Ar(0,0) =0 94 (0,0)=0 IAx (0,0) = 0. Then by the condition (2), we see that f is a versal opening

) dxy ) dxy
(Definition 4.4) of g. On the other hand the map-germ of (1°) is a versal opening of g ([8]). By Theorem
4.5, we see that (2) implies (1’). The converse implication (1’) to (2) is clear. O

Proof of Theorem 3.17: The outline of the proof is similar to that of Theorem 3.14. The equivalence of (1)
and (1’) is proved in Theorem 1 of [6]. The equivalence of (1°) and (2) is proved in [19]. The condition
that A is % -equivalent to t1t2 and ord]] (1) = 2 is equivalent, by Theorem 3.4, to that f is an opening of
bec a bec g(t1,5) = (11, t2 + tltz) The Jacobian is given by A = 3t2 + 2t1t; and the kernel field is given
by 1 =9/dt,. Set U} = t2 + tltz,Uz 3t§ + t1t2 Then it is known that the ramification module
#, is generated by 1,U1,U2 over g* (see [6]). Smce f3 € %, is the third component for an adapted
system of coordinates, f3 is written as f3 =Aog+ (Bog)U; + (Cog)Ug, for some functions A, B,C with
A(0,0) = 0, $4(0,0) = 0, 92(0,0) = 0. By the condition ord](f3) = 4, we have B(0,0) # 0. Then,
by a change of adapted system of coordinates, we may suppose f = (g, f3) with f3 = U; + ®, where
® = (Bog)U; + (Cog)U, with B(0,0) = 0. Then, by the infinitesimal method used in [6], the family
F; = (g,U) +s®) is trivialized by «7-equivalence. Hence f = F] is .o -equivalent to Fp, that is the normal
form of (2). Therefore (3) implies (2). The converse is clear. O

Proof of Theorem 3.18: Open Mond singularities are characterized as versal openings of bec a bec ([8]).
Then Theorem3.18 is proved similarly as the proof of Theorem3.15. a

Proof of Theorem 3.19: The equivalence of (1) and (1) is proved in [6]. The condition (2) implies
that f is an opening of bec a bec. Using the same notations in the proof of Theorem 3.17, we write f3 as
f3=A0g+(Bog)Ui+(Cog)U, for some functions A, B,C with A(0,0) =0, $2(0,0) =0, $2(0,0) =0.
By the condition ord]! ( f3) =5, we have B(0,0) = 0 and C(0,0) # 0. Moreover, by the assumption, we
may assume that ord 0)f3 = 4 along the component {t» = 0} of S(f) and then B(x;,0) = 0. Then,

by a change of adapted system of coordinates, we may suppose f = (g, f3) with f3 = U, + ®, where
@ = (Bog)U; + (C o g)U, with B(x1,0) = 0,C(0,0) = 0. Then by the same infinitesimal method used in
[6], the family F; = (g,U, + s®) turns to be trivial under 47-equivalence. Hence f = F is «7-equivalent
to Fy, that is the normal form of (1°). Therefore (2) implies (1°). The converse is clear. O

6. AN APPLICATION TO 3-DIMENSIONAL LORENTZIAN GEOMETRY, AND OTHER TOPICS
We announce the following result without explanations of notions. The details will be given in [16].

Theorem 6.1. ([2], [14, 16]) Any null frontal surface in a Lorentzian 3-manifold turns to be a null
tangent surface of a (directed) null curve, and any generic null frontal surface has only singularities,
along the null curve, of type

(D cuspidal edge (CE), (I) swallowtail (SW), or (II1) Shcherbak singularity (SB).

Moreover the corresponding dual frontal in the space of null-geodesics has (1) cuspidal edge (CE),
(II) Mond singularity (MD), or (II1) generic folded pleat (GFP).

The same classification result holds not only for any Lorentzian metric but also for arbitrary non-
degenerate (strictly convex) cone structure in any 3-manifold.
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To show Theorem 6.1, we face the recognition problem on cuspidal edge, swallowtail, Scherbak
singularity, Mond singularity, and “generic folded pleat”. In fact we will use the recognition theorems
introduced in the previous section and the following result on openings of Whitney’s cusp. The following
recognition result is proved by the same method of the above proof of Theorem3.14. The details will be
given in [16].

Theorem 6.2. (Recognition of folded pleat) Let f : (R?,a) — (R3,b) be a frontal of corank 1. Then the
following conditions are equivalent to each other:

(1) f is of -equivalent to a folded pleat i.e. the singularity of tangent surface of a curve of type (2,3,5).

(1°) f is of -equivalent to the germ (11, tg +tto, %tg + %tltg + c(%tz6 + %m;‘)) at the origin for some
ceR

(2) A is J -equivalent fo the germ (t1,ty) — t; at the origin, ord]l(A)(a) =2, f has an injective
representative, and ord}} (f3) = 5.

Note that a folded pleat singularity necessarily has an injective representative.

/) =

folded pleat cuspidal swallowtail cuspidal lips

Remark 6.3. Recall that the diffeomorphism classes (CE), (SW), (SB) and (MD) are exactly charac-
terized as those of tangent surfaces in Euclidean space R? of curves of type (1,2,3), (2,3,4), (1,3,5),
(1,3,4) respectively. A map-germ (R? a) — (R3,b) is called a folded pleat (FP) if it is diffeomorphic
to the tangent surface of a curve of type (2,3,5) in R3. The diffeomorphism classes of folded pleats fall
into two classes, the generic folded pleat and the non-generic folded pleat. In the list of Theorem 6.1, it
is claimed that only the generic folded pleat (GFP) appear. Theorem 6.2 do not solve the recognition of
a singularity but a class of singularities, which consists of two singularities. Note that the parameter ¢
in (1”) of Theorem 6.2 is not a moduli, but provides just two .o/-equivalence classes. To recognize the
generic folded pleat, it is necessary an additional argument to distinguish generic and non-generic folded
pleats.

In this occasion we introduce and prove the following two theorems of recognition:

Theorem 6.4. (Recognition of cuspidal swallowtail) Let (R?,a) — (R?,b) be a frontal of corank 1. Then
the following conditions are equivalent to each other:

(1) f is o7 -equivalent to the cuspidal swallowtail i.e. the singularity of tangent surface of curves of
type (3,4,5).

(1°) f is of -equivalent to the germ (t1,t2) — (11, t§ +11tp, %tg + %m%) at the origin.

(2) A is A -equivalent to the germ (11,12) — 11 at the origin, ord]l(A) =3 and ord]] (f3) = 5.

Proof: In [8] it is proved that the condition (1) is equivalent to that f is ./-equivalent to the germ
(t,u) = (£ +3u,t* + 4ut, 1> 4 Sur*), which is .« -equivalent to the normal form of (1°). Therefore (1) and
(1°) are equivalent. In [24], the map-germ which is <7 -equivalent to the germ g : (¢1,%) — (11, t§ +11p)at
the origin is called a swallowtail and it is shown that a map-germ g : (R?,a) — (R?,g(a)) is a swallowtail
if and only if A is # -equivalent to the germ (11,1, ) +— 11 at the origin and ord] (1) = 3. Suppose f satisfies
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(2). Then f is an opening of swallowtail. Then f is <7-equivalent to a frontal of form f = (g, f3). We
have the Jacobian A = 4t§ +1 and N = d/dt,. We follow the method of [6]. Set
U=t}+tn, U=+ 1n3, Uy =28+ 1013, Us = 3] + 1nts.
The third component f3 is written as
f3=Aog+(Bog)Ui+(Cog)Ur+(Dog)Us.
Then the condition ord]! (f3) = 5 implies that B(0,0) # 0. We may suppose f = (g, f3) with
fr=U+D,®=(Bog)U;+(Cog)Ur,+ (Dog)Us,B(0,0) =0.

Then the family F; = (g, U; + s®) is trivialized by <7 -equivalence. Thus f = F} is «/-equivalent to Fy
which is the normal form of (1’). Therefore (2) implies (1°). The converse is clear. Hence (1’) and (2)
are equivalent. m|

As for openings of the lips (71,;) — (1 ,tg +121) (see [24]), we have

Theorem 6.5. (Recognition of cuspidal lips) Let (R?,a) — (R3,b) be a frontal of corank 1. Then the
following conditions are equivalent to each other:

(1) f is o/ -equivalent to cuspidal lips i.e. (t1,t;) — (1 ,t; +t12t2, %tg + %tlztzz)

(2) f is a front and A is ' -equivalent to the germ (t1,12) v~ t? +13 at the origin.

(3) A is  -equivalent to the germ (t1,t2) ~ t? +13 at the origin, and ord}l (f3) = 4.

Proof': The equivalence of (1) and (2) is proved in [19]. Under the condition that A is .# -equivalent to
the germ (t1,12) — 7 + 13 at the origin, the condition ord]l (f3) = 4 is equivalent to that the Legendre lift

f is an immersion. Thus we have the equivalence of (2) and (3). O

Remark 6.6. Cuspidal lips never appear as singularities of tangent surfaces.

We conclude the paper by presenting open questions:

Question 1. When does _¢# -equivalence imply 7-equivalence ?

Remark 6.7. For immersions, folds, cusps, lips, beaks, swallowtails : (R?,0) — (R?,0), 7 -equivalence
of frontals of corank 1 implies </ -equivalence.

Example 6.8. ([23,20]) Let f, f': (R%,0) — (R?,0) be defined by f(t1,12) = (t1,t1t2 +15 +17 ) (butterfly)
and f'(t1,02) = (11,1112 —HS) (elder butterfly). Then f is not <7-equivalent to f’ and their recognition by
Taylor coefficients is obtained by Kabata [20]. On the other hand we observe, by using the theory of
implicit OED of first order, that f is _#-equivalent to f” in fact. Therefore we see that it is absolutely
impossible to recognize them just in terms of kernel field 1 and Jacobian A.

Question 2. When does _# -equivalence imply . -equivalence ?

It can be shown, for map-germs of corank 1, that _# -equivalence implies .2 -equivalence under a mild
condition:

Lemma 6.9. Let f : (R",a) — (R”,b) and f' : (R",d') — (R" ,b') be map-germs of corank 1. If f and
f are 7 -equivalent and f is J -finite, then f and f' are J¢ -equivalent, i.e. (f*my)&, is transformed
to (f"“my )&y by a diffeomorphism-germ o : (R",a) — (R",d’). Here my, C &, is the maximal ideal. The
condition that f is J -finite means that dimg (&, /(f*mp)&,) < eo.
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Proof : By the assumption, f is «7-equivalent to g : (R",0) — (R™,0) of form
(t1y ety @u(t)y - oo, O (1))

for some ¢; € &y,n < i < m. Then g*(my)&p is generated by #1,... 4,1 ,t,f for some ¢ and ¢ is uniquely
determined by the minimum of orders of ¢,(0,t,),..., ®x(0,2,) for ¢, at 0. On the other hand, the Jacobi
module ¢, is generated by dty,...,dt,_1,(0¢,/t,)dty,...,(d¢,/dt,)dt,, and the minimum of orders
of (3¢,/91,)(0,t,),...,(d@n/1,)(0,t,) for t, at O is invariant under ¢ -equivalence. Therefore % -
equivalence class is also invariant under _¢ -equivalence. O
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ABSTRACT. Lagrangian equivalence among Lagrangian submanifolds and S.P¥-Legendrian

equivalence among graph-like Legendrian unfoldings are equivalent. We investigate r-parameter
families of Lagrangian submanifolds and r-parameter families of graph-like Legendrian un-

foldings. Then we show that r-parameter families of Lagrangian equivalence and r-parameter

families of S.Pt-Legendrian equivalence are equivalent. As an application, we give a generic

classification of bifurcations of Lagrangian submanifold germs for lower dimensions.

1. INTRODUCTION

The study of singularities of caustics and wave fronts was the starting point of the theory
of Lagrangian and Legendrian singularities developed by several mathematicians and physicists
(cf. [1], [2, 5, 6, 7, 11, 18, 19, 29, 30]). The caustic is described as the set of critical values of
the projection of a Lagrangian submanifold from the phase space onto the configuration space.
Lagrangian equivalence among Lagrangian submanifold germs in the phase space was introduced
for the study of oscillatory integrals on caustics (cf. [1, 4, 8]). By definition, Lagrangian equiva-
lence implies caustic equivalence (i.e. diffeomorphic caustics). However, it has been known that
caustic equivalence does not imply Lagrangian equivalence even generically. This is one of the
main differences from the theory of Legendrian singularities. In the theory of Legendrian singu-
larities, wave fronts equivalence (i.e. diffeomorphic wave fronts) implies Legendrian equivalence
generically. This is the reason why people considered caustic equivalence instead of Lagrangian
equivalence in many situations (cf. [1, 24, 30] etc).

On the other hand, the notion of graph-like Legendrian unfoldings was introduced in [9]. It
belongs to a special class of the big Legendrian submanifolds which were introduced in [30]. In §2,
we give brief reviews on the theories of Lagrangian singularities (cf. [1, 2, 6]), of big Legendrian
submanifolds (cf. [20]) and of graph-like Legendrian unfoldings (cf. [21, 22]), respectively. One of
the main results in the theory of graph-like Legendrian unfoldings is that Lagrangian equivalence
among Lagrangian submanifolds and S.PT-Legendrian equivalence (which was introduced in
[10]) among graph-like Legendrian unfoldings are equivalent, see Theorem 2.8 (cf. [13]). It is
known that two graph-like Legendrian unfoldings are S.PT-Legendrian equivalent if and only if
the corresponding graph-like wave front set germs are S.PT-diffeomorphic generically [13, 14].
In this sense, S.P*-Legendrian equivalence is geometric equivalence. It follows that the hidden
relation between caustics and wave front propagations can be investigated and revealed. In
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fact, we give several applications of Lagrangian singularity theory and graph-like Legendrian
unfolding theory (cf. [13, 14, 15, 16, 21, 22, 23]).

On the other hand, if we consider r-parameter families of Lagrangian submanifold germs, the
situation is not so simple. In [2, 30], V.I. Arnol’d and V.M. Zakalyukin gave a generic classi-
fication of bifurcations of caustics and wave fronts, and hence gave a generic classification of
bifurcations of Legendrian submanifold germs by Legendrian equivalence. However, they only
gave a generic classification of bifurcations of caustics by caustic equivalence. A generic classifi-
cation of bifurcations of Lagrangian submanifold germs by Lagrangian equivalence has not been
given in any contexts as far as the authors know. In this paper, we consider r-parameter families
of Lagrangian submanifolds in §3 and r-parameter families of graph-like Legendrian unfoldings
in §4, respectively. As a main result, we show that r-parameter Lagrangian equivalence among
Lagrangian submanifolds families and r-parameter S.P"-Legendrian equivalence among graph-
like Legendrian unfoldings families are equivalent, see Theorem 5.1 in §5. Since S.PT-Legendrian
equivalence is geometric equivalence, it is much easier to investigate than Lagrangian equiva-
lence. Therefore, as an application of Theorem 5.1, we give a generic classification of bifurcations
of Lagrangian submanifolds by Lagrangian equivalence for lower dimensions, see Theorem 6.1 in
§6. There appear functional moduli in the list of the classification even for lower dimensions.

All maps and manifolds considered here are differentiable of class C*°.

2. PRELIMINARIES

In order to fix the notations for describing the main results, we give brief reviews on the
theories of Lagrangian singularities, of big Legendrian submanifolds and of graph-like Legendrian
unfoldings, respectively. We also give a relation between the equivalence relations of Lagrangian
submanifolds and graph-like Legendrian unfoldings (cf. [13, 16]).

2.1. Lagrangian singularities. We consider the cotangent bundle 7 : T*R" — R" with the
canonical symplectic structure w = Y, dp; A dz;, where (z,p) = (T1,...,Tp,P1,--,Pn) I8
the canonical coordinate on T*R"™. A submanifold i : L C T*R" is said to be a Lagrangian
submanifold if dim L = n and i*w = 0. The set of the critical values of 7 o7 is called the caustic
of i : L C T*R"™, which is denoted by Cr. One of the main results in the theory of Lagrangian
singularities is the description of Lagrangian submanifold germs by using families of function
germs. For a function germ F : (R* x R",0) — (R,0), we say that I is a Morse family of
functions if the map germ

oF oF
AF = —,...,— | : (R¥ xR",0) = (R*,0
(8q1 6)qk)< ) > (B*,0)

is non-singular, where (q,2z) = (q1,...,qk,T1,...,Tn) € (Rk x R™,0). In this case, we have a
smooth n-dimensional submanifold germ C(F) = (AF)~1(0) C (Rk x R™ 0) and a map germ
L(F): (C(F),0) — T*R™ defined by

L(F)(g.2) = (x §£<q,x>,...,$<q,x>) |

We can show that L(F)(C(F)) is a Lagrangian submanifold germ. It is known that all Lagrangian
submanifold germs in T*R"™ are constructed by the above method (cf. [2, page 300]).

A Morse family of functions F : (RF x R™",0) — (R,0) is called a generating family of
L(F)(C(F)). Let m, : (R¥ x R® 0) — (R",0) be the canonical projection, then we can eas-
ily show that the critical value set of m,|c(p) is the bifurcation set B of F', where

2
Br = {x € (R™,0) ‘ there exists ¢ € (R¥,0) such that (¢, z) € C(F), rank (a(zg (q, )) < k},
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so that we have CL(F)(C(F)) = BF.
We now define an equivalence relation among Lagrangian submanifold germs. Let

i:(L,z) C (T*R™,p) and 4 : (L, 2")C (T*R™,p)

be Lagrangian submanifold germs. Then we say that ¢ and ¢/ are Lagrangian equivalent if
there exist a diffeomorphism germ o : (L,z) — (L',z’), a symplectic diffeomorphism germ
7 (T*R™,p) = (T*R"™,p’) and a diffeomorphism germ 7 : (R, 7w(p)) — (R™, 7(p')) such that
704 =400 and To7 = 7om. Then the caustic Cf is diffeomorphic to the caustic Cr. by
the diffeomorphism germ 7. However, it has been known that caustic equivalence does not imply
Lagrangian equivalence even generically (cf. [2, 12, 16]).

A Lagrangian submanifold germ in T*R"™ at a point is said to be Lagrange stable if for every
map with the given germ there is a neighbourhood in the space of Lagrangian submanifolds (in
the Whitney C'*°-topology) and a neighbourhood of the original point such that each Lagrangian
submanifold belonging to the first neighbourhood has in the second neighbourhood a point at
which its germ is Lagrangian equivalent to the original germ.

We can interpret the Lagrangian equivalence by using the notion of generating families. Let
F,G: (R* x R",0) — (R,0) be function germs. We say that F' and G are P-RT-equivalent if
there exist a diffeomorphism germ

®: (R* x R",0) — (R* x R",0)

of the form ®(q,z) = (¢1(q,z), p2(z)) and a function germ « : (R™,0) — (R,0) such that
G(q,x) = F(®(q,z)) + a(z). For any Fy : (R¥ x R",0) — (R,0) and F, : (R¥ x R",0) — (R,0),
Fy and Fy are said to be stably P-RT-equivalent if they become P-RV-equivalent after the
addition to the arguments ¢; of new arguments ¢; and to the functions F; of non-degenerate
quadratic forms @Q; in the new arguments, that is, F; + Q1 and Fy + Qo are P-R'-equivalent.
Then we have the following theorem (cf. [2, pages 304 and 325]):

Theorem 2.1. Let F : (RF x R, 0) — (R,0) and G : (R¥" x R",0) — (R,0) be Morse families
of functions. Then L(F)(C(F)) and L(G)(C(G)) are Lagrangian equivalent if and only if F' and
G are stably P-R7T -equivalent.

2.2. The theory of wave front propagations. We consider one-parameter families of wave
fronts and their bifurcations. The principal idea is that a one-parameter family of wave fronts
is considered to be a wave front whose dimension is one dimension higher than each member of
the family. This is called a big wave front. We distinguish space and time coordinates, so that
we denote R"™! = R™ x R and coordinates are denoted by (z,t) = (x1,...,2,,t) € R" x R.
Then we consider the projective cotangent bundle 7 : PT*(R™ x R) — R™ x R over R” x R. Let
II: TPT*(R" x R) — PT*(R"™ x R) be the tangent bundle over PT*(R" x R) and

d7 : TPT*(R" x R) — T(R" x R)

the differential map of 7. For any X € TPT*(R" xR), there exists an element a € T, ) (R" xR)

such that TI(X) = [a]. For an element V € T(z,1)(R™ xR), the property a(V') = 0 does not depend
on the choice of representative of the class [a]. Thus we can define the canonical contact structure
on PT*(R"xR) by K = {X € TPT*(R" xR) | II(X)(d7(X)) = 0}. Because of the trivialization
PT*(R" x R) 2 (R" x R) x P(R" x R)*, we call

(@1, oy Ty t),[E1 1 &t 7))
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homogeneous coordinates, where [§1 : -+ : &, : 7] are the homogeneous coordinates of the dual
projective space P(R™ x R)*. It is easy to show that X € K((; ) [e:r)) if and only if

D mii A =0,

i=1
where dm(X) = Y1, 1;(8/0z;) + A(0/9t). We remark that PT*(R™ x R) is a fiberwise com-
pactification of the 1-jet space J!(R™,R) as follows: We consider an affine open subset

Ur ={((z,1), [€ : 7])|7 # 0}
of PT*(R™ x R). For any ((z,t),[¢ : 7]) € U,, we have

((@1y.eoyzn, ) [E1 i i &n 7)) = (@1, ooy Ty ), [— (&1 /T) -+ 0 = (& /T) + —1]),
so that we may adapt the corresponding affine coordinates ((z1,...,2n,t),(p1,...,Pn)), where
p; = —&i/7. On U, we can easily show that 671(0) = K|U,, where § = dt — Y., pidx;. This
means that U, may be identified with the 1-jet space J'(R™,R). We set

U, = JbA(R™,R) C PT*(R" x R).

We call the above coordinate system a system of graph-like affine coordinates. Throughout this
paper, we use this identification.

A submanifold ¢ : £ C PT*(R™ x R) is a Legendrian submanifold if dim£L = n and
dip(ToL) C K,y for any p € L. We say that a point p € L is a Legendrian singular point
if rank d(7 0 i), < n. For a Legendrian submanifold i : £ C PT*(R" x R), 7o i(L) = W(L) is
called a big wave front. We have a family of small fronts:

Wi(L) = m(my () NW(L)) (tE€R),

where m : R x R — R™ and m : R” x R — R are the canonical projections defined by
m1(x,t) = x and mo(x,t) = t respectively. In this sense, we call £ a big Legendrian submanifold.

The discriminant of the family {W;(L)}ier is defined as the image of singular points of
T1lw(c).- In the general case, the discriminant consists of three components: the caustic
Cr = m(B(W(L))), where Z(W (L)) is the set of singular points of W (L) (i.e. the critical
value set of the Legendrian mappings 7|z = T o1); the Mazwell stratified set M., the projection
of the closure of the self intersection set of W (L£); and the critical value set Az of 71 |y (2)\s(w(z))-
In [20, 21, 31], it has been stated that A, is the envelope of the family of momentary fronts.
However, we remark that A, is not necessarily the envelope of the family of the projection of
smooth momentary fronts 7(W;(£)). Tt may happen that 7, *(t) N W (£) is non-singular while
m |7r;1( HAW (L) has singularities, so that A, is the set of critical values of the family of mappings

7T1|7r;1(t)mW(L) for smooth 7y *(t) N W (L) (cf. [12]).

For any Legendrian submanifold germ i : (£, pg) C (PT*(R™xR), pp), there exists a generating
family of i by the theory of Legendrian singularities [2]. Let F : (RF x (R x R),0) — (R,0) be
a function germ such that (F,doF) : (R¥ x (R” x R),0) — (R x R¥,0) is non-singular, where

OF oOF
dgf(q,l',t) = <8q1(qaxat)v"'>aqk(Q7mvt)> .

In this case, we call F a big Morse family of hypersurfaces. Then X, (F) = (F,d2F)~1(0) is
a smooth n-dimensional submanifold germ. Define Lz : (X.(F),0) = PT*(R™ x R) by

OF oOF
L]:(q,l'vt) - <£L’,t, |:al‘(q’x’t) . at(qaxat):|> )
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where

Or ot 0x1 T,

It is easy to show that Lx(X.(F)) is a Legendrian submanifold germ. It is known that all big
Legendrian submanifold germs are constructed by the above method (cf. [1,30]). We call F a
generating family of Lx. The big wave front coincides with the discriminant set D(F) of F,
where

[aF(Q,x,t) : W(Q,x,t)} = [a]:(q,x,t) C gi(q,x,t) : %f(q’x,t):l .

D(F) = {(m, t) € (R" x R,0) | there exists ¢ € (R¥,0) such that (g, z,t) € E*(]-")},
so that we have W(Lxz(2.(F))) = D(F).

We now consider an equivalence relation among big Legendrian submanifolds which preserves
both the qualitative pictures of bifurcations and the discriminant of families of small fronts.
Let ¢ : (£,po) C (PT*(R™ x R),po) and ¢’ : (L',p;) C (PT*(R™ x R), p;) be big Legendrian
submanifold germs. We say that ¢ and 4’ are strictly parametrizedt Legendrian equivalent (or,
briefly, S.P*-Legendrian equivalent) if there exist diffeomorphism germs

P (R" x R, 7(py)) — (R" x R, 7(py))
of the form ®(z,t) = (¢1(z),t + a(x)) and U : (L,po) — (L', pf) such that doi=1i0W, where

> (PT*(R™ x R),pg) — (PT*(R™ x R),p) is the unique contact lift of ®. This equivalence
relation was independently introduced in [10, 31] for the different purposes, respectively. We
can define the notion of stability of big Legendrian submanifold germs with respect to S.P*-
Legendrian equivalence similar to the definition of Lagrangian stability in §2.1 (cf. [2, Part IIT]).
However, we omit to give the definition here.

We study S.PT-Legendrian equivalence by using the notion of generating families of Legen-
drian submanifold germs. Let £y, ;) be the R-algebra of function germs of (g, z,t)-variables.
For function germs F, G : (R¥ x (R™ x R),0) — (R,0), we say that F and G are space-S.PT-K-
equivalent (or, briefly, s-S.P1-K-equivalent) if there exists a diffeomorphism germ

® : (R x (R™ x R),0) — (R* x (R™ x R),0)

of the form ®(q,z,t) = (¢(q,z,t), ¢1(x),t + a(x)) such that (F o @)e, - = (G)g,.., - The
notion of S.P*-K-versal deformation plays an important role for our purpose. We define the
extended tangent space of f : (R* x R,0) — (R, 0) relative to S.P*-K by

IOV (F) = ﬁ 5f> <af>
TQ(SP K)(f) <aq17.-.7aqkaf g(w)+ ot R'

We say that F is an S.PT-K-versal deformation of f = Flrrxfoyxr if it satisfies

- oF oF
Egty = Te(S-PT-K)(f) + <ax1|Rk><{0}><Ra oo 8$n|R’“><{0}><R>R

Then we also have the following theorem.

Theorem 2.2. Let F : (RF x (R” x R),0) — (R,0) and G : (R x (R x R),0) — (R,0) be big
Morse families of hypersurfaces.

(1) L£(Z+(F)) and Lg(X4(G)) are S.P*-Legendrian equivalent if and only if F and G are stably
5-S.Pt-K-equivalent.

(2) Lr(X4(F)) is S.P*-Legendre stable if and only if F is an S.P*-K-versal deformation of
f:]:‘R’“x{O}x]R'
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Since the big Legendrian submanifold germ ¢ : (£,pg) C (PT*(R™ x R),pp) is uniquely
determined on the regular part of the big wave front W (L), we have the following simple but
significant property of Legendrian submanifold germs:

Proposition 2.3. Leti: (L£,pg) C (PT*(R™ x R),pg) and i’ : (L' ,po) C (PT*(R™ x R),pg) be
big Legendrian submanifold germs such that 7 o i, o ' are proper map germs and the regular
sets of these map germs are dense respectively. Then (L,po) = (L', po) if and only if

(W(£),7(po)) = (W(L'), T (po))-

This result has been firstly pointed out by Zakalyukin [30]. Also see [25]. The assumption in
the above proposition is a generic condition for 4,4’. In particular, if 4 and i’ are S.PT-Legendre
stable, then these satisfy the assumption.

Concerning the discriminant and the bifurcation of momentary fronts, we define the following
equivalence relation among big wave front germs. Let i : (£,pg) C (PT*(R™ x R),py) and
i' (L, py) C (PT*(R™ x R),p() be big Legendrian submanifold germs. We say that W (L) and
W (L") are S.P*-diffeomorphic if there exists a diffeomorphism germ

P (R" x R, 7(po)) — (R" x R, 7(py))
of the form ®(z,t) = (¢1(2),t + a(x)) such that (W (L)) = W(L'). Remark that the S.P*-

diffeomorphism among big wave front germs preserves the diffeomorphism types of discriminants
[31]. By Proposition 2.3, we have the following proposition.

Proposition 2.4. Leti: (L,pg) C (PT*(R™ x R),pg) and i’ : (L',py) C (PT*(R™ x R),pp) be
big Legendrian submanifold germs such that T o 4,7 o' are proper map germs and the reqular
sets of those map germs are dense respectively. Then i and i’ are S.P'-Legendrian equivalent if

and only if (W(L),7(po)) and (W (L"), 7(py)) are S.PT-diffeomorphic.

2.3. Graph-like Legendrian unfoldings. In this subsection we explain the theory of graph-
like Legendrian unfoldings. Graph-like Legendrian unfoldings belong to a special class of big
Legendrian submanifolds. A big Legendrian submanifold i : £ C PT*(R™ x R) is said to be a
graph-like Legendrian unfolding if £ C J} ,(R"™,R).

We call W (L) = 7(L) a graph-like wave front of L, where 7 : J5,(R",R) — R™ x R is the
canonical projection. We define the mapping II : J} 4 (R™",R) — T*R" by Il(z,t,p) = (z,p),
where (z,t,p) = (z1,...,Zn,t,p1,...,pn) and the canonical contact form on J¢ 4 (R",R) is given
by 0 = dt — X}_;p;dx;. Then we have the following proposition.

Proposition 2.5 ([12]). For a graph-like Legendrian unfolding L C JL,(R™,R), z € L is a
singular point of |z : L — R™ X R 4f and only if it is a singular point of m o T|p : L — R™.
Moreover, |z : L — T*R™ is immersive, so that II(L) is a Lagrangian submanifold in T*R™.

We have the following corollary of Proposition 2.5.

Corollary 2.6 ([12]). For a graph-like Legendrian unfolding £ C J} ,(R™,R), A is the empty
set so that the discriminant of the family of momentary fronts is Cr U M.

Since L is a big Legendrian submanifold in PT*(R™ x R), it has a generating family
F: (RF x (R™ x R),0) — (R,0)
at least locally. Since £ C JL,4(R™,R) = U, C PT*(R" x R), it satisfies the condition
(0F/ot)(0) # 0. Let F : (R¥ x (R® x R),0) — (R,0) be a big Morse family of hypersur-
faces. We say that F is a graph-like Morse family of hypersurfaces if (0F/0t)(0) # 0. It is

easy to show that the corresponding big Legendrian submanifold germ is a graph-like Legen-
drian unfolding. Of course, all graph-like Legendrian unfolding germs can be constructed by the
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above way. We also say that F is a graph-like generating family of Lx(X.(F)). We remark that
the notion of graph-like Legendrian unfoldings and corresponding generating families have been
introduced by the first named author in [9] to describe the perestroikas of wave fronts given as
the solutions for general eikonal equations.

We can consider the following more restrictive class of graph-like generating families: Let F
be a graph-like Morse family of hypersurfaces. By the implicit function theorem, there exists a
function F : (R* x R™,0) — (R,0) such that (Flg:z,t)) e, = (Flg2) —t)e, .., Then we
have the following proposition.

Proposition 2.7 ([22]). Let F: (R¥ x (R" x R),0) — (R,0) and F : (R¥ x R",0) — (R,0) be
function germs such that (F(q,z,t))e, .. = (F(¢,v) —t)e,., - Then F is a graph-like Morse
family of hypersurfaces if and only if F is a Morse family of functions.

We now counsider the case F(q,z,t) = A(q,z,t)(F(q,z) —t), for A(0) # 0. In this case,

Su(F) = (g2, F(q,2)) € (R* x (R" x R),0) | (¢,2) € C(F)},
where C(F) = AF~1(0). Moreover, we have the Lagrangian submanifold germ
L(F)(C(F)) C T*R",
where L(F) is defined by

L(F)(q.2) = (w §£<q,x>,...,$<q,x>) |

Since F is a graph-like Morse family of hypersurfaces, we have a big Legendrian submanifold
germ Lr(X.(F)) C JL4(R™,R), where Lx : (Z.(F),0) = JL4(R",R) = T*R" x R is defined

by
(g, 2,1) 3 (g, t))
( ) B W(Qa Z, t) .

Z °"\3i gk

Lr(q,z,t)= (z, t,—

We also define £ : (C(F),0) — JL,(R", R

2r(g,7) = (x,F<q,m>,§£(q,x>,...,£<q,x>) .
Since 0F /0x; = (OX/0x;)(F —t) + AOF/0z; and OF /Ot = (ON/Ot)(F —t) — A, we have

and
(0F JOt)(q, z,t) = =g, ,t)
for (q,z,t) € 3.(F). It follows that Lp(C(F)) = L#(X.(F)). By definition, we have
(L7 (3.(F))) = I(Lr(C(F))) = L(F)(C(F)).
The graph-like wave front of Lx(X.(F)) = £p(C(F)) is the graph of F|c(py. This is the reason
why we call it a graph-like Legendrian unfolding.

For a graph-like Morse family of hypersurfaces F(q, z,t) = X(q, z,t)(F (¢, x)—1t), F(q, x,t) and
F(q,x,t) = F(q,z) —t are s-S.P*-K-equivalent, so that we consider F(q,z,t) = F(q,z) —t as
a graph-like Morse family of hypersurfaces. Since F(q,z,t) is a big Morse family, we can use all
the definitions of equivalence relations in §2.2. Moreover, we can translate the propositions and
theorems into corresponding assertions in terms of graph-like Legendrian unfoldings. We can
also consider the stability of graph-like Legendrian unfolding with respect to S.PT-Legendrian
equivalence which is analogous to the stability of Lagrangian submanifold germs with respect to
Lagrangian equivalence in §2.1.
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2.4. Equivalence relations. We consider a relation between the equivalence relations of La-
grangian submanifold germs and of graph-like Legendrian unfoldings (cf. [9, 10, 16, 20, 21, 31]).

Theorem 2.8 ([13]). Let
F:(R* x (R" xR),0) = (R,0) and G : (R x (R" x R),0) — (R,0)

be graph-like Morse families of hypersurfaces of the forms F(q,x,t) = Mg, z,t)(F(q,z) — t)
and G(¢',x,t) = pld,x,t)(G(¢',x) —t). Then Lagrangian submanifold germs L(F)(C(F))
and L(G)(C(G)) are Lagrangian equivalent if and only if the graph-like Legendrian unfoldings
Lr(X.(F)) and Lg(X.(G)) are S.P*-Legendrian equivalent.

By definition, the set of Legendrian singular points of the graph-like Legendrian unfolding
L7(3.(F)) coincides with the set of singular points of m o L(F'). Therefore the singularities of
graph-like wave front of Lx(X.(F)) lie on the caustic of L(F). It follows that we can apply
Proposition 2.4 to S.PT-Legendrian equivalence. We have the following direct corollaries of
Theorem 2.8.

Corollary 2.9. With the same notations as those in Theorem 2.8, suppose that T o Ly, 7o Lg
are proper map germs and the regular sets of these map germs are dense respectively. Then
Lagrangian submanifold germs L(F)(C(F)) and L(G)(C(G)) are Lagrangian equivalent if and
only if W(Lx(2+(F))) and W(Lg(X4(G))) are S.PT-diffeomorphic.

Corollary 2.10. Suppose that F(q,z,t) = Xq,x,t)(F(q,z) —t) is a graph-like Morse family of
hypersurfaces. Then L(F)(C(F)) is Lagrange stable if and only if L(X.(F)) is S.P*-Legendre
stable.

3. FAMILIES OF LAGRANGIAN SUBMANIFOLDS

We say that i, : L x R"™ C T*R" is an r-parameter family of Lagrangian submanifolds if
ilLx{sy : L x {s} C T*R" is a Lagrangian submanifold for each s = (si,...,s,) € R". By the
theory of Lagrangian singularity in §2.1, we have a Morse family of functions. Let

F: (]Rk x R" x R",0) — (R,0),(q,z,s) = F(q,z,s)

be an r-parameter family of Morse families of functions, that is, for each fixed s € (R",0),
Fs(q,z) = F(q,z,s) is a Morse family of functions and it depends smoothly on s.
We consider the cotangent bundle 7, : T*(R" x R") — R” x R" over R” x R". Let

(x,s,p,u) = (x;,55,pi,uj), i=1,...,n,5=1,...,r

be the canonical coordinates on T*(R™ x R"). Then the canonical symplectic structure on
T*(R™ x R") is given by the canonical 2-form w, = 37\ ) dp; Ada; + 37, duj Ads;. We denote
the canonical projection by 7, : T*(R™ x R") — T*R".

Let F : (R* x R” x R",0) — (R,0), (¢, z,5) — F(q,x,s) be an r-parameter family of Morse
families of functions. Then it is also a Morse family of functions as an (n+r)-parameter family of
function germs. Therefore we have a Lagrangian submanifold germ L(F)(C(F)) C T*(R" xR"),
where L(F) : (C(F),0) — T*(R™ x R") is defined in §2.1. Moreover, 7.0 L(F)(C(F)) C T*R"™ is
an r-parameter family of Lagrangian submanifold germs. We call L(F)(C(F)) a big Lagrangian
submanifold germ.

Let i, : (L x R", (2,0)) C (T*(R™ x R"),p) and i, : (L’ x R", (2/,0)) C (T*(R™ x R"),p’) be
big Lagrangian submanifold germs. We say that i, and i.. are r-parameter Lagrangian equivalent
(or, briefly, r-Lagrangian equivalent) if there exist a diffeomorphism germ

o1 (L xR",(2,0)) = (L' x R, (z',0))
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of the form o(u, s) = (o1(u, s),(s)), a symplectic diffecomorphism germ
7 (T*(R™ x R"),p) — (T*(R™ x R"),p')
and a diffeomorphism germ 7 : (R” x R", w(p)) — (R™ x R",w(p’)) of the form

7'(1‘, S) = (7-1 (33, S)a 90(8))
such that 7 o, =il oo and m, 0o 7 =T o mp.

Let F,G : (R x R® x R",0) — (R,0) be function germs. We say that F and G are P-R"-
equivalent as T-parameter families (or, briefly, r-P-R™T -equivalent) if there exist a diffeomorphism
germ @ : (RF xR" xR",0) — (RF x R™ xR",0) of the form ®(q, z,5) = (¢1(q, x, 5), $2(x, 5), p(5))
and a function germ a : (R™ xR",0) — (R, 0) such that G(q,z,s) = F(®(q,z,s))+a(x,s). Then
we also have the following theorem.

Theorem 3.1. Let F : (R* x R" x R",0) — (R,0) and G : (R¥ x R" x R",0) — (R,
r-parameter families of Morse families of functions. Then L(F)(C(F)) and L(G)(C(G)
r-Lagrangian equivalent if and only if F and G are stably r-P-R™ -equivalent.

0) be
)

are

We also consider the stability of r-parameter families of Lagrangian submanifolds with respect
to r-Lagrangian equivalence.

4. FAMILIES OF GRAPH-LIKE LEGENDRIAN UNFOLDINGS
A big Legendrian submanifold
i: LxR"C PT*"(R" x R" x R)
is said to be an r-parameter family of graph-like Legendrian unfoldings if
L xR" C Jia(R" x R"R).

We call W(L x R") = 7.(L x R") an r-parameter family of graph-like wave fronts of L x R",
where 7T, : JL (R" x R",R) — R" x R" x R is the canonical projection. By the theory of
Legendrian singularity in §2.3, we have a graph-like Legendrian unfolding corresponding to the
family of graph-like Legendrian unfoldings. Let

F: (Rk x (R" x R" x R),0) = (R,0), (¢, x, s,t) = F(q,z,s,t)

be an r-parameter family of graph-like Morse families of hypersurfaces, that is, for each fixed
s € (R",0), Fs(q,z,t) = F(q,x,s,t) is a graph-like Morse family of hypersurfaces and it depends
smoothly on s.

Let
i:(LxR", (p,0)) C (PT*(R"XR"xR),po) and & : (L' xR", (p',0)) C (PT*(R"xR"xR),py)

be Legendrian submanifold germs. We say that i and i’ are r-parameter S.PY-Legendrian equiv-
alent (or, briefly r-S.P*-Legendrian equivalent) if there exist diffeomorphism germs

O: (R xR" xR, 7 (po)) = (R" x R" x R, 7, (py))
of the form ®(x,s,t) = (1(x, s),p(s),t + alx,s)) and ¥ : (L x R",pg) — (L x R",p() of the
form U(u, s) = (11(u, s),p(s)) such that ® oi =i o ¥, where

~

d: (PT*(R* x R” x R), po) — (PT*(R™ x R” x R), p}))

is the unique contact lift of ®.
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Let F,G : (R* x (R® x R” x R),0) — (R,0) be function germs. We say that F and G are
r-parameter s-S.PT-K-equivalent (or, briefly, r-s-S.PT-K-equivalent) if there exists a diffeomor-
phism germ @ : (R* x (R” x R” x R),0) — (R* x (R® x R" x R),0) of the form

(I)(Q» x, s, t) = (¢(Q» x, s, t)? ¢1 (557 8)7 QO(S)’ t + a(x, S))

such that (F o @) =(G)&(y.0...ry- Then we also have the following theorem.

Eq.z.s,1)

Theorem 4.1. Let F : (R* x (R" xR" xR),0) — (R,0) and G : (R¥ x (R* xR" xR),0) — (R, 0)
be r-parameter families of graph-like Legendrian unfoldings. Then L (X4 (F)) and Lg(X.(G))
are r-S.P*-Legendrian equivalent if and only if F and G are stably r-s-S.PT-K-equivalent.

We also consider the stability of r-parameter families of graph-like Legendrian unfoldings with
respect to r-S.PT-Legendrian equivalence.

5. RELATIONS BETWEEN EQUIVALENCE RELATIONS

We consider a relation of the r-parameter version of equivalence relations between r-parameter
families of Lagrangian submanifolds and r-parameter families of graph-like Legendrian unfold-
ings. One of the main results in this paper is as follows:

Theorem 5.1. Let F : (R* x (R" xR" xR),0) — (R,0) and G : (Rk/ X (R"xR"xR),0) = (R, 0)
be r-parameter families of graph-like Morse families of hypersurfaces of the forms
F(q,z,8,t) = Nq,x,s,t)(F(q,z,8) —t) and G(¢,z,s,t) = u(d,z,s,t) (G, z,s)—1).

Then r-parameter families of Lagrangian submanifold germs L(F)(C(F)) and L(G)(C(Q)) are r-
Lagrangian equivalent if and only if the r-parameter families of graph-like Legendrian unfoldings
LF7(X.(F)) and Lg(X.(G)) are r-S.P*-Legendrian equivalent.

Proof. By Theorem 3.1, if L(F)(C(F)) and L(G)(C(Q)) are r-Lagrangian equivalent, then F
and G are stably r-P-R*-equivalent. In this case, we may assume that k = k’, F' and G are r-P-
RT-equivalent, so that there exist a diffeomorphism germ @ : (R¥xR"™xR",0) — (R¥xR"xR", 0)
of the form ®(q,x,s) = (¢1(q, z, s), p2(x, s), ¢(s)) and a function germ « : (R™ x R",0) — (R, 0)
such that G(q,x,s) = F(®(q,,s)) + a(z,s). Then we define the diffeomorphism germ

P : (R* x (R” x R” x R),0) — (R* x (R” x R" x R),0)
by EIv>(q,at:, s,t) = (o1(q,x, 8), pa(z, ), 0(s),t — a(x, s)). It follows that
é(qvxvsvt) = G(q,x,s) —t=Fo CI)((L!E,S) - t+0£($78) :FO $(Q7x787t)'

This means that F and G are r-s-S.P-K-equivalent. By Theorem 4.1, Lx(X.(F)) and Lg(X.(9))
are r-S.P*-Legendrian equivalent.

Conversely, we assume that Lx(X.(F)) and Lg(X.(G)) are r-S.P*-Legendrian equivalent.
Since Lr(X4(F)) = L£r(C(F)), Lg(2:(G)) = £4(C(Q)), it follows from the assumption that
there exist diffecomorphism germs ® : (R” x R” x R,0) — (R” x R" x R, 0) of the form

D(z,5,1) = (¢1(z,5), 0(5), T + alz, s))

and ¥ : (C(F),0) — (C(@G),0) of the form ¥(u,s) = (¢1(u,s),¢(s)) such that

B(Lr(C(F))) = £6(C(G) o V).

Then we have ®~1(z, s, t) (p7 (x,5), 07 (s),t — a(x,s)), where ¢7 ' : (R” x R*,0) — (R",0)
satisfies the condition ¢ ' (¢1(x, s), ¢(s)) = = and a(z,s) means a(¢; ' (z,s), " (s)).
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Therefore, the Jacobi matrix of ®~! at ®(z, s,t) is given by

25 (61(2,5),0(5)) 25 (1(, ), 0(5))
)

S
1
S

0
o sn® ' = 0 2 (o(s) 0
— T2 (p1(x,5),0(5))  —F2(dr(x,5),9(5)) 1

It follows that
(i)(x78’t7 [p U T]) = (‘I)(x,s,t), |:p' 82}; (¢1($,8),g0($)) - Tg%(m(x,s),w(s)) :

0 o), () + w2 (ol) — 7 02 (G, 0(5) ] ).

Since 7 # 0, we have

[p- 20 (61(,5),0(5)) — 7o (1, 5),(5) :

ox 0
P aﬁ (¢1(x,5), (s)) +u- a“;; ((s)) — T%j(wxa ), e(s)) : 7]
= [2- 2 41,51, 0050) + 22 1,5, ()
_p 997! _u 9

D00 (g1, 5), 06— - 2 (pls)) + O (1 51, 2(5)) - 1]

We consider the graph-like affine coordinates (z, s,t,p,u) € J5 4 (R™ x R",R), where we denote
again —p/7 by p and —u/7 by u, respectively. By the form of ®, we have

B(JEA(R® x R™,R)) = J&4(R™ x R", R).
We define @ : T*(R™ x R") — T*(R" x R") by

(I)((E, S, D, U) = ((bl(mV S), (p(S), ¢2($7 Svp)a ¢3($7 S, P, ’LL)),

where
oot 0
bala5.p) = P T (61(2,9),0(5)) + G (1, 5),(5),
oyt dp~! da

¢3(1'787pau) = p- Os (¢1(x’s)790(8))+u Ds (w(s))—’_%((ﬁl(l’vs)v(p(s))

Since ® is a contact diffeomorphism germ, there exists a mnon-zero function germ
A JE4(R" x R™,R) — R such that ®*0 = M\, where § = dt — 37" pida; — Y7, ujds;.
Therefore, we have

dt + da — ¢ - dpy — @3 - dp = N(dt — p - dx — u - ds).
It follows that A =1 and
do— g - dpy — ¢z - do = —p - dx — u - ds.
If we set 6 = — Y1) pyda; — 305, ujds;, then
*w = O*df = d*0 = d(—do + 0) = —d(da) + df = w.
This means that ® is a symplectic diffeomorphism germ. Since

I o ®fyy ®exrrr) = Pollrlyy moxrrR),
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we have
L(G)(C(@)o W) = T (L£c(C(G)oW)) =TI, 0 &(Lr(C(F)))
= ®oll(Lp(C(F))) = ®o L(F)(C(F)),
where
I, : JEA(R" x R",R) — T*(R™ x R")
is the canonical projection II.(z,s,t,p,u) = (x,s,p,u). It follows that L(F)(C(F)) and
L(G)(C(@)) are r-Lagrangian equivalent. This completes the proof. a

Let i : (£ x R",pg) C JE4(R™ x R",R) and i’ : (£’ x R",p}) C JLA(R™ x R",R) be 1-
parameter families of graph-like Legendrian unfoldings. We say that W (£ xR") and W (L' xR")
are 7-S.PT-diffeomorphic if there exists a diffeomorphism germ

P: (R" xR" x R, T(pg)) = (R" x R" x R, 7(py))

of the form ®(z,s,t) = (é1(x, s), p(s),t + a(z,s)) such that D(W(L x R")) = W (L x R"). We
have the following direct corollaries of Theorem 5.1.

Corollary 5.2. With the same notations as those in Theorem 5.1, suppose that
mroLy and T,o0Lg

are proper map germs and the reqular sets of these map germs are dense respectively. Then
r-parameter families of Lagrangian submanifold germs L(F)(C(F)) and L(G)(C(G)) are r-
Lagrangian equivalent if and only if W(Lz(Xx(F))) and W(Lg(X(G))) are r-S.P*-diffeo-
morphic.

Corollary 5.3. Suppose that F(q,z,s,t) = Aq,x, s,t)(F(q,x,s) — t) is an r-parameter family
of graph-like Morse families of hypersurfaces. Then L( Y(C(F)) is r-Lagrange stable if and only
if L(X.(F)) is r-S.PT-Legendre stable.

6. CLASSIFICATIONS OF BIFURCATIONS OF LAGRANGIAN SUBMANIFOLDS

We consider bifurcations of Lagrangian submanifold germs, that is, the case of r = 1. As
an application of Theorem 5.1, we give generic classifications of bifurcations of Lagrangian sub-
manifold germs for lower dimensions by using one-parameter families of graph-like Legendrian
unfoldings.

Theorem 6.1. Let 1 < n < 3. A generic one-parameter family of Lagrangian submanifold
germs L(F)(C(F)) of a one-parameter family of Morse families of functions

F: (R* xR" x R,0) = (R,0),

is one-parameter Lagrangian equivalent to the one-parameter family of Lagrangian submanifold
germs of one of the following one-parameter families of Morse families of functions:

n=1;

(1) q1,

(2) +¢% + 21,

(3) @i + z1q1,

(4) :i:qjl + a(w1,8)¢? + 11q1, 0a/0s(0) # 0,0a/021(0) = 0,

1) q1,
2) i‘h +x1q1,
3)

4} + g1 + 3o,

—~
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(41 4 + 2167 + 2202,

(4)2 ¢t + a(z1,22,8)¢ + 1q1 + 22, Or/03(0) # 0,00/0x1(0) = D/ D2 (0) = 0,

(5)1 @} + oy, 22, 8)q} + 2145 + 22q1, D /Ds(0) # 0,000/ 021 (0) = Der/ D2 (0) = 0,

(5)2 ¢7 + m1q} + a(w1, 72, 8)q7 + 22q1, dr/Ds(0) # 0,9a/dx1(0) = dor/Dx2(0) = 0,

(6) ¢ £ qiq3 + a(x1,72,5)¢? + T1q1 + T2G2, 0a/Ds(0) # 0,0a/0x1(0) = da/Dx2(0) = 0,

(1)
(2)
(3) @i + 11 + 22,

(4)1 £qi + 14} + 2202 + 3,

(4)2 41 + (w1, 22, x3,5)¢F + 211 + T2, 0 /Ds(0) # 0,00/ (0) =00 =1,2,3,

(5)1 ¢} + 143 + w2qf + T3q1,

(5)2 ¢34+ a(w1, 2,23, 8)q} + 1G5 + T2q1 + T3, Or/Ds(0) # 0,00/02;(0) = 0,

(5)3 ¢7 + 2143 + a(z1, 22,73, 8)¢5 + T2q1 + 3, O/Ds(0) # 0,00 /0x;(0) = 0,

(6)1 ¢ £ 163 + 2143 + T2q1 + T340,

(6)2 @3 + q163 + a(x1, v9, 13, 5)¢% + T1q1 + T2go + 23, O /Ds(0) # 0, 0a/0x;(0) = 0,

(T)1 £ + axy, w2, 23, 8)q} + 2163 + 2267 + 2301, O/ D5(0) # 0,00/ 0;(0) = 0,

(12 £¢% + 214} + a(x1, 22, 3, 8)@3 + 2245 + 3¢1, Oe/Ds(0) # 0, 0cr/Dz;(0) = 0,

(M3 £¢¢ 4+ z1qt + 7163 + a(z1, 22, T3, 8)¢% + 231, Oar/Ds(0) # 0, cr/Dx;(0) = 0,

(8)1 £(¢3q2 + @3) + a(z1, w2, 73, 8)¢7 + 2143 + T2q1 + T3q2, O /Ds(0) # 0,0a/dz;(0) = 0,
(8)2 £(¢iq2 + @3) + 713 + a(x1, 22, T3, $)q3 + T2q1 + T3q2, O /Ds(0) # 0,0a/9z;(0) = 0,
where 1 =1,2,3.

The function germs « are called functional moduli. By definition of the one-parameter S.P*-
K-equivalence relation, functional moduli must satisfy some extra conditions; however, we do
not argue about such conditions here (cf. [17]).

In order to prove Theorem 6.1, we prepare some notations and results for the classification of
function germs. We use a method for the classification of function germs in [26, 27, 28].

Let F : (R x (R" xR xR),0) — (R,0) be a one-parameter family of graph-like Morse families
of hypersurfaces of the form

Flq,z,s,t) = Mg, z,s,t)(F(q,x,8) —t).

We write F(q,,s,t) = F(q,z,s) —t. For an unfolding F: (H}k x R" x R x R,0) — (R,0) of
flq,z,t) = f(q,x) —t, F is a 1-S.PT-K-versal deformation of f if

of of OF
(‘: x :<q79€afq7$ _t> —|—<q,x,1> +<5_> .
(g:2,1) 6q( ), f(g, ) . 5 (0 %) . 55 5= i

x

It follows that if

dim]R g(q,x,t)/ <<g‘§(Q7x)af(qax) - t>g(q‘z‘t) + <ax(qvx)a 1>gx> S 17

then
dimg Eq.¢)/ <<g£(q), flq) — t> + <1>R> <n+1.
€.t

However, the condition of 1-S.PT-K-versal deformations (that is, 1-S.P*-Legendrian stability
for corresponding Legendrian submanifold germs) is too strong for giving the classification. We
assume that F(q,z,s,t) is an S.PT-K-versal deformation of f(q,t), namely,
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oF oF >
.

0
g(q,t) = <(9‘£(Q7x)af(q7x) - t> + <1>R + < Oz |w s=0y 5 Ds ‘a::s:O

We give a quick review of the classification of S.PT-K-versal deformations with S.P*-K-cod
< 4. For details see [10]. Let F' and F' : (R* x R" x R,0) — (R, 0) be germs of unfoldings of f
and f': (R* xR,0) — (R,0), respectively. We say that F and F’ are S.P*-K (respectively, S.P-
KC)-equivalent if there exists a diffeomorphism germ @ : (R¥ x R™ x R,0) — (RF x R™ x R, 0) of

the form ®(q,u,t) = (¢1(q, u, 1), a(u), t + a(u)) (respectively, ®(q,u,t) = (¢1(q, u, 1), da(u), 1))
such that (F o <I>>8m ey = <F’>g(q vy We also say that F(q,u,t) is an S.PT-K (respectively,

S.P-K)-versal deformation of f :=F|Rk‘><0><IR if

P o8\ [ OF oF
Elq) = <f’8q1 g g(w)+ ot R+ ous ke xova--wauJkaoxR .

: of dg OF oF
(respectlvely, Eq.) <f7 20 ,8%>5( ) + <8 |RF xOXRs - - - 5 8ur|kaoxR>R)~

We say that f and f’ are S —K—equivalenf if there exists a diffeomorphism germ
®: (R* x R,0) — (R* x R,0)

of the form ®(q,t) = (¢(g,t),t) such that (f o <I>>5(q o= (f’>5(q .
For each germ of a function f : (R* x R,0) — (R, 0), we set

€

S.P-K-cod(f) = dimg &, /<f’ - ""gqi> ’
Elq,t)

. af af af
S.PT-K-cod(f) = dimg Exq4)/ <<f, FrRe 3Qk>g((m + <3t>R> .

Then we have the following classifications:

Theorem 6.2 ([10, Theorem 4.2]). Let f : (RF x R,0) — (R,0) be a function germ with S.P-
K-cod (f) <5. Then f is stably S-K-equivalent to one of the germs in the following list:

1) @, S.P-K-cod(f) = Ao,
(2)  £t+q?, SPICcod(f)fl, Aq,
(3) £t+q3, S.P-K-cod(f) =2; Ag,
(4)  Ht2 4¢3, S.P-K-cod(f) =2; Ba,
(5)  Ft+qf, S.P-K-cod(f) =3; As,
(6) 3442, S.P-K-cod(f) =3; Bs,
(1) ¢ £tq, S.P-K-cod(f) =3; Cs,
(8)  £t+47, S.P-K-cod(f) =4; Ay,
(9)  *t+ (@ £aigd). SP-K-od(f) =4 Di,
(10) &2+ ¢3, S.P-K-cod(f) =4; Fy,
(11)  +t* 4, S.P-K-cod(f) =4; By,
(12) qf £tqu, S.P-K-cod(f) =4; Cy,
(13) £t + ¢f, S.P-K-cod(f) =5; As,
(14) £t £ (i + qug3), SP-K-cod(f)=5; Ds,
(15) +t° + 43, S.P-K-cod(f) =5; Bs,
(16) ¢} *tqu, S.P-K-cod(f) =5; Cs.
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We can construct an S.P-K (respectively, S.P1-K)-versal deformation for each normal form
by the usual method (cf. [3]). Then the corresponding list is as follows:

S.P-K-versal deformations:
(1) q1,
+t+ q1 + uq,
+t + ¢} + u1q1 + uz,
+2 + q1 + ult + usg,
+t + qf 4+ u1qf + uaqy + us,
t3 +qi +u1t2 + ust + ug,
g+ tQ1 + U1Q1 + U2Q1 + us,
+t + ¢} + u1q] + u2qi + usq; + ua,
+t 4 (¢} i 0193) + w17 + u2qe + usqr + ua,
) £t + ‘h +uitqr + u2q1 + uss + ug,
) it‘l + ¢+ u1t3 + u2t2 + ust + ug,
) 4t + tQ1 + u1q1 + UzQ1 + U3Q1 + Uy,
) £t ¢ + uigf + uagd + uzq; + u4q1 + us,
) £t £ (q1 + 163) 4 u1q} + u2gs + usqr + uaga + us,
) :I:t5 +q? + u1t4 + u2t3 + u3t2 + ugt + us,
) @ £ tq1 + gt + uagt + usqi + uaqr + us.
S.P + IC versal deformations:

(2)
(3)
(4)
(5)
(6) £
(7)
(8)
(9)
(10
(11
(12
(13
(14
(15
(16

) a1,

) itiQU

) :i:t:l:ql +U1(J17

) 2 & q1 + vl,

) £t +qf + v14] + vaau,

) 753ﬂ:q1 +v1t+vg,

) & it‘h +v1q1 +”U2,

) £t £ qF +v1G} + v2qi + v3q},

) £t 4+ (¢} i 01G3) + v145 + v2q2 + v3q1,
0) £t + CI1 + vitqr + v2q1 + v3,

1) it‘* + ¢ +v1t2 + Ugt + vs,

2) ¢f £ t(h + Ulfh + v2q1 + 1)37

3) £t £ qf 4 viqi + vag? + v3q} + V441,

4) £t £ (‘h + q143) + 0147 + v243 + V3q1 + Vaga,
5) it5 +qf + vlt4 + v2t3 + v3t2 + v4t,

6)

1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
16) ¢7 £ tq1 + viqf + v2qi + v3GF + vagr.

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

We remark that the relation between S.PT-K-cod and S.P-K-cod is given by
S.PT-K —cod(f) = S.P-K —cod(f)+1
by [10, Proposition 3.5].
The following theorem is useful and important for our purpose (cf. [3]).

Theorem 6.3. Let F' and F' : (RF x R" xR, 0) — (R,0) be germs of functions which are S.P7 -
K (respectively, S.P-K)-versal deformations of f = Flrexoxr and [/ = F'|prxoxr TeSpPECtively.
Then F and F' are S.PT-K (respectively, S.P-K)-equivalent if and only if f and f' are S-K-
equivalent.
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Proof of Theorem 6.1. Let 1 < n < 3. We denote the set of one-parameter families of
Lagrangian submanifolds by L(U x V,T*(R"™ x R)), where U C R™ and V' C R are open do-
mains around the origin. The set of Lagrangian stable one-parameter families of Lagrangian
submanifolds is an open and dense subset in L(U x V,T*(R"™ x R)) (cf. [1, 2, 30]).

Therefore, by Corollary 2.10 and Theorem 5.1, we can give a classification of an S.PT-K-
versal deformation of one-parameter graph-like Legendrian unfoldings under the one-parameter
5-S.P*-K equivalence.

We consider the case of n = 3. Since the classifications in the cases n = 1 and n = 2 are given
by the similar method, we omit it. By Theorems 6.2, 6.3 and the form of

F(qaxasat) :F(Q7xas)_t7

F is stably S.Pt-K-equivalent to one of the germs in the following list:

(1) —t+q +vi+va+v3 -+,

(2) —t+q; +v1+v2+vs+ v,

(3) —t+qi +vigr + vz + vz +va,

(4) —tﬁ:qi‘—i—vqu—i-vgql + v3 + vy,

(5) —t+4q; +v1g} + vaqi + v3q1 + v,

(6) —t+(qf £q143) +v1g] + v2ga + v3q1 + va,
(7)  —t=+¢% +viq} +v2q} + v3¢3 + vaqu,

(8) —t+(qf £qad) +vid} + vags + v3ga + vaqu,

where (vi,ve,v3,v4) € (R*0). We would like to classify these germs by the one-parameter
s-S.P*-K-equivalence. By the above normal forms, there exists a germ of a diffeomorphism
¢ : (R x R,0) — (R*0) such that F is stably one-parameter s-S.P+-K-equivalent to one of the
germs in the following list:

(1) —t+aq +vi(x,s) +v2(x,s) +vs(x,s) + vg(x, s),

(2) —t+q+vi(x,s)+va(x,s) +v3(x,s) + valz, s),

(3) —t+qd+uvi(z,s)q1 +v2(x, s) +vs3(2, ) + va(w, 8),

(4) —t+qi +vi(z,8)q] +va(z, $)q + v3(z,s) + va(, ),

(5) —t+q +vi(z,8)g +va(w,5)q7 + va(w,s)q1 + va(z, 5),

(6) —t+ (¢ +q143) +vi(x,8)q] + va(x, 8)g2 + v3(x, s)q1 + va(z, 5),
(7)  —t+=£¢% +vi(x, 8)q} +vo(x,8)q +v3(z, 8)qF +valz, 8)qu,

(8) —t=£(qf £ qad) +vi(z,8)q} +va(z,5)g3 + vs(z,8)go + valz, 8)q1,

where x = (71,22, 23) € (R?,0). Since F is a one-parameter family of graph-like Morse families
of hypersurfaces, 0F/dq : (R* x R?® x R,0) — (R,0) is non-singular for each fixed s € (R,0),
that is, we have a rank condition
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By the rank condition, (1), (2) and (3) are one-parameter s-S.P-K-equivalent to
(1) —t+q, (2 —t+¢+mq, ) —t+d+n1q +ao,

respectively. In the case (4), we divide it into four cases: (Qv1/921)(0) # 0, (Ov1/0x2)(0) # 0,

(Ov1/0x3)(0) # 0 or (Qv1/0s)(0) # 0. In the first, second and third cases, F is one-parameter
s-S.P-K-equivalent to

(41 —t+qf + 216 + 2201 + 73.
In the fourth case, F is one-parameter s-S.P-K-equivalent to
(4)2 —t+4qi +a(z,s)gi +zoq1 + 3,
where a : (R? x R,0) — (R, 0) is a smooth function with the conditions
(0a/Ds)(0) # 0, (0ct/Dx;)(0) = 0,4 = 1,2, 3.
In the case (5), F is one-parameter s-S.PT-K-equivalent to

(5)1 —t+q} + 214 + w24} + w301,
()2 —t+q} +alz,s)d + x1q] + x2q1 + w3,
(B)s —t+q; +z1q; + alz, s)qi + zaq1 + T3,

where o : (R® x R,0) — (R, 0) is a smooth function with the conditions
(0a/0s)(0) # 0, (Oa/0x;)(0) = 0,4 = 1,2, 3.

In the cases (6) and (8), we can give the normal forms by the similar methods to those of the
case (4). Moreover, in the case (7), we can also give the normal forms by the similar methods
to those of the case (5). This completes the proof. O

Remark 6.4. In the generic classifications under one-parameter caustic equivalence in [1, 2, 30],
the functional moduli have a special form. For instance, the functional moduli of the type (7);
in Theorem 6.1 are equivalent to the form «(z, s) = s. Moreover, types (7)2 and (7)3 in Theorem
6.1 do not appear in the generic classifications under one-parameter caustic equivalence.

We give concrete examples of bifurcations of caustics for the types (7); and (7)s.

Example 6.5. Let F : (R x R* x R,0) — (R,0) be given by

F(qwrv S) =—t+ q6 + a(.’Ifl,xQ, X3, 8)q4 + $1q3 + 552612 + xr3qg,

where 0a/0s(0) # 0,0a/0z;(0) = 0,7 = 1,2,3. The one-parameter family of Lagrangian sub-
manifold germs L(F) : (C(F),0) — T*R? is given by L(F)(q,x,s) = (x,0F /0x(q,z,s)).
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If we take a(x,s) = s, then the one-parameter family of caustics is given by the image of
(u,v,8) = (v,—15u* — 6su? — 3uv,24u’® + 8su® + 3vu?); see Figure 1 (cf. [1, 2, 30]). If we
take a(r,s) = s + o2, then the the one-parameter family of caustics is given by the image of
(u,v,8) = (v, —15u — 6(s + v*)u? — 3uv, 24u® + 8(s + v?)u® + 3vu?); see Figure 2.

LLAKS

N

s

Figure 2. Type (7); with a(z,s) = s + 3.

Example 6.6. Let I : (R x R? x R,0) — (R, 0) be given by
F(Q7 z, S) =—t+ q6 + $1q4 + a(ﬂ?]_, xo,T3, 8)q3 + x2q2 + xraqg,

where da/ds(0) # 0,0a/0x;(0) = 0,i = 1,2,3. If we take a(x,s) = s + 22, then the one-
parameter family of caustics is given by the image of

(u,v,5) = (v, —15u" — 6vu® — 3(s + v*)u, 24u° + Svu® + 3(s + v*)u?);

see Figure 3.
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s=0
Figure 3. Type (7)o with a(z,s) = s + 3.
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SYMMETRIES OF SPECIAL 2-FLAGS

PIOTR MORMUL AND FERNAND PELLETIER

ABSTRACT. This work is a continuation of authors’ research interrupted in the year 2010.
Derived are recursive relations describing for the first time all infinitesimal symmetries of
special 2-flags (sometimes also misleadingly called ‘Goursat 2-flags’). When algorithmized to
the software level, they will give an answer filling in the gap in knowledge as of 2010: on one
side the local finite classification of special 2-flags known in lengths not exceeding four, on
the other side the existence of a continuous numerical modulus of that classification in length
seven.

1. INTRODUCTION

The paper is devoted to ‘special 2-flags’, that is, strictly speaking, to rank 3 distributions
generating special 2-flags. More particularly — to the symmetries of such distributions which
are embeddable in flows. We exhibit, for the first time, recursive relations which describe all
infinitesimal symmetries of special 2-flags. This is our main Theorem 2 in Section 7. The
path leading to it is not short, for it includes, apart from the most basic definitions, also the
recollection, in section 5.1, of the main bricks of the theory — the so-called singularity classes
of special 2-flags. The initial data for those recurrences are triples of free smooth functions of
three variables. Then, upon knowing the components of a symmetry up to certain flag’s length,
we derive closed form formulas for the pair of symmetry’s components in the length augmented
by one. In this way all infinitesimal symmetries are found, and, later, started to be used in the
local classification issues for special 2-flags. As for this restricted class of objects, it is precisely
defined below in Section 2.

Prior to that, however, we give, for the reader’s orientation, some general information about
the symmetries of some classes of subbundles (= geometric distributions) in the tangent bundles
to manifolds. It appears that the size of a symmetry group may dramatically vary in function
of a distribution.

There circulates a widely acknowledged folk theorem (cf. section 4 in [23] and p. 86 in [10])
saying that, outside the so-called stable range, distributions generic enough do not possess any
nontrivial, even only local, symmetry. More to the point, in concrete classical classes of subbun-
dles in the tangent bundle, like the ‘3,5’ or ‘4,7’ distributions, the (Lie) groups of symmetries
are severely restricted in size: not bigger than 14-dimensional in the former (and maximal in the
flat case, when the Cartan tensor — [3] — vanishes; [10], p.88 and [2], p.456), and not bigger
than 21-dimensional in the latter (and maximal for the instanton distribution, [10], p.90). It
goes by itself that likewise restricted in size are the Lie algebras of vector fields — infinitesimal
symmetries. (They always form a Lie algebra due to the Jacobi identity.)

It is quite to the contrary for the geometrical objects discussed in this work. Namely, by
virtue of their rather stringent definition, the algebras of infinitesimal symetries are infinite-
dimensional. Much like it is the case for the 1-flags, i.e., Goursat flags discussed here in con-
siderable length, in the guise of ‘forerunners’; in — still introductory — Sections 3 and 4. (This
discussion culminates in reproducing here a 1999 Theorem 1, for which a new, much more legible
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proof is now given. That new proof is instrumental for the main Section 7 of the present work.
The infinitesimal symmetries for Goursat structures are parametrized by one free function of
three variables — a so-called contact hamiltonian.)

2. DEFINITION OF SPECIAL 2-FLAGS

We start with basic motivations and consider first 2-flags of length 1. That is, rank 3 distribu-
tions D C TM, dim M = 5 such that D + [D, D] = TM (or, the same thing, [D, D] = TM, for
D c [D, D] whenever D is a distribution). In other words, the first order Lie brackets generate
all the remaining tangent directions; distribution is ‘two-step’. One thus enters the domain of
the classical ‘cing variables’ work [3]. It was shown there that every such two step D possessed
uniquely determined corank 1 subdistribution F' enjoying the property

(1) [F, Flc D

(see equations (4) on p.121 in [3]). Cartan calls such an accompanying subdistribution F le
systeme covariant of the Pfaffian system D. Cartan firstly discerns a highly particular situation
(a) when [F, F] = F identically in the vicinity of a point. As a consequence, he infers that, in
certain local coordinates t, 20, y°, z', y!, D gets description

de® — 2tdt = 0 = dy® — y'dt.

In contemporary terminology, such D is, up to a local coordinate change, the classical
Cartan distribution, or contact system, on the jet space J!'(1,2) of the 1-jets of functions

0
R(t) — R%*(z, y), with 2! = % and y! = ddit. Its corank 1 covariant subdistribution F
(reiterating, involutive in situation (a)!) is in these coordinates just span (4 , 8%1). In all what

follows we will skip the symbol ‘span’ before a set of vector field generators.

By far more interesting is Cartan’s situation (b) [F, F] = D in the vicinity of a given point.
The covariant object F' has then its ‘curvature’ and D is retrievable from F' alone. We note that
situation (b) is extremely rich geometrically and hides a functional modulus (one function of five
variables) of the local classification of ‘3,5 distributions with respect to the diffeomorphisms of
base manifold.

We say that a general such D (with no extra information as to (a) or (b)) generates a 2-flag
of length 1, while a D with its covariant system F' involutive generates a special 2-flag of length
1. Therefore, the adjective ‘special’ in length 1 locally means nothing but ‘jet-like’. How does it
look like in bigger lengths/higher jets?

Let us analyze the contact system D on a concrete jet space J"(1,2) =: M with r > 1. The
main observation is that the sequence of modules of vector fields — consecutive Lie squares of D,

(2) TM=D">D'>D?> ... >D"'>D",

where D" = D and [D?, Di) = D’~! for j=r,r —1,..., 2, 1, grows in ranks regularly by two:
3,5, 7,...,2r+1,2(r+1) + 1 = dim M independently of the underlying points in M. (Pay
attention to the indexation, which starts with the biggest index r, following the notation put

forward in [11].) The reason is that in passing from D7 to D?~! one forgets about the j-th order
derivatives, so that

. .0 0
Jj—1 _ J
(3) D (D, 927 8yj>'

I Situations (a) and (b) do not exhaust all possibilities of the local behaviour of F;
Elie Cartan used to be interested in clear situations only.
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Therefore, all these modules of vector fields are actually distributions which together form a
2-flag of length r on M. Let us scrutinize the members of this flag. The natural coordinates
in J7(1,2) are t, 20, 90, x, y!, ..., 2", y", where 2/ = d””djtfl, Yl = %{1 forj=1,2,...,r. In
these coordinates the member D! in (2) has a Pfaffian description dz® — z'dt = 0 = dy° — y'dt,
hence it manifestly contains a corank 1 involutive subdistribution

0 0
F: = e — 7.. 1< ’< .
(31’3’ oy’ _j_r)

Likewise, the next smaller member D? has description
(4) de® — 2tdt = dy® — ytdt = 0 = dat — 22dt = dy' — odt,

hence contains a corank 1 involutive subdistribution

9 9, i,

Oz’ Oyl T T~ J=r)
The key point is that the latter happens to be the Cauchy-characteristic module of D!, de-
noted by L(D') as in [11].2 This pattern replicates itself all the way down the flag. The

Pfaffian systems describing D7 gradually get larger sets of Pfaffian equations generators, while
the Cauchy-characteristic modules get (with a shift in indices!) thinner. In fact, for 1 < j < r,

L(Dj)=(ais, a%s; j+1§ssr)

sits inside DJT! as a corank 1 subdistribution. For instance L(D"7!) is a field of planes
(2, é%r) sitting inside a field of 3-spaces D", while L(D") = (0). Moreover all these geometric
objects nicely fit together into Sandwich Diagram, so called after a similar (if not identical)

diagram assembled for Goursat distributions, or 1-flags, in [11]:

T™ =D > pt > Dp* o> ... > D' > Dr
U U U U
F > LMY > -+ D> LD2) > LDO~Y > LD")=0.

All vertical inclusions in the diagram are of codimension one, while all (drawn) horizontal in-
clusions are of codimension 2. The squares built by these inclusions can, indeed, be perceived
as certain ‘sandwiches’. For instance, in the leftmost sandwich F and D? are as if fillings,
while D' and L(D') constitute the covers (of dimensions differing by 3, one has to admit). At
that, the sum 2 + 1 of codimensions, in D', of F and D? equals the dimension of the quotient
space D'/L(D%), so that it is natural to ask how the 2-dimensional plane F/L(D') and the line
D?/L(D*') are mutually positioned in D'/L(D'): do they intersect regularly, or else the plane
subsumes the line?® Clearly, that question imposes by itself in further sandwiches ‘indexed’ by
the upper right vertices D3, D%, ..., D", as well.

This question has a trivial answer for the Cartan distribution D = D" analyzed above (all
intersections are regular when r > 2). Yet a more pertinent question would be the following.

Assume the existence of Sandwich Diagram with all its above-listed dimensions, inclusions,
involutivenesses and call such rank 3 distributions D" generating special 2-flags of length r.

2ForD-a distribution, L(D) is, by definition, the module of Cauchy-characteristic vector fields with values in
D infinitesimally preserving D. That module is automatically (the Jacobi identity) closed under the Lie bracket.
It is noteworthy that for all the particular distributions D occurring in the present work, L(D) C D is always
not just a module included in D, but an involutive subdistribution of D of corank 2 (or 3, respectively) when
m =1 (or 2, repectively).
The answer to this question suffices to geometrically tell the object (5) below from (4).
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Are then those D" locally ‘jet-like’, that is — locally equivalent to the Cartan contact distribution
on J"(1,2)7

For r = 1, we reiterate, yes ([3]), but for r = 2 already not. There suffices to seemingly slightly
modify system (4) to

(5) de® — 2tdt = dy® — yldt = 0 = dt — 22dxt = dy' — y2dat .

This rank 3 distribution on R” does generate a special 2-flag of length 2, yet is not locally equiv-
alent to the ‘jet-like’ one around every point with 2% = 0 (cf. [16], Prop. 1 (iii)). The argument
there has been that the object (5) has at points 22 = 0 the small growth vector® (3,5,6,7),
while the contact system on J2(1,2) has everywhere the small growth vector (3,5,7). Another,
possibly even simpler argument is that at points 22 = 0 there is no regular intersection in the
only sandwich existing in that length: the line D?/L(D%) collapses onto the plane F/L(D?'),
while the analogous line for (4) collapses nowhere.

Therefore it follows that the local theory of special multi-flags is not ‘void’ in the sense of
boiling down to the contact systems on the jet spaces for curves. In fact, this theory is already
fairly rich and still developing, including this work.

Let us reiterate the importance of ‘special’ for 2-flags to be tractable (and the same for multi-
flags in general). Special, by the way of Sandwich Diagram, brings in so much stiffness as to
result in the local models with numerical moduli only, no functional ones. While functional
moduli, by simple and widely known dimension counts (cf., for instance, section 3 in [23]) are
a commonplace in the local geometry of subbundles in tangent bundles. Even the already
mentioned paper [3] about 2-flags of length 1 is not yet fully understood! On the other side, the
initial departing models for us — contact systems on the jet spaces — are nowadays viewed as just
the simplest ‘baby’ realizations of the special multi-flags.

Attention. This theory is even more neat in that it does not necessitate a definition via Sandwich
Diagram as such. For it follows from the important works [1, 21] that, upon assuming only the
properties of the upper row in Sandwich Diagram and the existence of a whatever corank one
involutive subdistribution F in D', one automatically gets Sandwich Diagram in its entirety!
In fact, (i)such an F is then unique, (ii) for j =1, 2,..., r — 1 there holds

L(DY)=D"'nF,
(iii) L(D") = (0) and (iv) the L(D7)’s are corank 1 subdistributions in D’*! so that Sandwich
Diagram entirely holds.

Now that the focus is again on Sandwich Diagram, the ongoing question bears on the local
geometry in the sandwiches ‘indexed’ by the upper right vertices D?, D3, ..., D". It naturally
opens the way towards singularities. The first step in that direction is a, fairly rough, stratifica-
tion of germs of special 2-flags into so-called sandwich classes — see the beginning of section 5.1.

The second is further partitioning of sandwich classes into singularity classes, in the follow up
of section 5.1.

3. KUMPERA-RUIZ WATCHING GLASSES FOR (GOURSAT DISTRIBUTIONS

In order to gently introduce the reader to the main techniques of the paper, we present in this
section a test case — derive the formulas for the infinitesimal symmetries of Goursat distributions
which generate 1-flags. This will be instrumental during the presentation of similar things to-
be-derived for special 2-flags in paper’s subsequent sections.

4 The small growth vector of a distribution D at a point p is the sequence of integers (dim Vj(p))j>1, where
Vi =D, Vjy1 =V; +[D, Vj], which ends on the first biggest entry.
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Recalling, a rank 2 distribution on a manifold M is Goursat when the tower of its consecutive
Lie squares, understood as modules of vector fields, consist uniquely of regular distributions of
ranks 3, 4, 5, ... until n = dim M.

With no loss in generality, Goursat distributions understood locally live on the stages of
Goursat Monster Tower (GMT for short), by some authors called alternatively Semple Tower.
The stages have been denoted in [12] by P"R2, r > 2. (On the stage P"R? there lives a Goursat
distribution of corank r.) The best glasses to watch Goursat distributions are Kumpera-Ruiz
coordinates (KR for short), [9]. Those are semi-global sets of coordinates (their domain of
definition is always dense in a given tower’s stage) which critically depend on the strata of a
most natural stratification of any given stage P'R? — so-called Kumpera-Ruiz classes, KR-classes
for short, see [11], p.466. They exist in P"R? in number 2"~2 and are univocally labelled by the
words of length r over the alphabet {1, 2}, with two first letters always 1: 1.1.43.44....4-. (In
[11] they were originally labelled by the subsets I C {3, 4,..., r}, a given I consisting of the
indices j such that i; = 2.) The KR classes are the main tool in the introductory part of our
paper. Their generalizations for special 2-flags, so-called singularity classes, will play a similar
role in the main part of the present contribution from Section 5 onwards.

To each KR-class attached are handy coordinates making that class wvisible. More precisely,
due to the particular topology of the two lowest Monster’s stages P'R? and P?R2, they both are
unions of pairs of open dense subsets, P'R? = U; U Uy and P?R? = V; U V4 such that, for each
KR-class C = 1.1.43.144. ..., and indices j, k € {1, 2}

(6) cn 7T7‘T11(Uj) n erzl(vk)
sits in the domain of Kumpera-Ruiz coordinates 1, x2, ..., .42 produced precisely for the data
C’ j7 k'

Remark 1. The open dense sets U; and Vj, are related to the ways the Darboux theorem (in
the contact 3D manifold P*R?) and Engel theorem (in the Engel 4D manifold P2R?) come into
effect. In those coordinates

(7) A" = (Y], 0,42)

where, in what follows, d; = % and Y[r] is a polynomial vector field defined recursively as
follows.

Initially Y[1] = 91 + 239y and Y[2] = Y[1] + 2%95. When, for j > 3, Y[j — 1] is already
defined and i; = 1, then Y[j] = Y[j — 1] + 27720;41. In the opposite case of i; = 2 one puts
Y[j] = 7T?Y[j — 1] + 8;41. The eventual vector field Y[r] in (7) is, therefore, polynomial of
degree (1 + the # of letters 2 in the code of C). That degree is maximal (and equal r — 1) when
the underlying KR-class is 1.1.2.2...2 (r — 2 letters 2 past the initial segment 1.1).

Remark 2. Whenever i; = 2 in the code of C, the variable 2712 brought in at the j-th step
of the above procedure wvanishes at points of (6). This is a key property of the polynomial
visualisations of Goursat distributions put forward in [9].

The KR-classes are invariant with respect to the local diffeomorphisms of Monster’s relevant
stages. They are only very rough approximations to local models (local normal forms). To really
approach the orbits, one would need to know the (pseudo-)groups of infinitesimal symmetries
of the structures A" living on P"R2. Those groups are infinite-dimensional, for they consist
of due prolongations of the contact vector fields which preserve the contact structure A'. In
order to see them, one puts on, no wonder, KR-glasses. That is, works and computes in chosen
KR-coordinates.
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4. INFINITESIMAL SYMMETRIES OF (GOURSAT FLAGS

From now on we assume that KR~coordinates, pertinent for a fixed KR-class in length r, have
been picked and frozen. In these coordinates, every concrete infinitesimal symmetry writes down
as Yy = >.._, F'0;, where the first three components are functions of one (smooth) generating
function in three variables, say f(z!, 22, 2%):

(8) F'=—f5, F?=f—2fs, FP=fi+a%f,

and the remaining components are other, more complicated functions of f depending on the
KR-class in question, as will be recalled in what follows. Such one free function f is called a
contact hamiltonian; the infinite dimensionality of the symmetry pseudogroup is visible.

When a vector field )y preserves infinitesimally the Goursat A", the truncations of )V, do
infinitesimally preseve all the earlier (older) Goursat structures showing up in the process of
building up A". In fact, each component F*, s =4, 5,..., r 4+ 2, depends only on the variables
2, 22,..., 2% and
42
Y Fo;, A

i=1

(9) c AJ

for j = 1,2,...,r, where AJ = (Y[j], 8j+2), as in (7). This technically central statement
is well-known in the theory of Goursat structures, compare for instance Proposition 1 in [14].
Besides, this triangle nature of the infinitesimal symmetries of Goursat structures will be clearly
visible in the recurrences that are produced below. The first prolongation of an infinitesimal
contactomorphism Zle Fi9; is Z?:l F'9;, and the new component is univocally determined
by the previous ones,

(10) F*=Y[2]F® - z*Y[2]F!,

compare p. 222 in [14]. Reiterating, the components F'! and F? entering formula (10) depend on
the first three variables, and the field Y'[2] differentiates them accordingly. In the outcome, the
component F* depends on the first four variables, and so it goes further on. (This formula is,
in fact, subsumed in the line of derivations that follow. It is given here prior to more involved
relations that depend already on the KR-class underlying the KR coordinates in use.)

We work with a fixed class C = 1.1.43.44. ..., and with a fixed letter 7; in its code, j > 3.
In order to word the recurrences governing the infinitesimal symmetries of C, we need a

Definition of s(j) for Goursat flags. There can, or cannot, be letters 2 before the letter ;.

() 0, when there is no letter 2 in the code of C before i, ,
s(7): =
J s, the farthest position of a letter 2 before ¢; is s, in the opposite case.

Theorem 1 ([13]). Suppose that the components F1, F2 ... FITL >3 of an infinitesimal
symmetry Yy of A" in the vicinity of a KR-class C = 1.1.13.i4....%, are already known. When
i =1, then

pite _ JYUIFT = a2V 2P, when s(j) =0,
Y[j]F/H — 272Y [s(5)]F*9) 1 when s(j) > 3

When i; = 2, then
22 (Y[2)F! — Y[j]Fj+1), when s(j) =
w2 (YIs()[F @+ = Y[IFH), when s(j) >

)

it
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Note before the proof that, on the whole, there are 272 versions of the formulas for the
component function F7*2, all of them encoded in this theorem. For that many KR-classes
exist in length j. Those formulas are polynomials in the x variables, of growing degrees, with
coefficients — partials (of growing orders) of a contact hamiltonian f.

The original proof of this theorem occupied full four pages in [13]. Now we are going to
re-prove it in a much shorter manner. Then this new method will be generalized and applied to
the 2-flags’ case in the sections that follow.

To begin with, the truncation of the field V¢ to the Monster level j, 23212 Fi9;, preserves the
Goursat structure A/, as is noted already in (9). Implying, that

j+2

(11) D F0;, Y| = Y] + ;019
i=1

for certain unspecified functions a; and b; of variables z!,..., 2772,

Now we consider the situation i; = 1. Remembering the construction of the field Y[j] when
the underlying KR-class is C:
e when s(j) = 0, the first (91) component on the LHS of (11) is —Y[2]F!. And
oo when s(j) >3, the (s(j)+1)-st component on the LHS of (11) is
~Y[s(j)]|F*D+1. So

~Y[2|F!, when s(j) =0,

(12) a; = . NRY 3
~Y[s(j)]F*D+ when s(j) > 3.

One compares now the (j 4+ 1)-st components on the both sides of (11), obtaining
FIt2 Y[t = q; 2712,

Substituting on the RHS here the expressions (12) in due order, one gets closed form formulas for
the 912 — component function F7*2, as invoiced in the theorem. As for the coefficient function
bj in (11), it is — here and in what follows later — ascertained last, after finding out F7*2.

In the situation ¢; = 2 the arguments differ only technically. Now, regardless of the value of
s(j), the coefficient a; can be extracted from (11) at the level d;11: on the LHS it is —Y [j]F7*!,
and it is a plain a; on the RHS. Hence

(13) a; = —Y[j]Fi+t.

Then, no wonder, one compares the coefficients in (11) at: 9y, when s(j) = 0, or else at Os(j)+15
when s(j) > 3. In the former case one fetches on the LHS the quantity F/2 — 272 Y [2]F!. In
the latter, the quantity FI*2 — 27 +2Y [s(j)]Fs()+1,

At the same time one fetches a; 2772 on the RHS, just irrelevantly of the case in question.
That is, accounting for (13),

Fit? i P2y [2]F! = —Y[j]FItt 27 %2
(when s(j) = 0), or else
2 _ g2y [s(j)|FRUr =y [f it g2

(when s(j) > 3). A closed form formula for F/*2 invoiced earlier, follows immediately. Only
then the b; coefficient is got hold of. In order to conclude that the ascertained vector field
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actually is a symmetry of A" one observes that, in each of the underlying 2"~2 situations,

r+2

Z Fi0;, Opya
i—1

= ( - 3r+2FT+2) Or12,

because only its last component function F" 12 depends on the last variable z"+2. Theorem 1 is
now proved. O

5. SPECIAL 2-FLAGS: A BASIC TOOLKIT

Special 2-flags constitute a natural follow-up to Goursat flags. The latter compactify (in
certain precise sense) the contact Cartan distributions on the jet spaces J"(1,1), while the
former do the same with respect to the jet spaces J"(1,2).

Sequences of Cartan prolongations of rank 3 distributions are the key players in producing
(only locally, though) virtually all rank 3 distributions generating special 2-flags. There quickly
emerges an immense tree of singularities of positive codimensions, all of them adjoining the
unique open dense Cartan-like strata.

While the local classification problem is well advanced for the Goursat flags, most notably
after the work [12], it is much less advanced for special 2-flags (or, more generally, for special
multi-flags). It was first attacked in [8], then, in the chronological order, in: [15], [16], [22],
[21], [17], [1], and [18]. After the year 2010 researchers were aiming at defining various invari-
ant stratifications in the spaces of germs of special multi-flags: [19], [6], [5], [20]. The actual
state of the art is reflected in a recent summarizing work [4]. The works [19] and [20] stand
out due to a kinematical interpretation of the special 2-flags developed in them. Namely, a
model of an articulated arm in the 3D space with an engine, or a spacecraft with attached string
of satellites. The singularities related to various possible distributions of right angles between
neighbouring segments are already well understood and encoded. However, the issue of con-
structing a kinematics-driven fine stratification analogous to Jean’s one [7] of the car + trailers
systems (modelling 1-flags) in terms of Jean’s critical angles, is not yet solved. In particular, a
faithful expression of the classes in the benchmark work [4], in the terms of an articulated arm
in 3D space, seems to be out of reach. The issue mentioned above is, most likely, equivalent to
that of computing all small growth vectors for distributions generating special 2-flags.

In the work [18] there was completed only the classification of special 2-flags in lengths not
exceeding 4. At that time the machinery of infinitesimal symmetries for those objects was far
from being assembled and the techniques in use were rather disparate. This notwithstanding,
the precise number (34) of local equivalence classes of special 2-flags in length 4 was ascertained
there (cf. the table below).

The driving force of the present work are the singularity classes (in the occurrence — of special
2-flags) known for 17 years already, [15]. They are technically most important for our purposes
and results. We briefly recall their construction in the next section. For reader’s convenience,
here is the table of cardinalities of singularity classes, RV classes of Castro et al [4], and classes
of the local equivalence of the special 2-flags, in function of flag’s lengths not exceeding 7:

5 Some researchers, e.g. in [5], use, instead of ‘special multi-flags’ a somehow misleading synonym ‘Goursat
multi-flags’.
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’ length H # sing classes \ # RV classes H # orbits ‘

2 2 2 2
3 5 6 7
4 14 23 34
5 41 98 ?
6 122 433 77
7 365 1935 00
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Question. How to partition a given singularity class of special 2-flags into (much finer!) RV
classes of [4] 7 And, all the more so, for special m-flags, m > 27!

5.1. Singularity classes of special 2-flags refining the sandwich classes. We first divide
all existing germs of special 2-flags of length 7 into 2"~! pairwise disjoint sandwich classes in
function of the geometry of the distinguished spaces in the sandwiches (at the reference point for
a germ) in Sandwich Diagram on p. 3, and label those aggregates of germs by words of length r
over the alphabet {1, 2} starting (on the left) with 1, having the second cipher 2 iff D2(p) C F(p),
and for 3 < j < r having the j-th cipher 2 iff D7(p) C L(D7=2)(p). More details about the
sandwich classes are given in section 1.2 in [18].

This construction puts in relief possible non-transverse situations in the sandwiches. For
instance, the second cipher is 2 iff the line D?(p)/L(D')(p) is not transverse, in the space
DY(p)/L(D%), to the codimension one subspace F(p)/L(D')(p), and similarly in further sand-
wiches. This resembles very much the KR-classes of Goursat germs constructed in [11]. In
length 7 the number of sandwiches has then been r — 2 (and so the # of KR classes 2"~2). For
2-flags the number of sandwiches is 7 — 1 because the covariant distribution of D! comes into
play and gives rise to one additional sandwich.

Passing to the main construction underlying our present contribution, we refine further the
singularities of special 2-flags and recall from [15] how one passes from the sandwich classes to
singularity classes. In fact, to any germ F of a special 2-flag associated is a word W(F) over the
alphabet {1,2,3}, called the ‘singularity class’ of F. It is a specification of the word ‘sandwich
class’ for F (this last being over, reiterating, the alphabet {1,2}) with the letters 2 replaced
either by 2 or 3, in function of the geometry of F.

In the definition that follows we keep fixed the germ of a rank-3 distribution D at p € M,
generating on M a special 2-flag F of length r.

Suppose that in the sandwich class C of D at p there appears somewhere, for the first time
when reading from the left to right, the letter 2 = j,, (j is, as we know, not the first letter
in C) and that there are in C other letters 2 = js, m < s, as well. We will specify each such
Jjs to one of the two: 2 or 3. (The specification of that first j,, = 2 will be made later and
will be trivial.) Let the nearest 2 standing to the left to js be 2 = j;, m < t < s. These two
‘neighbouring’ letters 2 are separated in C by [ = s —t —1 > 0 letters 1.

The gist of the construction consists in taking the small flag of precisely original flag’s member

D?,
DP=VicVocVzCcV,CcVsC---,

Vig1 = Vi+[D?, V], then focusing precisely on this new flag’s member V51 3. Reiterating, in the

t-th sandwich, there holds the inclusion: F(p) D D?(p) when t = 2, or else L(D'~2)(p) D D'(p)

when ¢ > 2. This serves as a preparation to our punch line (cf. [15, 17]).

Surprisingly perhaps, specifying js to 3 goes via replacing D? by V5,4 3 in the relevant sandwich
inclusion at the reference point. That is to say, js = 2 is being specified to 3 if and only if
F(p) D Varr3(p) (when t = 2) or else L(D'=2)(p) D Va13(p) (when ¢ > 2) holds.
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In this way all non-first letters 2 in C are, one independently of another, specified to 2 or 3.
Having that done, one simply replaces the first letter 2 by 2, and altogether obtains a word over
{1, 2, 3}. It is the singularity class W(F) of F at p.

Example. In length 4 there exist the following fourteen singularity classes: 1.1.1.1, 1.1.1.2;
1.1.2.1, 1.1.2.2, 1.1.2.3; 1.2.1.1.6 1.2.1.2, 1.2.1.3, 1.2.2.1, 1.2.2.2, 1.2.2.3, 1.2.3.1, 1.2.3.2,
1.2.3.3. (cf. the table on p.9).

(In length r the # of singularity classes is 3 (377! +1); the codimension of a class equals the #
of 2’s plus twice the # of 3’s in the relevant code word.)

5.2. New approach in the classification problem. A new (2017) approach to the local
classification of flags starts with the effective (recursive) computation of all infinitesimal symme-
tries of special 2-flags, extending the work done (in [13]) for 1-flags, reproduced with essential
shortcuts in Section 4 above. The recursive patterns depend uniquely on the singularity classes
of special 2-flags recapitulated above. Those classes are coarser, yes, but much fewer — see the
table preceding section 5.1 — than the RV classes summarized (and so neatly systematized) in
[4].

Polynomial visualisations of objects in the singularity classes, recalled in Section 6, are called
EKR'’s (Extended Kumpera-Ruiz). They ‘only’ feature finite families of real parameters. Then
the local classification problem is rephrased as a search for ultimate normalizations among such
families of parameters. Having an explicit hold of the infinitesimal symmetries at each prolon-
gation step, the freedom in varying those parameters will be ultimately reduced to solvability
questions of (typically huge) systems of linear equations.

In fact, that linear algebra involves only partial derivatives, at the reference point, of the first
three components of a given infinitesimal symmetry which are completely free functions of 3
variables (Lemma 1). Keeping the preceding part of a germ of a flag in question frozen imposes
a sizeable set of linear conditions upon those derivatives up to certain order. Then some other
linear combinations of them appear, or not, to be free — just in function of the local geometry of
the prolonged distribution. This, in short, would determine the scope of possible normalizations
in the new (emerging from prolongation) part of EKR’s. See sections 8.1 and 8.2 below for more
details.

6. EKR GLASSES FOR SINGULARITY CLASSES OF SPECIAL 2-FLAGS

According to section 5.1, the singularity classes of special 2-flags of length r are univocally
encoded by words of length r over the alphabet {1, 2, 3} such that: -the first letter is always 1,
and - a letter 3, if any, must be preceded by a letter 2. That is to say, abusing notation a bit,
for a singularity class C = 1.ig.i3...14, over {1,2,3}, a letter iy is either 1 or 2, and a letter 3
may show up not earlier than at the 3rd position, provided there is a letter 2 before it. (We call
it, especially in the wider context of special m-flags with arbitrary m, ‘the least upward jumps
rule’, cf. [16].)

For instance, C = 1.2.3 is a legitimate singularity class of length 3 (and, in the occurrence, of
codimension three in the pertinent Monster’s stage No 3).

For each such C we are going to introduce coordinates, in the number of 2r + 3,
(14) L T A TS N T
in which the special rank 3 distribution — let us, from now on, call it A" again — living on the

Monster’s r-th stage becomes visible. Those coordinates, we reiterate it, will sensitively depend

6 See section 8.2 for more information about precisely this class.
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on a class C. In fact, skipping the geometric and also Lie-algebra-related arguments presented
in detail in [17], within the domain of those coordinates (subsuming the class C),

(15) A" = (Z[T], B, ayr> :

where the vector field Z[r] is being defined recursively, shadowing step after step the code
L.is.ig...i, of C. The beginning of recurrence is Z[1] = 9, + z' 9,0 + y' 9,0, and, quite simply,

Al = (Z[l}, Oy, 3y1> on R3(t, 2% 40 b yl).

In the recurrence step one assumes description (15) known for j — 1 in the place of r, where
1<j—1<r—1, and puts

Zlj =14+ 2701 +y?0yi-1, wheni; =1,
(16) Z[j] = a7 Z[j — 1] + Opi—1r + 3 Dyi—1, when i; =2,
sz[j71]+yjaxj71 +8yj71, when ij =3.

In the end of this recurrence (for j = r) the description (15) tout court is arrived at, on R?"+3
in the variables (14). The final first vector field’ generator Z[r| is a, possibly deeply involved (in
function of C), polynomial vector field.

Our objective is to ascertain all infinitesimal symmetries ) of (15) in the vicinity of any
particular class C. They will, no wonder, sensitively depend on C, too. Let us have such )
expanded in EKR coordinates chosen for C:

(17) Y = A0+ Bw+Cyy+ Y (F 00 +G* 0y ).

s=1

The first key property (needed later) is
Lemma 1. The component functions A, B, C in (17) depend only on the variables t, x°, 3°.

Proof of Lemma 1. The reason is that, whatever the class C, in the chosen EKR coordinates
associated to C the bottom row in Sandwich Diagram has formally the same description as for
the Cartan contact system on J"(1,2). In particular, because the relations (3) keep holding true
in the vicinity of C in these coordinates, the covariant subdistribution F of D! is there invariably
of the form

F = (6:,01, 8yi; ISZST)

The symmetry ), preserving A” =: D, preserves the derived flag (D7 )jO:T of D, so preserves

this F, too. Hence the first three components of )’ cannot depend on the variables z* and y* for
1 <i <r, as stated in the lemma. O

Remark 3. Note, however, one essential difference with the 1-flags in that here are three free
functions in the base of the theory, instead of just one contact hamiltonian there (in formulas

(8))-
As before, one needs some additional information about the code of C. So for j =2, 3,...,r
we define
)0, when io,..., 71 =1,
s) = max{s: 2<s<j & is > 1}, in the opposite case.
Note that when s(j) > 2, then iy;) = 2 or else iy;) = 3. These two distinct (and disjoint)

geometric situations account for bigger complexity of the recurrences to be produced. (The
eventail of possible singularities of special 2-flags is much wider than for Goursat.)
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7. INFINITESIMAL SYMMETRIES OF SPECIAL 2-FLAGS
BROUGHT UNDER CONTROL

Our main theorem of the paper, Theorem 2 below, shows that every infinitesimal symmetry is
uniquely determined by the singularity class under consideration together with symmetry’s first
three component functions, denoted traditionally A, B, C, in an explicit, algorithmically
computable manner. Namely,

Theorem 2. Let U be the domain of EKR coordinates (14) chosen for an arbitrarily fized singu-
larity class 1.45.13 . ...1,.. In those coordinates, all infinitesimal symmetries Y of A" restricted
to U are of a particular form (17), where A, B, C are free smooth functions of only t, z°, y°
and the F*, G*, 1 < s < r, are univocally recursively determined by A, B, C' and the class code,
according to the formulae given in (20) and Lemmas 2, 3 and 4 below.

PROOF. We are going to ascertain one by one (or rather two by two) the consecutive com-
ponents of vector fields ) in (17) above, from F'' and G on, given the initial arbitrary function
data A, B, C. To this end we will use the truncations Y[j] of ) to the spaces of coordinates of

indices < j, =1, 2,..., r, on which the distributions A7 live:
J

(18) Vil = A0 + By + Cyy + > (F Ope + G ays).
s=1

Attention. The formulas (20) right below and in Lemmas 2, 3 and 4 below are, in the first place,
only necessary for ) to be a true symmetry of A”. They became also sufficient in the last part
of our (long) proof of Theorem 2.

To begin with, let us demonstrate the argument on the ‘baby’ components F! and G'. The
infinitesimal invariance condition
V[, A'] c Al
clearly implies
(19) V], Z[1]] = a1 Z[1] + b10,1 + 10,1,

which in turn implies a; = —Z[1]A. At the same time F'—ZB[1] = a; 2! and G'—-Z[1]C = a; y*.
Putting all this together,

% F' = Z[1]B - 2'Z[1]A,
(20 Gl = Z[1)C -y Z[1]A.

So indeed the pair of new components in Y[1] is univocally determined by the base components
A, B, C. As for the coefficients by and ¢; in (19), they get ascertained only after F! and G! are
found.

This inference is an instance of a general

Lemma 2. Assuming that an infinitesimal symmetry Y[j — 1] of AJ™1 is already known for
certain 2 < j <r, in the situation i; = 1, the 9,5 — and d,; — components of the prolongation
YIj] of Y[j — 1] are as follows

. Z[jIFi—t — 29 Z[1]A, when s(j) =
FI = Z[j|F7~' — 27 Z[s(§)]|F*9)~1,  when s(j)
)

0,
Z 27 Zs(]) = 27
ZIJIFI~Y — 291 Z[s()]G*U) 1, when s(j) > 2, i

Zs(j) =3.
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Z[j1GI — i Z[1]A, when s(j) =0,
G7 = Z[HIGI = i Z[s()|F*D 71 when s(j) > 2, iy =2,
Z[FIGI™Y — ¢ Z[s()]G*D 1, when s(j) > 2, iy = 3.

Proof of Lemma 2. The vector field V[j] infinitesimally preserves the distribution A7, whence
(21) YU1s Z61 = a;Z[5) + bj Oas + ¢ Oys

for certain unspecified functions a;, b;, ¢;. The coefficient a; is of central importance here. We
typically work, here and in what will follow later, in the following order: - we firstly ascertain a;,
-secondly find (this is most important) F7 and G7, - eventually ascertain the values of b; and c;.

The function a; can be extracted from (21) by watching this vector equation on the level of
such a component of Z[j] which is identically 1. Inspecting the stepwise construction that leads
from Z[1] to Z[j], there always is such a component! Namely, it is the J; — component when
5(j) = 0. When, on the contrary, s(j) > 2, it is either the 0,:)-1 —component (when iy;) = 2),
or else it is the J,.(;)-1 —component (when i,;y = 3). With thus specified information, it is a
matter of course that

Z[1]A, when s(j) =0,
(22) aj = =3 Z[s()F@-1, when s(j) > 2, iy =2,
Z[s(1)]G*D=1 | when s(5) > 2, is(j) = 3.

On the other hand, the same equation (21) watched on the level of 9,1 reads
- 2P = a0,

and watched on the level of 9,;-1 reads
GI - Z[j]Git = a; Y

The needed expressions for FV and G follow upon substituting the expression (22) of a; into
these two equations. O

Lemma 3. Assuming that an infinitesimal symmetry Y[j — 1] of AJ=L is already known for
certain 2 < j <r, in the situation i; = 2, the 0,; — and 0,; — components of the prolongation
YIjl of Y[j — 1] are as follows

al (ZNA = Z[j]F71) when s(j) =0,
FI = Qad (Z[s()]FO~" = Z[IF7Y) , when s(j) > 2, iy = 2,
21 (Z[s(GED=1 = Z[HIFI=Y) | when s(j) > 2, iy = 3.

G =2 = Z[IF

Proof of Lemma 3. The vector equation (21) still holds true. Now the a; coefficient can be
(and easily) extracted from it at the level 9,;-1, because the coefficient of the 9,;-1 — component
in Z[j] is 1:

(23) a; = —Z[j]F7 .

At the same time writing down the equal sides of (21) at the level 0,1,
G- Z[G = a5,

leads, by the way of (23), to the desired formula for G7.

It is not that quick with the function F7. It can be extracted from precisely one out of three
levels of the 0; —, 0,:)-1 —, or 8,:(;)-1 —components. Because one, once again, looks for a
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component in Z[j] with a coefficient 1, if ‘enveloped’ now in the factor 27 (because i; > 1 in the
proposition under proof).

In function of the position of that ‘1’, equalling the relevant levels in (21), one gets precisely
one relation out of the following three

Fi—23Z[1]A —a] , when s(j) =0,
Fi — 23 Z[s(5)|F* =ajz/, when s(j) > 2, iy =2,
Fi — 29 7[s(j )}G”) lzajxj, when s(j) > 2, i) =3
Then, accounting for (23), the desired formula for F7 follows. O

Lemma 4. Assuming that an infinitesimal symmetry Y[j — 1] of AJ~™1 is already known for
certain 2 < j <r, in the situation i; = 3, the 9,5 — and d,; — components of the prolongation
YIj] of Y[j — 1] are as follows
2l (Z[1]A - Z[ ]GJ Y, when s(j) =0,
F) = ( [3(])} [J]Gj_l) ,  when S(]) 22, Z'S(j) =2,
2 (2 [s(y)}G“” '=Z[IG7TY) , when s(j) > 2, iy = 3.

G = 2P = P2l
Proof of Lemma 4. Invariably, the vector equation (21) keeps holding true. The a; coefficient
on its right hand side can be extracted from it at the level d,;-1, because now the coefficient of
the 0,;-1 — component in Z[j] is 1:
(24) a; = — 2l
Then, writing simply down the equal sides of (21) at the level 9,-1,
GV — Z[jIFI~ = a; 47,
leads, by the way of (24), to the presently needed formula for G7.
As for the function F7, it can again be extracted from precisely one out of three levels of the
Or —, Oys(jy—1 —, OT 6'ys(_,»)_1 — components. In function of the position of that key component ‘1’
in the field Z[j], equalling the sides of the relevant levels in (21), one gets precisely one relation
out of the following three
Fi— 21Z[1|A = aja7, when s(j) =0,
FI— 29 Z[s(j)|F*0)~" = a;27, when s(j) > 2, is) =2,
FI— 23 Z[s(5)]|G*D~1 = a;29, when s(j) > 2, iyy = 3.

Upon accounting for (24), the expected formula for F7 follows. O

As already invoiced, the obtained recursive formulas — at this moment only necessary — are
also sufficient for the produced vector field ) to actually be a symmetry of A”. Indeed, knowing
already that [V, Z[r]] € A" (cf. the always holding true formulas (21) taken now for j = r),
what only remains to be done is to take the remaining two generators of A" and justify the
vector fields’ inclusions

I:ya axr]7 I:ya ayr] € A"
To that end we note that Lemma 1 coupled with formulas (20) and all those listed in auxiliary
Lemmas 2, 3 and 4 yield by simple induction that, for j =1, 2,..., r,

the components F? and G’ of ) depend only on t, z°, ¢°, ', y',..., 27, ¢7.
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Using this information for 1 < 7 <r — 1 and again Lemma 1, one computes with ease

I:yv awr] - _[8$Tay:| :(_axTFr)azr‘F(_aerr)ayr
and
D& ayr} == — I:ayr, y} - (— ayr FT) axr + (— 8y7‘ GT) ayr.
Now, at long last, the proof of Theorem 2 is complete. ([

8. APPLICATIONS OF RECURSIVELY COMPUTABLE
INFINITESIMAL SYMMETRIES TO THE LOCAL
CLASSIFICATION PROBLEM

The main motivation underlying the present contribution has been to advance results in the
local classification problem for special 2-flags — to propose a late follow-up to the work [18]. In
fact, getting — recursively — hold of the infinitesimal symmetries of special 2-flags” opens a way
to advance the local classification in lengths » = 5 (cf. in this respect, in particular, section 8.2)
and r = 6 which have kept challenging the small monster community for the last 17 years (see
the table preceding section 5.1).

8.1. Continuous modulus in the class 1.2.1.2.1.2.1. Reiterating already, the exact local
classification of special 2-flags (and, all the more so, all special multi-flags) in lengths exceeding
4 is, in its generality, unknown. It is not excluded that a continuous modulus of the local
classification hides itself already somewhere in length 6. Instead, we want to give an example in
length 7 of the effectiveness of our formulae put forward in Section 7.

A possibly deepest fact communicated in [18] was

Theorem 3 ([18]). In the singularity class C = 1.2.1.2.1.2.1 of special 2-flags of length 7 there
resides a continuous modulus of the local classification.

This was originally proved (in the year 2003, as a matter of fact) by brute force, and here is
how the infinitesimal symmetries may help.

PROOF. In the coordinates constructed for the class C we work with certain germs of the
distribution A7 which generates a locally universal special 2-flag of length 7. The reference
points for those germs belong to C. More precisely, these are the points, say P, with the
coordinates

(25) t=20=yl =al=gyl=22=9y2=0, 23=1,
4 _

Y=at=y"'=0, =1, yP=a=9y=0, 27

We intend to infinitesimally move such P only in the 9,7 — direction. (Compare, for instance,
[11], where also only the farthest part of a flag — Goursat in that occurrence — was subject to
possible movies.) That is, we look for an infinitesimal symmetry having at a point P of type
(25) all but the J,7— components vanishing. Remembering about the triangle pattern of
dependence of those component functions, this means the vanishing of A, B, C at (0,0,0), the
vanishing of F’ (w7 ;(P)), G’ (w7;(P)) for j = 1,2,..., 6 and the vanishing of G"(P). The
component F7(P) is not yet known and will be analyzed with care.

=c,y" =0.

Initially we do not know how few/many such vector fields could exist. At any rate, any one of
them is induced by certain functions A, B, C' in the variables ¢, x, y. The recurrence formulae
are known from Section 7. When, among other components of an infinitesimal symmetry, one

7 As a matter of fact, our approach presented in this paper extends naturally to all special m-flags, m > 2 —
this being the subject of another possible paper.
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wants to express F7(P) via those basic unknown functions A, B, C, one goes backwards along
the code of C, and firstly applies Lemma 2 (because i = 1), then Lemma 3 (because ig = 2),
then again Lemma 2 (because i5 = 1), and so on intermittently. Upon applying with care these
lemmas due numbers of times, the above-listed vanishings mean in the terms of the functions in
the base

0 = A(0) = B(0) = C(0) = B:(0) = C4(0) = Cpo(0) = ¢Cy,0(0),
where the 0’s above stand for (0,0,0), and — most important

(26) 0 = F3(m73(P)) = (34 — 2B,0)(0,0,0),

(27) 0 = F%(m75(P)) = (Byo — 4:)(0,0,0).
Now comes the punch line, because the outcome of the computations for F7 is
(28) F7(P) = 3c(A; — B0)(0,0,0).

Relations (26) and (27) together imply A4;(0,0,0) = B,0(0,0,0) = 0. So F7(P) = 0 by (28).
That is, every infinitesimal symmetry of C must infinitesimally freeze at P the coordinate z”,
when it infinitesimally freezes all the remaining coordinates specified in (25). Theorem 3 is now
(re-) proved. O

Remark 4. In other terms, the germs of the structure A7 at various points P as above (i.e.,
for different values of the parameter ¢) are pairwise non-equivalent. The local geometry of the
distribution A” changes continuously within the discussed class C.

8.2. Towards the classification of the one step prolongations within singularity class
1.2.1.1. We conclude the paper by excerpting from [18] the partition, into the orbits of the
local classification, of the singularity class 1.2.1.1 (when the width m = 2, ¢f. Remark 5 on
p. 37 there), and suggesting a line of possible continuation in the next length 5. This class is not
chosen at random; it splits into maximal (6) number of orbits in that length 4, cf. Section 7 in
[18]. The names of orbits are taken from that preprint. One means the germs of A, watched
in the EKR coordinates constructed for 1.2.1.1, at points, say P, having

t:xozy0:x1:y1:x2:y2:0

and the four highest coordinates x2, 3%, 4, y* as in the following table

the orbit x3 (7r4,3(P)> Y3 (7r4’3(P)> 22(P) | y*(P)
121 yoal 1 0 0 0
121 can-1 ot 0 1 1 0
121, ton-1—s.can 0 1 0 0
121151 oo 0 0 1 0
12140 1 s.an 0 0 0 1
1211, 0 0 0 0

Upon prolonging A% to A® in the vicinity of points of 1.2.1.1, one is to work with points in
the classes 1.2.1.1.45, i5 € {1, 2, 3}. The classification result recalled in the table above applies
now to the distribution [A5, A5] and as such remains true, regardless of the value of i5 (the Lie
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square of A5 does not depend on new variables z°, y°). The same concerns the recursive
formulae for the component functions F7, G/, j = 1,2, 3,4, of the infinitesimal symmetries of
A5. Yet, naturally, expressions for the components F°, G° depend critically on the value of is.
Sticking to the points P from the table, one is to analyze the expressions for F?(Q) and G°(Q),
Q € 1.2.1.1.i5, m5 4(Q) = P. They are linear in 2°(Q), y°(Q), with coefficients depending on P
and on certain partials at (0,0, 0) of the basic functions A, B, C. All the difficulty resides in the
— unknown and hard to compute — coefficients standing next to those partials.

An instructive example is given in section 8.1. The coefficient standing next to ¢ = 27(P)
on the RHS of (28) has appeared forced to be zero by the earlier infinitesimal normalizations
(26) and (27). Because of that phenomenon, even the outcome of the classification of singularity
class 1.2.1.1.1 (i5 = 1) is difficult to predict.

In general — in higher lengths — systems of coefficients in growing sets of partials of A, B, C
would play decisive roles in freezing or not of the values of new incoming pairs of component
functions of the infinitesimal symmetries. Linear algebra packages would eventually come in
handy.
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KATO’S CHAOS CREATED BY QUADRATIC MAPPINGS ASSOCIATED
WITH SPHERICAL ORTHOTOMIC CURVES

TAKASHI NISHIMURA

ABSTRACT. In this paper, we first show that for a given generic spherical curve v : [ — S™
and a generic point P € S™, the spherical orthotomic curve relative to v and P naturally
yield a simple quadratic mapping ®p : R*+! — R"?*1. Since S™ is compact and ®p|gn :
S™ — S™ is the spherical counterpart of the trivial expanding mapping x — 2z, it is natural
to expect a chaotic behavior for the iteration of ®p|gn. Accordingly, we show that ®p|gn
(and incidentally ® p| pni1 as well) actually creates Kato’s chaos. Therefore, by investigating
spherical orthotomic curves, an example of singular quadratic mapping creating Kato’s chaos
is naturally obtained.

1. INTRODUCTION

Throughout this paper, let n be a non-negative integer. In addition, let S™, D"*! be the unit
sphere and the unit closed disk of R"*! respectively.
Let I be an interval. In [1], for a given plane unit-speed curve v : I — R? and a given point

P € R?, the pedal curve ped, p : I — R? and the orthotomic curve ort, p : I — R? are defined
as follows:

pedyp(s) = P+((v(s) = P)-N(s)) N(s),

ortyp(s) = P+2((v(s)—P)-N(s))N(s).
Here, N(s) is the unit normal vector to v at v(s). For instance, let v : R — R? be a parabola
defined by ~(t) = (t, 2 — i) and let P be the origin (0,0). Let £: R — R be the arc-length of
measured from 7(0). Then, ped,o-1 p is just the affine tangent line to the parabola v o ¢~ at
v 0 £71(0) and ort,oe-1,p is merely the directrix of the parabola with the focal point P. From
this elementary example, in general, the orthotomic curve for a given unit-speed curve vy may be
considered as a generalization of the directrix of a parabola in some sense. Moreover, as explained
in pp. 175-177 in [1], orthotomic curves have a seismic application. This is a very interesting
and very important practical application of orthotomic curves. Since pedal curves seem to be
well-studied rather than orthotomic curves, we are interested in how to obtain the orthotomic
curve from the pedal curve for a given unit-speed curve y and a point P. By definition, it follows

orty p(s)+ P
2
and thus ort, p(s) = 2ped. p(s) — P. Therefore, by using the simple mapping Fp : R* — R?
defined by

= ped p(s)

Fp(z) =2z — P,
we have the following:
orty p(s) = Fp o pedy p(s).
2010 Mathematics Subject Classification. 37D45, 54H20, 26A18, 39B12 .
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Since F'p is nothing but the radial expansion with factor 2 with respect to the point P, the study
of orthotomic curves may be completely reduced to the study of pedal curves in the plane curve
case.

Similarly, in the case of S™, by obtaining the orthotomic curve from the pedal curve for a given
spherical unit-speed curve v and a point P, we can get an expanding mapping S™ — S™ with
similar properties as the above Fp. However, in this case, the space S™ is compact. Thus, this
expanding mapping S™ — S™ is expected to have some kneading effect. This expectation leads
us to study the iteration of this mapping. In order to get the expanding mapping S™ — S™, for a
generic unit-speed curve v : I — S™ and a generic point P € S", the pedal curve ped., p : I — S™
and the orthotomic curve ort, p : I — S™ need to be defined reasonably. In [5, 6], a reasonable
definition of spherical unit speed curve is given; and then for a spherical unit speed curve
v :1 — S™ and a generic point P € S™, the spherical pedal curve ped, p : I — S™ is defined
reasonably. Notice that the well-definedness of ped, p : I — S™ implies P - ped, p(s) # 0 for
any s € I (see [5, 6]). Thus, by using the following relation which is reasonable in S™,

LI (P ped, p(s) ped p(s).

the spherical orthotomic curve ort, p : I — S™ is naturally defined as follows:
orty p(s) =2 (P - pedy p(s))ped, p(s) — P.
Therefore, by using the mapping ®p : R**! — R**! defined by
Op(z) =2(P-x)xr — P,
the orthotomic curve is obtained from the pedal curve as follows:
orty p(s) = ®p o ped, p(s).

As in the following lemma, both ®p|gn and ®p|pr+1 (n > 0) are endomorphisms. Thus, ®p|gn
(n > 1) may be regarded as the spherical counterpart of the expansion Fp. By combining these
facts and the compactness of S™ (resp., D"*1) it is expected that not only ®p|s» but also
®p|pn+1 may have a chaotic behavior of some kind.
Lemma 1. For any P € S", the following three hold:

(1) ®p(S™) C S™ for any n > 0.

(2) ®p(S™) D S™ for anyn > 1.

(3) ®p(D™1) = D™ for any n > 0.
For the proof of Lemma 1, see Section 2. The following two examples, too, show that for both
®p|sn and P p|pn+1, the chaotic behavior of their iteration deserves to be investigated.
Example 1. Suppose that n = 1 and P = (1,0). Then, ®p(z) = (227 — 1,2z,35), where
x = (z1,22). If  belongs to S*, x may be written as x = (cos#,sin ). Then,

®p|gi(cosb,sinfd) = (2cos* 6 — 1,2cosOsin6) = (cos 20, sin 26) .
Thus, the restricted mapping ®p|g» in this case is exactly the same mapping given in Chapter 1,
Example 3.4 of Devaney’s well-known book [2].
Example 2. Suppose that n = 0. Then, P is 1 or —1, and ®p(x) = 222 — 1 or —222 + 1. Define
the affine transformation hp : R — R as follows:
_f —2z+1 (if P=1),

hP(x)‘{ 2w—1  (if P=—1).

Then, in each case, it is easily seen that hp' o ®p o hp(x) = 42(1 — z). Therefore, in each case,
®p|pr has the same dynamics as Chapter 1, Example 8.9 of [2].
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From Examples 1 and 2, it seems meaningful to study the chaotic behavior of iteration for
Oplgn : S* — S™ (n > 1) or ®p|pn+1 : D" — DL (n > 0), which is the main purpose of
this paper.

Definition 1. Let (X, d) be a metric space with metric d and let f : X — X be a continuous
mapping.

(1) The mapping f is said to be sensitive if there is a positive number A > 0 such that
for any x € X and any neighborhood U of z in X, there exists a point y € U and a
non-negative integer k > 0 such that d(f*(z), f*(y)) > X\, where f* stands for fo---o f.

—

k-tuples

(2) The mapping f is said to be transitive if for any non-empty open subsets U,V C X,
there exists a positive integer k& > 0 such that f*(U) NV # 0.

(3) The mapping f is said to be accessible if for any A\ > 0 and any non-empty open subsets
U,V C X, there exist two points u € U, v € V and a positive integer k£ > 0 such that
d(f*(u), f*(v)) < A

(4) The mapping f is said to be topologically mizing if for any non-empty open subsets
U,V C X, there exists a positive integer k > 0 such that f™(U)NV # @ for any m > k.

(5) The mapping f is said to be chaotic in the sense of Devaney ([2]) if f is sensitive,
transitive and the set consisting of periodic points of f is dense in X.

(6) The mapping f is said to be chaotic in the sense of Kato ([3]) if f is sensitive and
accessible.

By definition, it is clear that if a mapping f : X — X is topologically mixing, then it is
transitive. Moreover, by [3], it is known that if a mapping f : X — X is topologically mixing,
then it is chaotic in the sense of Kato. Although Kato’s chaos has been well-investigated (for
instance, see [3, 4, 7]), elementary examples which are singular and not transitive seem to have
been desired. Theorem 1 gives such examples.

Theorem 1. (1) Let P be a point of S*.
(1-1) The endomorphism ®p|si : St — S is chaotic in the sense of Devaney. Moreover,
it is chaotic in the sense of Kato.
(1-2) The endomorphism ®p|p> : D* — D? is chaotic in the sense of Kato although it is
not chaotic in the sense of Devaney.
(2) Let P be a point of S°. Then, ®p|p: : D' — D' is chaotic in the sense of Devaney.
Moreover, it is chaotic in the sense of Kato.
(3) Let m be an integer such that m > 2. Moreover, let P be a point of S™. Then, both
®p|pmer : DT — DML and ®p|gm 1 S™ — S™ are chaotic in the sense of Kato.
(4) Let m be an integer such that m > 2. Moreover, let P be a point of S™. Then, neither
®p|pmsr : D™HL — D™ nor ®p|gm : S™ — S™ is transitive. In particular, neither
®p|pmi1 : DMTL — DML por ®p|gm 1 S™ — S™ is chaotic in the sense of Devaney.

This paper is organized as follows. In Section 2, the proof of Lemma 1 is given. Theorem 1 is
proved in Section 3. Section 4 is an appendix where geometric properties of ®p are given though
some of properties of ®p given in Section 4 already appear implicitly in Sections 2 and 3.
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2. PROOF OF LEMMA 1

2.1. Proof of the assertion (1) of Lemma 1. Let = be a point of S™. Then, -2z =1 and
we have the following:

Op(z) - Pp(x) = (2(x-P)x—P)-(2(x-P)xz— P)
V2 (z-2) —4(x- P)* 4+ (P-P)
z-P)? —4(zx-P)?+1=1.

Il
IS

This completes the proof of the assertion (1). O

2.2. Proof of the assertion (2) of Lemma 1. Let y be a point of S™. Suppose that y # —P.

Set
y+P
2

TR
2

Then, it follows

y+P y+P
Ao Pe=P = 2\ P ) ey P
2 2

- T P P) =P
- Gy PP - P

= (y+P)—P=y.

Next, suppose that y = —P. Let  be a point of S” such that x - P = 0. Then,
2x-P)x—P=—-P=y.

Therefore, we have the assertion (2). O

2.3. Proof of the assertion (3) of Lemma 1. Let z be a point of R"*! such that z -z < 1.
Then, we have

Op(x) - Pp(z) <4(x-P)> —4(x-P)*+1=1.
Conversely, let y be a point satisfying y-y < 1. Notice that in this case (y-P)+1 > —||y||+1 >0
and 1+ [|y[[> +2(y - P) = 1+ ||yl = 2l[yll = (1 = [|y[))* > 0. Set

P
N S .
20y P)+2 12|

Then,

ou- Pl —P = 2<a yiTj: .P>a yiTi L
14511 22|
20>
= PR W DTN +P) - P
2a>
= GrEre ey W DGR -P
= (y+P)-P=y.

Therefore, the assertion (3) holds. ad
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3. PROOF OF THEOREM 1

3.1. Proof of the assertion (1) of Theorem 1. We first show the assertion (1-1). Let x be
a point of S'. Set

P = (cosa,sina) and z = (cosf,sinb).
Then, it is easily seen that

®p(cosh,sinb)

= 2((cosa,sina) - (cos@,sinf)) (cos b, sinf) — (cos «, sin @)

= (cos(20 — a),sin(20 — «)) .
It follows ®% (cos(f + a),sin(f + «)) = (cos(2¥0 + «), sin(2¥0 + a)) and therefore, by the same
argument as in Example 8.6 of [2], ®p|g: is chaotic in the sense of Devaney. In order to show
that ®p|g1 is chaotic in the sense of Kato, it is sufficient to show that ®p|g: is accessible, which
is easily seen by the above formula.

Next, we show the assertion (1-2). Since R? may be regarded as R? x {0} C R3, the given point

P € S! is naturally considered as a point of S2. Then, ®p|g2 and ®p|p> are semi-conjugate.
Thus, the assertion (1-2) easily follows from the assertions (3) and (4) for ®p|g=. O

3.2. Proof of the assertion (2) of Theorem 1. By Subsection 3.1 and Example 8.9 of [2],
®p|p: is chaotic in the sense of Devaney. Moreover, it is easily seen that the property of
accessibility is preserved by semi-conjugacy. Thus, ®p|p: is chaotic in the sense of Kato as well.
O

3.3. Proof of the assertion (3) of Theorem 1. Let Q) be a point of S™ — {P, —P}. Set
Q-(P-QP

lQ = (P- Q)P

Then, it follows Pé- € S™ and P - PCJQ- = 0. Let = be a point of the circle S™ N (RP + RPé‘).

Then, z may be written as £ = cosf P + sinf Pé. Then, it is easily seen that

1
Py =

®p(cosh P+ sind Pé‘) = cos 20 P + sin 20 PQJ)‘.

Hence, for any non-empty open neighborhood U of @ in S™ there exists a positive integer i such
that the circle S™ N (RP + RPg) is contained in & (U). Therefore, ®p|gm is sensitive.

Next, take another point R. By the same argument as above, it is seen that for any non-
empty open neighborhood V' of R in S™ there exists a positive integer j such that the circle
S™N(RP+ RPQJ)-) is contained in ®% (V). Set k = max(¢,j). Then, it follows

P c ok (U)n ok (V).

Hence, ®p|gm is accessible.

Moreover, under the identification of S™ and S™ x {0}(C S™*1), the given point P € S™ is
considered as a point of S™*1. Then, ®p|gm+1 and ®p|pm+1 are semi-conjugate. Thus, ®p|pm+1
is also sensitive and accessible. Therefore, both ®p|gm and ®p|pm+1 are chaotic in the sense of
Kato. m|

3.4. Proof of the assertion (4) of Theorem 1. Let @, R be points of S™ so that P,Q, R are
linearly independent. Then, R does not belong to the circle S™ N (RP + RP&-) where Pé- is the
point constructed in Subsection 3.3. Thus, by the argument given in Subsection 3.3, there exist
sufficiently small neighborhoods U (resp., V) of @ (resp., R) in S™ such that ®%(U) NV = ()
for any £ > 0. Hence, ®p|gm is never transitive.
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Again, under the identification of S™ and S™ x {0}(C S™*1), the given point P € S™ is
considered as a point of S™*1. Then, ®p|gm+1 and ®p|pm+1 are semi-conjugate. Thus, even
®p|pm+1 is not transitive. a

4. SOME PROPERTIES OF ®p

In this section, following the referee’s suggestions, the geometric structure of ®p is studied.

Proposition 1. Let P, h: R — R™*1 be g point of R™T and an orthogonal linear mapping
respectively. Set P = h(P). Then, the following equality holds:

bz0h=hodp.

Proof. Let A be the orthogonal matrix corresponding to h. For any x € R™"!, we have the
following:
bsoh(x) = Pp(zA)

= 2 (ﬁ : asA) zA— P

= 2(PA-zA)xA— PA

= (2(P-z)x—P)A

= ho®p(x).

O

Corollary 1. Let P be a point of S™ and let h : R™"t! — R"! be an orthogonal linear
mapping such that h(P) = (1,0,...,0). Then, ho ®p o h™! is the following mapping where
T = ($1,$2,~.-,$n+1)2

ho®poh ™ x1,22,. .., Tny1) = (227 — 1,2312, ..., 20120 41).

Notice that if we understand that x5 € R™, then the form of ®p in Example 1 is exactly the
same as the form of h o ®p o h~! in Corollary 1. Moreover, the following holds.

Proposition 2. Let P be a point of R"™1 — {0}. Then, the mapping ®p preserves any 2-
dimensional linear subspace that contains P. Moreover, the restrictions of ®p to such linear
subspaces are conjugated to each other.

Proof. The proof of the first assertion of Proposition 2 is implicitly given in Subsection 3.3
although in Subsection 3.3 P is a point of S™. Thus, it is omitted to give it here.

We show the second assertion of Proposition 2 by using the same symbols as in Subsection 3.3.
Let é be a point of S™ — (RP + RPQJ)-) and let h : R"*! — R"*! be an orthogonal linear mapping

such that h(P) = P and h(Q) = Q. Then, it is trivially seen that h maps the 2-dimensional
linear space (RP + RPé;) to (RP + RPS). Moreover, by Proposition 1, the following equality
holds:

bz0h=hodp.
Therefore, the second assertion of Proposition 2 holds. O

Proposition 2 reduces the study of dynamical system of ®p to the 2-dimensional case, which
is given in Example 1.

The final assertion is for the mapping ®p where P = (1,0,...,0).
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Proposition 3. Let P = (1,0,...,0) € S and let ®p : R**1 — R"*1 be the mapping defined

by
Op(x1, oo, ... Tpg1) = (227 — 1,2212, ..., 201 %0y 1).
Let (v1,72,...,2,41) € R™ L be a point such that
o(x1, T2, Tpt1) :x%+u(a:§+~~+xi+l) =1,
where 1 is a positive real number. Then, p o ®p(x1,xa,...,Tny1) = 1. In other words, ®p

preserves the level set p=1(1).
Proof. Assume that ¢(zq1,z2,...,2p41) = 1. Then,
2
o ®p(1,22,...,Tn1) = (227 1) +p ((2961332)2 +-+ (2$1$n+1)2>
= dat—42? +1+4p (x%x% + - ~x?x,21+1)
4zt —daf (L—p (234420 ,)) +1
= 4ot —dal 41
1.
O

Notice that ®p does not necessarily preserve other level sets ¢~ 1(c) (¢ # 1). The case pu =1
of Proposition 3 suggests (1) of Lemma 1.
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A CLOSEDNESS THEOREM AND APPLICATIONS IN GEOMETRY OF
RATIONAL POINTS OVER HENSELIAN VALUED FIELDS

KRZYSZTOF JAN NOWAK

Dedicated to Goo Ishikawa on the occasion of his 60th birthday

ABSTRACT. We develop geometry of algebraic subvarieties of K™ over arbitrary Henselian val-
ued fields K of equicharacteristic zero. This is a continuation of our previous article concerned
with algebraic geometry over rank one valued fields. At the center of our approach is again
the closedness theorem to the effect that the projections K™ x P™(K) — K™ are definably
closed maps. It enables, in particular, application of resolution of singularities in much the
same way as over locally compact ground fields. As before, the proof of that theorem uses,
among others, the local behavior of definable functions of one variable and fiber shrinking,
being a relaxed version of curve selection. But now, to achieve the former result, we first
examine functions given by algebraic power series. All our previous results will be established
here in the general settings: several versions of curve selection (via resolution of singularities)
and of the Lojasiewicz inequality (via two instances of quantifier elimination indicated below),
extending continuous hereditarily rational functions as well as the theory of regulous func-
tions, sets and sheaves, including Nullstellensatz and Cartan’s theorems A and B. Two basic
tools are quantifier elimination for Henselian valued fields due to Pas and relative quantifier
elimination for ordered abelian groups (in a many-sorted language with imaginary auxiliary
sorts) due to Cluckers—Halupczok. Other, new applications of the closedness theorem are
piecewise continuity of definable functions, Holder continuity of functions definable on closed
bounded subsets of K™, the existence of definable retractions onto closed definable subsets of
K™ and a definable, non-Archimedean version of the Tietze—Urysohn extension theorem. In a
recent paper, we established a version of the closedness theorem over Henselian valued fields
with analytic structure along with several applications.

1. INTRODUCTION

Throughout the paper, K will be an arbitrary Henselian valued field of equicharacteristic zero
with valuation v, value group I, valuation ring R and residue field k. Examples of such fields are
the quotient fields of the rings of formal power series and of Puiseux series with coefficients from
a field k of characteristic zero as well as the fields of Hahn series (maximally complete valued
fields also called Malcev—Neumann fields; cf. [27]):

k((t9) == f(t) = Z ast? : ay €k, supp f(t) is well ordered
yel’
We consider the ground field K along with the three-sorted language £ of Denef-Pas (cf. [53, 44]).
The three sorts of £ are: the valued field K-sort, the value group I'-sort and the residue field k-
sort. The language of the K-sort is the language of rings; that of the I'-sort is any augmentation

2000 Mathematics Subject Classification. Primary 12J25, 14B05, 14P10; Secondary 13J15, 14G27, 03C10.

Key words and phrases. valued fields, algebraic power series, closedness theorem, blowing up, descent property,
quantifier elimination for Henselian valued fields, quantifier elimination for ordered abelian groups, fiber shrink-
ing, curve selection, Lojasiewicz inequalities, hereditarily rational functions, regulous Nullstellensatz, regulous
Cartan’s theorems.
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of the language of ordered abelian groups (and o0); finally, that of the k-sort is any augmentation
of the language of rings. The only symbols of £ connecting the sorts are two functions from the
main K-sort to the auxiliary I'-sort and k-sort: the valuation map and an angular component
map.

Every valued field K has a topology induced by its valuation v. Cartesian products K™ are
equipped with the product topology, and their subsets inherit a topology, called the K-topology.
This paper is a continuation of our paper [44] devoted to geometry over Henselian rank one valued
fields, and includes our recent preprints [45, 46, 47]. The main aim is to prove (in Section 8)
the closedness theorem stated below, and next to derive several results in the following Sections
9-14.

Theorem 1.1. Let D be an L-definable subset of K™. Then the canonical projection
m:DxR™— D

is definably closed in the K-topology, i.e. if B C D x R™ is an L-definable closed subset, so is
its image w(B) C D.

Remark 1.2. Not all valued fields K have an angular component map, but it exists if K has a
cross section, which happens whenever K is R-saturated (cf. [7, Chap. II]). Moreover, a valued
field K has an angular component map whenever its residue field k is Nj-saturated (cf. [54,
Corollary 1.6]). In general, unlike for p-adic fields and their finite extensions, adding an angular
component map does strengthen the family of definable sets. Since the K-topology is definable
in the language of valued fields, the closedness theorem is a first order property. Therefore it is
valid over arbitrary Henselian valued fields of equicharacteristic zero, because it can be proven
using saturated elementary extensions, thus assuming that an angular component map exists.

Two basic tools applied in this paper are quantifier elimination for Henselian valued fields
(along with preparation cell decomposition) due to Pas [53] and relative quantifier elimination
for ordered abelian groups (in a many-sorted language with imaginary auxiliary sorts) due to
Cluckers—Halupczok [8]. In the case where the ground field K is of rank one, Theorem 1.1 was
established in our paper [44, Section 7], where instead we applied simply quantifier elimination
for ordered abelian groups in the Presburger language. Of course, when K is a locally compact
field, it holds by a routine topological argument.

As before, our approach relies on the local behavior of definable functions of one variable and
the so-called fiber shrinking, being a relaxed version of curve selection. Over arbitrary Henselian
valued fields, the former result will be established in Section 5, and the latter in Section 6.
Now, however, in the proofs of fiber shrinking (Proposition 6.1) and the closedness theorem
(Theorem 1.1), we also apply relative quantifier elimination for ordered abelian groups, due to
Cluckers—Halupczok [8]. It will be recalled in Section 7.

Section 2 contains a version of the implicit function theorem (Proposition 2.5). In the next
section, we provide a version of the Artin—-Mazur theorem on algebraic power series (Proposi-
tion 3.3). Consequently, every algebraic power series over K determines a unique continuous
function which is definable in the language of valued fields. Section 4 presents certain versions
of the theorems of Abhyankar—Jung (Proposition 4.1) and Newton-Puiseux (Proposition 4.2)
for Henselian subalgebras of formal power series which are closed under power substitution and
division by a coordinate, given in our paper [43] (see also [52]). In Section 5, we use the fore-
going results in analysis of functions of one variable, definable in the language of Denef-Pas, to
establish a theorem on existence of the limit (Theorem 5.1).
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The closedness theorem will allow us to establish several results as for instance: piecewise
continuity of definable functions (Section 9), certain non-archimedean versions of curve selection
(Section 10) and of the Lojasiewicz inequality with a direct consequence, Holder continuity of
definable functions on closed bounded subsets of K™ (Section 11) as well as extending hereditarily
rational functions (Section 12) and the theory of regulous functions, sets and sheaves, including
Nullstellensatz and Cartan’s theorems A and B (Section 12). Over rank one valued fields,
these results (except piecewise and Holder continuity) were established in our paper [44]. The
theory of hereditarily rational functions on the real and p-adic varieties was developed in the
joint paper [30]. Yet another application of the closedness theorem is the existence of definable
retractions onto closed definable subsets of K™ and a definable, non-Archimedean version of the
Tietze—Urysohn extension theorem. These results are established for the algebraic case and for
Henselian fields with analytic structure in our recent papers [49, 50, 51]. It is very plausible
that they will also hold in the more general case of axiomatically based structures on Henselian
valued fields.

The closedness theorem immediately yields five corollaries stated below. Corollaries 1.6
and 1.7, enable application of resolution of singularities and of transformation to a simple normal
crossing by blowing up (cf. [28, Chap. III] for references and relatively short proofs) in much the
same way as over locally compact ground fields.

Corollary 1.3. Let D be an L-definable subset of K™ and P™(K) stand for the projective space
of dimension m over K. Then the canonical projection w : D x P™(K) — D is definably closed.

Corollary 1.4. Let A be a closed L-definable subset of P™(K) or R™. Then every continuous
L-definable map f: A — K" is definably closed in the K-topology.

Corollary 1.5. Let ¢;, i =0,...,m, be reqular functions on K™, D be an L-definable subset of
K" ando : Y — KA™ the blow-up of the affine space KA™ with respect to the ideal (¢o, . .., om).
Then the restriction o : Y (K) No~Y(D) — D is a definably closed quotient map.

Proof. Indeed, Y (K) can be regarded as a closed algebraic subvariety of K™ x P"(K) and o as
the canonical projection. O

Corollary 1.6. Let X be a smooth K-variety, D be an L-definable subset of X(K) and
o:Y — X the blow-up along a smooth center. Then the restriction o : Y (K)No~Y(D) — D
is a definably closed quotient map.

Corollary 1.7. (Descent property) Under the assumptions of the above corollary, every contin-
uous L-definable function g : Y (K)No~Y(D) — K that is constant on the fibers of the blow-up
o descends to a (unique) continuous L-definable function f: D — K.

2. SOME VERSIONS OF THE IMPLICIT FUNCTION THEOREM

In this section, we give elementary proofs of some versions of the inverse mapping and implicit
function theorems; cf. the versions established in the papers [55, Theorem 7.4], [22, Section 9],
[36, Section 4] and [21, Proposition 3.1.4]. We begin with a simplest version (H) of Hensel’s
lemma in several variables, studied by Fisher [20]. Given an ideal m of a ring R, let m*™ stand
for the n-fold Cartesian product of m and R* for the set of units of R. The origin (0,...,0) € R®
is denoted by O.
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(H) Assume that a ring R satisfies Hensel’s conditions (i.e. it is linearly topologized, Hausdorff
and complete) and that an ideal m of R is closed. Let f = (f1,..., fn) be an n-tuple of restricted
power series f1,..., fn € R{X}, X = (Xa,...,X,), J be its Jacobian determinant and a € R™.
If f(0) e m*™ and J(0) € R*, then there is a unique a € m*™ such that f(a) = 0.

Proposition 2.1. Under the above assumptions, f induces a bijection
m*" 3z — f(x) em "
of m*™ onto itself.
Proof. For any y € m*" apply condition (H) to the restricted power series f(X) — y. |

If, moreover, the pair (R, m) satisfies Hensel’s conditions (i.e. every element of m is topologi-
cally nilpotent), then condition (H) holds by [5, Chap. III, §4.5].

Remark 2.2. Henselian local rings can be characterized both by the classical Hensel lemma and
by condition (H): a local ring (R, m) is Henselian iff (R, m) with the discrete topology satisfies
condition (H) (cf. [20, Proposition 2]).

Now consider a Henselian local ring (R, m). Let f = (f1,..., fn) be an n-tuple of polynomials
fi,..., fn € RIX], X =(X1,...,X,) and J be its Jacobian determinant.

Corollary 2.3. Suppose that f(0) € m*™ and J(0) € R*. Then f is a homeomorphism of m*™
onto itself in the m-adic topology. If, in addition, R is a Henselian valued ring with mazimal
ideal m, then f is a homeomorphism of m*™ onto itself in the valuation topology.

Proof. Obviously, J(a) € R* for every a € m*™. Let M be the jacobian matrix of f. Then
fla+a) = fla) = M(a) -z + g(z) = M(a) - (z + M(a) ™" - g(2))

for an n-tuple g = (g1, .- ., gn) of polynomials g1, . .., g, € (X)?>R[X]. Hence the assertion follows
easily. O

The proposition below is a version of the inverse mapping theorem.

Proposition 2.4. If f(0) =0 and e := J(0) # 0, then f is an open embedding of e - m>™ onto

e . mx",

Proof. Let N be the adjugate of the matrix M(0) and y = €?b with b € m*". Since
fleX) =e-M(0)- X +e?g(X)
for an n-tuple g = (g1, .., 9n) of polynomials g1,...,g, € (X)2R[X], we get the equivalences
feX)=y & f(eX)—y=0 & e- M(0) (X +Ng(X)—Nb) =0.
Applying Corollary 2.3 to the map h(X) := X + Ng(X), we get
fTlly)=er & x=h" (Nb) and f~'(y) = eh ' (N -y/e?).
This finishes the proof. O

Further, let 0 <7 <n, p= (prt1,...,Pn) be an (n — r)-tuple of polynomials
Pr41y-++3Pn € R[X]v X = (Xla s 7Xn)7

and
a(pT+17 e >pn)

a(XT’+17 cee 7Xn)7

J = e :=J(0).

Suppose that
0cV:i={zxe€R":p.p1(x)=...=pu(z) =0}
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In a similar fashion as above, we can establish the following version of the implicit function
theorem.

Proposition 2.5. If e # 0, then there exists a unique continuous map

¢:(e2-m)*" — (e-m)*("77)

which is definable in the language of valued fields and such that ¢$(0) = 0 and the graph map

2 Xr n—r)

(e m)*" 3 u — (u,d(u)) € (e - m)*" x (e-m)*!

is an open embedding into the zero locus V' of the polynomials p and, more precisely, onto
VO [(e? - m)*" x (e-m)*n

Proof. Put f(X) := (Xy,...,X,,p(X)); of course, the jacobian determinant of f at 0 € R" is
equal to e. Keep the notation from the proof of Proposition 2.4, take any b € ¢? - m*" and put
y := (€?b,0) € R™. Then we have the equivalences

feX)=y & f(eX)—y=0 & eM(0) (X +Ng(X)—N-(b,0)) =0.
Applying Corollary 2.3 to the map h(X) := X + Ng(X), we get
fly)=exr & x=h""(N-(b,0) and f'(y) =eh ' (N -y/e?).
Therefore the function
¢(u) := eh™ (N - (u,0)/e?)

is the one we are looking for. (I

3. DENSITY PROPERTY AND A VERSION OF THE ARTIN-MAZUR THEOREM OVER HENSELIAN
VALUED FIELDS

We say that a topological field K satisfies the density property (cf. [30, 44]) if the following
equivalent conditions hold.
(1) If X is a smooth, irreducible K-variety and () # U C X is a Zariski open subset, then
U(K) is dense in X (K) in the K-topology.
(2) If C is a smooth, irreducible K-curve and @) # U is a Zariski open subset, then U(K) is
dense in C'(K) in the K-topology.
(3) If C is a smooth, irreducible K-curve, then C(K) has no isolated points.
(This property is indispensable for ensuring reasonable topological and geometric properties of
algebraic subsets of K™; see [44] for the case where the ground field K is a Henselian rank one
valued field.) The density property of Henselian non-trivially valued fields follows immediately
from Proposition 2.5 and the Jacobian criterion for smoothness (see e.g. [17, Theorem 16.19]),
recalled below for the reader’s convenience.

Theorem 3.1. Let I = (p1,...,ps) C K[X], X = (X1,...,Xy) be an ideal, A := K[X]/I and
V := Spec (A). Suppose the origin 0 € K™ lies in V (equivalently, I C (X)K[X]) and V is of
dimension r at 0. Then the Jacobian matrix

M = [5)’2(0) i—l,...,s,j—l,...,n}

has rank < (n—r) and V is smooth at 0 iff M has exactly rank (n —r). Furthermore, if V is
smooth at 0 and

3(p,«+1,...,pn) apz o
= = Cij=r41,.
T = i Xy @ =det | g (@) dj=rtL...n] £0,
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then pry1,...,pn generate the localization I - K[X]x,, . x,) of the ideal I with respect to the
mazimal ideal (X1,...,X,).

Remark 3.2. Under the above assumptions, consider the completion A = K[[X]]/I - K[[X]] of
A in the (X)-adic topology. If J # 0, it follows from the implicit function theorem for formal
power series that there are unique power series

¢r+17~--a¢n € (Xl,...7X7~)'K[[Xl,...,Xr]]

such that
pi(X17"'7X7‘7¢T+1(X1,"'aXT)7"'7¢n(X17"'7XT)) =0
fori =7r+1,...,n. Therefore the homomorphism
a:A— K[[X1,....X]], X;—X;, X op(X1,..., X,),
forj=1,...,rand k=7r+1,...,n, is an isomorphism.

Conversely, suppose that @ is an isomorphism; this means that the projection from V onto
Spec K[X3,...,X,] is etale at 0. Then the local rings A and A are regular and, moreover, it
is easy to check that the determinant J # 0 does not vanish after perhaps renumbering the
polynomials p;(X).

We say that a formal power series ¢ € K[[X]], X = (X1,...,X,), is algebraic if it is algebraic
over K[X]. The kernel of the homomorphism of K-algebras

o: KX, T] — K[[X]], Xi—X1,...,. X, = X5, T — ¢(X),
is, of course, a principal prime ideal: kero = (p) C K[X,T], where p € K[X,T] is a unique (up
to a constant factor) irreducible polynomial, called an irreducible polynomial of ¢.

We now state a version of the Artin-Mazur theorem (cf. [3, 4] for the classical versions).
Proposition 3.3. Let ¢ € (X)K|[[X]] be an algebraic formal power series. Then there exist
polynomials

p1,..,pr € K[X,Y], Y =(Y1,...,Y,),
and formal power series ¢a, ..., ¢, € K[[X]] such that

e::mm):det SQ(O):Z'J:L...,?" 40,
and
pi( X1y, X, 01(X), .., 0.(X)) =0, i=1,...,r
where ¢1 1= ¢.

Proof. Let p1(X,Y1) be an irreducible polynomial of ¢;. Then the integral closure B of
A:=K[X,Y1]/(p1) is a finite A-module and thus is of the form

B :K[va]/(pla“wps)v Y = (Yla"'aY;")a
where p1,...,ps € K[X,Y]. Obviously, A and B are of dimension n, and the induced embedding
a: A — K[[X]] extends to an embedding § : B — K[[X]]. Put
or:=PFYr) € K[[X]], k=1,...,r

Substituting Y; — ¢x(0) for Y, we may assume that ¢5(0) = 0 for all k = 1,...,r. Hence
pi(0)=0foralli=1,...,s.

The completion B of B in the (X,Y)-adic topology is a local ring of dimension n, and the
induced homomorphism

~

B:B=K[X.Y]/(p,...,ps) — K[[X]]
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is, of course, surjective. But, by the Zariski main theorem (cf. [59, Chap. VIII, § 13, Theorem 32]),

B is a normal domain. Comparison of dimensions shows that £ is an isomorphism. Now, it
follows from Remark 3.2 that the determinant e # 0 does not vanish after perhaps renumbering
the polynomials p;(X). This finishes the proof. O

Propositions 3.3 and 2.5 immediately yield the following

Corollary 3.4. Let ¢ € (X)K[[X]] be an algebraic power series with irreducible polynomial

p(X,T) € K[X,T]. Then there is an a € K, a # 0, and a unique continuous function
p:a-R"— K

corresponding to ¢, which is definable in the language of valued fields and such that QNB(O) =0

and p(z,¢(x)) =0 for allz € a- R". O

For simplicity, we shall denote the induced continuous function by the same letter ¢. This
abuse of notation will not lead to confusion in general.

Remark 3.5. Clearly, the ring K[[X]]q, of algebraic power series is the henselization of the local
ring K[X]x) of regular functions. Therefore the implicit functions ¢, y1(u),..., ¢, (u) from
Proposition 2.5 correspond to unique algebraic power series

Orr1 (X1, X))y o 0n (X, X))

without constant term. In fact, one can deduce by means of the classical version of the implicit
function theorem for restricted power series (cf. [5, Chap. III, §4.5] or [20]) that ¢,41,..., ¢, are
of the form

ou(X1,..., X)) =e-wi(X1/e%,..., X, /e?), k=r+1,...,n,
where wg(X1,...,X,) € R[[X1,...,X,]] and e € R.

4. THE NEWTON-PUISEUX AND ABHYANKAR—JUNG THEOREMS

Here we are going to provide a version of the Newton—Puiseux theorem, which will be used
in analysis of definable functions of one variable in the next section.

We call a polynomial
FOGT) = T + 0y 1 ()T + -+ ag(X) € K[X][T),
X = (Xq,...,Xs), quasiordinary if its discriminant D(X) is a normal crossing:
D(X)=X* wu(X) with «aeN° u(X)ek[[X]], u0)=#0.

Let K be an algebraically closed field of characteristic zero. Consider a henselian K[X]-
subalgebra K(X) of the formal power series ring K [[X]] which is closed under reciprocal (whence
it is a local ring), power substitution and division by a coordinate. For positive integers rq,...,7,
put

KXYy = {a(X) LX) a(X) € K(X)
when 71 = ... = r,, = r, we denote the above algebra by K(X!/).

In our paper [43] (see also [52]), we established a version of the Abhyankar—-Jung theorem
recalled below. This axiomatic approach to that theorem was given for the first time in our
preprint [42].

Proposition 4.1. Under the above assumptions, every quasiordinary polynomial
FOXGT) =T 4+ as—1(X)T '+ +ap(X) € K(X)[T]

has all its roots in K(Xl/r> for some r € N; actually, one can take r = s!.
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A particular case is the following version of the Newton-Puiseux theorem.

Corollary 4.2. Let X denote one variable. Every polynomial
FXGT) =T 4+ as—1(X)T5 ' + -+ ag(X) € K(X)[T]

has all its roots in K(Xl/r> for some r € N; one can take r = s!. Equivalently, the polynomial
f(X7,T) splits into T-linear factors. If f(X,T) is irreducible, then r = s will do and

i=1
where ¢(X) € K(X) and € is a primitive root of unity.

Remark 4.3. Since the proof of these theorems is of finitary character, it is easy to check that
if the ground field K of characteristic zero is not algebraically closed, they remain valid for the
Henselian subalgebra K @ x K(X) of K[[X]], where K denotes the algebraic closure of K.

The ring K[[X]]qy of algebraic power series is a local Henselian ring closed under power
substitutions and division by a coordinate. Thus the above results apply to the algebra

K(X) = K[[X]]aig-
5. DEFINABLE FUNCTIONS OF ONE VARIABLE

At this stage, we can readily to proceed with analysis of definable functions of one variable over
arbitrary Henselian valued fields of equicharacteristic zero. We wish to establish a general version
of the theorem on existence of the limit stated below. It was proven in [44, Proposition 5.2] over
rank one valued fields. Now the language £ under consideration is the three-sorted language of
Denef-Pas.

Theorem 5.1. (Existence of the limit) Let f : A — K be an L-definable function on a subset
A of K and suppose 0 is an accumulation point of A. Then there is a finite partition of A into
L-definable sets Ay, ..., A, and points w; ..., w, € PL(K) such that

lim f|A; (z) =w; for i=1,...,r
z—0
Moreover, there is a neighborhood U of 0 such that each definable set
{(0@),o(f@)) : @€ (4 NT)\{0}} CTx (TU {oc}), i=1,..m,

is contained in an affine line with rational slope q-1 =p; -k+ B;, i=1,...,r, with p;,q € Z,
q>0, 6 €T, orinT x {oo}.

Proof. Having the Newton—Puiseux theorem for algebraic power series at hand, we can repeat
mutatis mutandis the proof from loc. cit. as briefly outlined below. In that paper, the field L is
the completion of the algebraic closure K of the ground field K. Here, in view of Corollary 4.3,
the K-algebras L{X} and K{X} should be just replaced with K ®x K[[X]]ag and K[[X]]alg,
respectively. Then the reasonings follow almost verbatim. Note also that Lemma 5.1 (to the
effect that K is a closed subspace of K) holds true for arbitrary Henselian valued fields of
equicharacteristic zero. This follows directly from that the field K is algebraically maximal (as
it is Henselian and finitely ramified; see e.g. [18, Chap. 4]). O

We conclude with the following comment. The above proposition along with the technique of
fiber shrinking from [44, Section 6] were two basic tools in the proof of the closedness theorem [44,
Theorem 3.1] over Henselian rank one valued fields, which plays an important role in Henselian
geometry.
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6. FIBER SHRINKING

Consider a Henselian valued field K of equicharacteristic zero along with the three-sorted
language £ of Denef-Pas. In this section, we remind the reader the concept of fiber shrinking
introduced in our paper [44, Section 6].

Let A be an L-definable subset of K™ with accumulation point a = (ay,...,a,) € K™ and E
an L-definable subset of K with accumulation point a;. We call an £-definable family of sets
® =y {t} x @ C A an L-definable z;-fiber shrinking for the set A at a if

t1—1>r£11 (I)t = (a2a AR an)a
i.e. for any neighborhood U of (ag,...,a,) € K™ !, there is a neighborhood V of a; € K such
that § # &, C U for every t € VN E, t # a;. When n = 1, A is itself a fiber shrinking for the
subset A of K at an accumulation point a € K.

Proposition 6.1. (Fiber shrinking) Every L-definable subset A of K™ with accumulation point
a € K™ has, after a permutation of the coordinates, an L-definable x1-fiber shrinking at a.

In the case where the ground field K is of rank one, the proof of Proposition 6.1 was given
in [44, Section 6]. In the general case, it can be repeated verbatim once we demonstrate the
following result on definable subsets in the value group sort I'.

Lemma 6.2. Let ' be an ordered abelian group and P be a definable subset of ™. Suppose that
(00,...,00) is an accumulation point of P, i.e. for any 6 € T the set

{reP:x1>6,....,0np >0} #0
is non-empty. Then there is an affine semi-line
L=A(rmk+v,...;tnk+v): kel, k>0} with r,...,r, €N,

passing through a point v = (v1,...,v) € P and such that (oo, ...,00) is an accumulation point
of the intersection PN L too.

In [44, Section 6], Lemma 6.2 was established for archimedean groups by means of quantifier
elimination in the Presburger language. Now, in the general case, it follows in a similar fashion
by means of relative quantifier elimination for ordered abelian groups in the language L, due
to Cluckers—Halupczok [8], outlined in the next section. Indeed, applying Theorem 7.1 along
with Remarks 7.2 and 7.3), it is not difficult to see that the parametrized congruence conditions
which occur in the description of the set P are not an essential obstacle to finding the line L we
are looking for. Therefore the lemma reduces, likewise as it was in [44, Section 6], to a problem
of semi-linear geometry.

7. QUANTIFIER ELIMINATION FOR ORDERED ABELIAN GROUPS

It is well known that archimedean ordered abelian groups admit quantifier elimination in
the Presburger language. Much more complicated are quantifier elimination results for non-
archimedean groups (especially those with infinite rank), going back as far as Gurevich [24].
He established a transfer of sentences from ordered abelian groups to so-called coloured chains
(i.e. linearly ordered sets with additional unary predicates), enhanced later to allow arbitrary
formulas. This was done in his doctoral dissertation ”The decision problem for some algebraic
theories” (Sverdlovsk, 1968), and by Schmitt in his habilitation dissertation ”Model theory of
ordered abelian groups” (Heidelberg, 1982); see also the paper [56]. Such a transfer is a kind
of relative quantifier elimination, which allows Gurevich-Schmitt [25], in their study of the NIP
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property, to lift model theoretic properties from ordered sets to ordered abelian groups or, in
other words, to transform statements on ordered abelian groups into those on coloured chains.

Instead Cluckers-Halupczok [8] introduce a suitable many-sorted language L4 with main
group sort I' and auxiliary imaginary sorts (with canonical parameters for some definable families
of convex subgroups) which carry the structure of a linearly ordered set with some additional
unary predicates. They provide quantifier elimination relative to the auxiliary sorts, where
each definable set in the group sort is a union of a family of quantifier free definable sets with
parameter running a definable (with quantifiers) set of the auxiliary sorts.

Fortunately, sometimes it is possible to directly deduce information about ordered abelian
groups without any deeper knowledge of the auxiliary sorts. For instance, this may be illustrated
by their theorem on piecewise linearity of definable functions [8, Corollary 1.10] as well as by
Proposition 6.2 and application of quantifier elimination in the proof of the closedness theorem
in Section 4.

Now we briefly recall the language L4, taking care of points essential for our applications.
The main group sort I' is with the constant 0, the binary function + and the unary function —.
The collection A of auxiliary sorts consists of certain imaginary sorts:

A= {Sp,7;,7;+ :p € P}

here P stands for the set of prime numbers. By abuse of notation, A4 will also denote the union
of the auxiliary sorts. In this section, we denote I'-sort variables by x, ¥, z, ... and auxiliary sorts
variables by 7,6,¢,.. ..

Further, the language L£,. consists of some unary predicates on Sp, p € P, some binary order
relations on A, a ternary relation
xzm:ay on 'xI'x S, foreach peP, m,m' €N,
and finally predicates for the ternary relations o, y+ ks on I' xT'x A, where ¢ € {=,<,=,,},
m € N, k € Z and « is the third operand running any of the auxiliary sorts .A.

We now explain the meaning of the above ternary relations, which are defined by means of
certain definable convex subgroups I', and Fgl of T' with o € A and m’ € N. Namely we write
xzﬁ:ay iff x—yefz/ +mlI.

Further, let 1, denote the minimal positive element of I'/T,, if I'/T', is discrete and 1, := 0
otherwise, and set k, := k - 1, for all k € Z. By definition we write

Toa Y+ ke iff z(modT,)oy (modTy) + ke.
(Thus the language Lq. incorporates the Presburger language on all quotients I'/T',.) Note also

that the ordinary predicates < and =, on I' are I'-quantifier-free definable in the language L.

Now we can readily formulate quantifier elimination relative to the auxiliary sorts ([8, Theo-
rem 1.8]).

Theorem 7.1. In the theory T of ordered abelian groups, each Lye-formula ¢(Z,7) is equivalent
to an Lge-formula (%, 7) in family union form, i.e.
k
W(z,7) = 36 [xi(7,0) Awi(z,0)],
i=1
where 0 are A-variables, the formulas x;(7,0) live purely in the auziliary sorts A, each w;(Z,0)
is a conjunction of literals (i.e. atomic or negated atomic formulas) and T implies that the
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Lge(A)-formulas
{X%(ﬁ?éé)AwL('f?@) HEES 15"'ak7 o EA}

are pairwise inconsistent.

Remark 7.2. The sets definable (or, definable with parameters) in the main group sort I' resemble
to some extent the sets which are definable in the Presburger language. Indeed, the atomic
formulas involved in the formulas w;(z,6) are of the form (&) og, ko,, where ¢(Z) is a Z-linear
combination (respectively, a Z-linear combination plus an element of I'), the predicates

o€{=,<,=pn, =} with some m,m’ € N,

0; is one of the entries of § and k € Z; here k = 0 if o is ='. Clearly, while linear equalities and
inequalities define polyhedra, congruence conditions define sets which consist of entire cosets of
mlI for finitely many m € N.

Remark 7.3. Note also that the sets given by atomic formulas #(Z) og; kg, consist of entire cosets
of the subgroups I'y,. Therefore, the union of those subgroups I'p, which essentially occur in
a formula in family union form, describing a proper subset of I'", is not cofinal with I'. This
observation is often useful as, for instance, in the proofs of fiber shrinking and Theorem 1.1.

8. PROOF OF THE CLOSEDNESS THEOREM

In the proof of Theorem 1.1, we shall generally follow the ideas from our previous paper [44,
Section 7]. We must show that if B is an £-definable subset of D x (K°)™ and a point a lies in the
closure of A := 7(B), then there is a point b in the closure of B such that w(b) = a. Again, the
proof reduces easily to the case m = 1 and next, by means of fiber shrinking (Proposition 6.1),
to the case n = 1. We may obviously assume that a =0 ¢ A.

Whereas in the paper [44] preparation cell decomposition (due to Pas; see [53, Theorem 3.2]
and [44, Theorem 2.4]) was combined with quantifier elimination in the I sort in the Presburger
language, here it is combined with relative quantifier elimination in the language £, considered
in Section 7. In a similar manner as in [44], we can now assume that B is a subset F' of a cell C
of the form presented below. Let a(z, &), b(x, &), c(x,€) : D — K be three L-definable functions
on an L-definable subset D of K2 x k™ and let v € N is a positive integer. For each & € k™ set

c() = {(;v,y) €Ky xKy: (z,§) €D,

v(a(z,€)) <uo((y — e(x,£))") 92 v(b(z,£)), ac(y — c(z,£)) = 51} ,

where <1, <2 stand for <, < or no condition in any occurrence. A cell C is by definition a disjoint
union of the fibres C'(§). The subset F of C is a union of fibers F(£) of the form

(&) = {(%y) €C(§): 30 x(0) A

A vlaiz,©) <u, o((y = e@,)), N\ o((y — ez, €)") <o, v(bil,€))

i€, i€ly

A /\ v((y — c(z,))") op, v(fi(,6)) ¢,

icly
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where I,, I, Iy are finite (possibly empty) sets of indices, a;, b;, f; are L-definable functions,
vi, M € N are positive integers, <11, <2 stand for < or <, the predicates
o€ {=p,~ =y, =7, - ="'} with some m’ €N,
and 0, is one of the entries of 6.
As before, since every L-definable subset in the Cartesian product I'" x k™ of auxiliary sorts

is a finite union of the Cartesian products of definable subsets in I' and in k™, we can assume
that B is one fiber F(&’) for a parameter ¢’ € k™. For simplicity, we abbreviate

c(@,&),a(x,£),b(x,£), ai(z, &), bi(x, &), fi(z, &)
to
C(‘T)v a(x), b(x)’ ai(x)» bi(x)v fz(x)
with i € I,, 1 € I, and @ € Iy. Denote by E C K the common domain of these functions; then 0
is an accumulation point of E.

By the theorem on existence of the limit (Theorem 5.1), we can assume that the limits
c(0), a(0),5(0), a;(0),b;(0), f:(0)
of the functions
c(x), a(x), b(x), ai(x), bi(x), fi(x)
when z — 0 exist in R. Moreover, there is a neighborhood U of 0 such that, each definable set
{(w(@),v(fi(x))) s € (ENU)\{0}} cT'x (T'U {oo}), i€y,
is contained in an affine line with rational slope
(8.1) q-l=p;i-k+B; i€ly,
with p;,q €Z, ¢ >0, 3; € T, or in T x {o0}.
The role of the center ¢(x) is, of course, immaterial. We may assume, without loss of generality,

that it vanishes, ¢(x) = 0, for if a point b = (0,w) € K? lies in the closure of the cell with zero
center, the point (0,w + ¢(0)) lies in the closure of the cell with center ¢(z).

Observe now that If <i; occurs and a(0) = 0, the set F(¢') is itself an z-fiber shrinking at
(0,0) and the point b = (0,0) is an accumulation point of B lying over a = 0, as desired. And so
is the point b = (0,0) if <19, occurs and a;(0) = 0 for some i € I,, because then the set F'(¢')
contains the x-fiber shrinking

FE)n{(z,y) € Ex K: v(a;i(z)) <1 v(y”)}.

So suppose that either only <12 occur or <; occur and, moreover, a(0) # 0 and a;(0) # 0 for
all ¢ € I,. By elimination of K-quantifiers, the set v(E) is a definable subset of I'. Further, it
is easy to check, applying Theorem 7.1 ff. likewise as it was in Lemma 6.2, that the set v(E) is
given near infinity only by finitely many parametrized congruence conditions of the form

(8.2) v(E):{kGI‘: E>B A 30 w@) A /\ mik on;. 'yl}.
i=1
where 8,v; € ', m;, N € Nfor i =1,...,s, the predicates
o €{=n, EN,E%/,ﬁ E}(}/} with some m’ € N,

and 6;, is one of the entries of 6. Obviously, after perhaps shrinking the neighborhood of zero,

we may assume that
v(a(z)) = v(a(0)) and v(a;i(z)) = v(a:(0))
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foralli € I, and z € E\ {0}, v(z) > 5.

Now, take an element (u,w) € F(¢') with u € E\ {0}, v(u) > . In order to complete the
proof, it suffices to show that (0, w) is an accumulation point of F'(£’). To this end, observe that,
by equality 8.2, there is a point x € F arbitrarily close to 0 such that

v(z) €v(u) +gMN -T.
By equality 8.1, we get v(fi(x)) € v(fi(w)) +piMN -T', i € Iy, and hence

(8.3) v(fi(2) =m v(fi(w), i€y

Clearly, in the vicinity of zero we have

v(y") <o v(b(z,&)) and \ o(y") Que, v(bi(z,E)).

i€l
Therefore equality 8.3 along with the definition of the fibre F(£’) yield (z,w) € F(¢'), concluding
the proof of the closedness theorem.

Q

9. PIECEWISE CONTINUITY OF DEFINABLE FUNCTIONS

Further, let £ be the three-sorted language £ of Denef-Pas. The main purpose of this section
is to prove the following

Theorem 9.1. Let AC K" and f : A — PY(K) be an L-definable function. Then f is piecewise
continuous, i.e. there is a finite partition of A into L-definable locally closed subsets A, ..., As
of K™ such that the restriction of f to each A; is continuous.

We immediately obtain

Corollary 9.2. The conclusion of the above theorem holds for any L-definable function
fiA—= K.

The proof of Theorem 9.1 relies on two basic ingredients. The first one is concerned with a
theory of algebraic dimension and decomposition of definable sets into a finite union of locally
closed definable subsets we begin with. It was established by van den Dries [13] for certain
expansions of rings (and Henselian valued fields, in particular) which admit quantifier elimina-
tion and are equipped with a topological system. The second one is the closedness theorem
(Theorem 1.1).

Consider an infinite integral domain D with quotient field K. One of the fundamental concepts
introduced by van den Dries [13] is that of a topological system on a given expansion D of a domain
D in a language L. That concept incorporates both Zariski-type and definable topologies. We
remind the reader that it consists of a topology 7,, on each set D™, n € N, such that:

1) For any n-ary /:'D—terms t1,...,ts, n, s € N, the induced map

D" 3 a— (t1(a),...,ts(a)) € D*
is continuous.

2) Every singleton {a}, a € D, is a closed subset of D.

3) For any n-ary relation symbol R of the language £ and any sequence 1 <141 < ... <1 <n,
1 < k < n, the two sets

{(ail,...,aik) €Dkl D |:R((ai1,...,aik)&), a5, 7&0,...,aik 7&0},

{(ai17"'7aik) € Dk : D ': _‘R((a’iw"'?aik)&)? iy 7’é Oa“-aaik 7é 0}
are open in DF; here (a4, ...,a; )% denotes the element of D™ whose i;-th coordinate is aij,
j=1,...,k, and whose remaining coordinates are zero.
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Finite intersections of closed sets of the form {a € D" : t(a) = 0}, where t is an n-ary
L p-term, will be called special closed subsets of D™. Finite intersections of open sets of the form

{a € D" : t(a) # 0},
{aeD": D= R((t; (a),...,t;, (a)%), t; (a) #0,...,t; (a) # 0}

or
{a € D" : D= —-R((ty(a),... ,tik(a))&)7 ti(a) #0,...,t;, (a) # 0},

where ¢,%;,,1;, are ZD-terms, will be called special open subsets of D™. Finally, an intersection

of a special open and a special closed subsets of D™ will be called a special locally closed subset

of D™. Every quantifier-free L-definable set is a finite union of special locally closed sets.

Suppose now that the language L extends the language of rings and has no extra function
symbols of arity > 0 and that an Z—expansion D of the domain D under study admits quantifier
elimination and is equipped with a topological system such that every non-empty special open
subset of D is infinite. These conditions ensure that D is algebraically bounded and algebraic
dimension is a dimension function on D ([13, Proposition 2.15 and 2.7]). Algebraic dimension
is the only dimension function on D whenever, in addition, D is a non-trivially valued field and
the topology 71 is induced by its valuation. Then, for simplicity, the algebraic dimension of an
L-definable set E will be denoted by dim E.

Now we recall the following two basic results from the paper [13, Propositions 2.17 and 2.23]:

Proposition 9.3. Every E—deﬁnable subset of D™ is a finite union of intersections of Zariski

closed with special open subsets of D™ and, a fortiori, a finite union of locally closed E—deﬁnable
subsets of D™.

Proposition 9.4. Let E be an E—deﬁnable subset of D", and let E stand for its closure and
OF := E '\ E for its frontier. Then

alg.dim (OF) < alg.dim (E).
It is not difficult to strengthen the former proposition as follows.
Corollary 9.5. FEvery E—deﬁnable set is a finite disjoint union of locally closed sets.

Quantifier elimination due to Pas [53, Theorem 4.1] (more precisely, elimination of K-quant-
ifiers) enables translation of the language £ of Denef-Pas on K into a language L described
above, which is equipped with the topological system wherein 7,, is the K-topology on K",
n € N. Indeed, we must augment the language of rings by adding extra relation symbols for the
inverse images under the valuation and angular component map of relations on the value group
and residue field, respectively. More precisely, we must add the names of sets of the form

{a € K": (v(a1),...,v(ay)) € P} and {a€ K":(acay,...,aca,) € Q},

where P and @ are definable subsets of I and k™ (as the auxiliary sorts of the language L),
respectively.

Summing up, the foregoing results apply in the case of Henselian non-trivially valued fields
with the three-sorted language L of Denef-Pas. Now we can readily prove Theorem 9.1.

Proof. Consider an L-definable function f: A — P!(K) and its graph
E:={(z, f(x)): 2 € A} C K" x P}(K).

We shall proceed with induction with respect to the dimension d = dim A = dim E of the source
and graph of f. By Corollary 9.5, we can assume that the graph E is a locally closed subset
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of K™ x P}(K) of dimension d and that the conclusion of the theorem holds for functions with
source and graph of dimension < d.

Let F be the closure of E in K™ x P}(K) and OF := F \ E be the frontier of E. Since E is
locally closed, the frontier OF is a closed subset of K x P(K) as well. Let

7m: K" x PHK) — K"

be the canonical projection. Then, by virtue of the closedness theorem, the images 7(F) and
m(OF) are closed subsets of K™. Further,

dim F=dim n(F)=d and dim 7(9F) < dim 0F < d;

the last inequality holds by Proposition 9.4. Putting B := n(F) \ n(OF) C n(E) = A, we thus
get dim B =d and dim(A\ B) < d. Clearly, the set

FEo:=EN(BxPYK))=Fn(BxP{(K))

is a closed subset of B x P'(K) and is the graph of the restriction fo : B — P1(K) of f to B.
Again, it follows immediately from the closedness theorem that the restriction mg : By — B of
the projection 7w to Ejy is a definably closed map. Therefore fj is a continuous function. But, by
the induction hypothesis, the restriction of f to A\ B satisfies the conclusion of the theorem,
whence so does the function f. This completes the proof. (I

10. CURVE SELECTION

We now pass to curve selection over non-locally compact ground fields under study. While
the real version of curve selection goes back to the papers [6, 58] (see also [40, 41, 4]), the p-adic
one was achieved in the papers [57, 12].

In this section we give two versions of curve selection which are counterparts of the ones from
our paper [44, Proposition 8.1 and 8.2] over rank one valued fields. The first one is concerned with
valuative semialgebraic sets and we can repeat verbatim its proof which relies on transformation
to a normal crossing by blowing up and the closedness theorem.

By a valuative semialgebraic subset of K™ we mean a (finite) Boolean combination of elemen-
tary valuative semialgebraic subsets, i.e. sets of the form {z € K™ : v(f(x)) < v(g(x))}, where
f and g are regular functions on K™. We call a map ¢ semialgebraic if its graph is a valuative
semialgebraic set.

Proposition 10.1. Let A be a valuative semialgebraic subset of K™. If a point a € K™ lies in
the closure (in the K-topology) of A\ {a}, then there is a semialgebraic map ¢ : R — K" given
by algebraic power series such that

@(0)=a and ¢(R\{0}) C A\{a}.

We now turn to the general version of curve selection for L-definable sets. Under the cir-
cumstances, we apply relative quantifier elimination in a many-sorted language due to Cluckers—
Halupczok rather than simply quantifier elimination in the Presburger language for rank one
valued fields. The passage between the two corresponding reasonings for curve selection is simi-
lar to that for fiber shrinking. Nevertheless we provide a detailed proof for more clarity and the
reader’s convenience. Note that both fiber shrinking and curve selection apply Lemma 6.2.

Proposition 10.2. Let A be an L-definable subset of K™. If a point a € K™ lies in the closure
(in the K-topology) of A\ {a}, then there exist a semialgebraic map ¢ : R — K™ given by
algebraic power series and an L-definable subset E of R with accumulation point 0 such that

p(0)=a and (E\{0}) C A\ {a}.
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Proof. As before, we proceed with induction with respect to the dimension of the ambient space
n. The case n = 1 being evident, suppose n > 1. By elimination of K-quantifiers, the set A\ {a}
is a finite union of sets defined by conditions of the form

(U(fl(x))?'- av(fr(x))) € Pv (ﬁgl(fﬂ),. . ,%gs(l')) € Qv

where f;, g; € K|[x] are polynomials, and P and ) are definable subsets of I'" and k®, respectively.
Without loss of generality, we may assume that A is such a set and a = 0.

Take a finite composite o : Y — K A" of blow-ups along smooth centers such that the pull-
backs f7,...,fZ and g¢f,...,g7 are normal crossing divisors unless they vanish. Since the
restriction o : Y (K) — K" is definably closed (Corollary 1.6), there is a point b € Y (K)No~!(a)
which lies in the closure of the set B := Y (K)No~1(A\ {a}). Take local coordinates yi. ...,y
near b in which b = 0 and every pull-back above is a normal crossing. We shall first select a
semialgebraic map v : R — Y (K) given by restricted power series and an £L-definable subset
E of R with accumulation point 0 such that /(0) =b and (E\ {0}) C B.

Since the valuation map and the angular component map composed with a continuous function

are locally constant near any point at which this function does not vanish, the conditions which
describe the set B near b are of the form

(U(yl)a e 7v(y7l)) € ﬁ? (%yh ce a%yn) € @a
where P and @ are definable subsets of I'™ and k™, respectively.

The set By determined by the conditions

(v(y1), - v(yn)) € P,

n

i=1
is contained near b in the union of hyperplanes {y; = 0}, i = 1,...,n. If b is an accumulation
point of the set By, then the desired map 1 exists by the induction hypothesis. Otherwise b is
an accumulation point of the set By := B\ By.

Now we are going to apply relative quantifier elimination in the value group sort I'. Similarly,
as in the proof of Lemma 6.2, the parametrized congruence conditions which occur in the de-
scription of the definable subset P of '™ achieved via quantifier elimination, are not an essential
obstacle to finding the desired map 1, but affect only the definable subset E of R. Neither are
the conditions

n
Q\Ule=0
i=1
imposed on the angular components of the coordinates y1, ..., y,, because none of them vanishes

here. Therefore, in order to select the map ¢, we must first of all analyze the linear conditions
(equalities and inequalities) which occur in the description of the set P.

The set P has an accumulation point (00, ...,00) as b = 0 is an accumulation point of B. By
Lemma 6.2, there is an affine semi-line

L={(rit+v,...;rnt+,): tel, t>0} with r,...,r, €N,

passing through a point v = (v1,...,7,) € P and such that (co,...,00) is an accumulation
point of the intersection P N L too.
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Now, take some elements
n
(617"'7£n) €qQ \ U{fl :0}
i=1
and next some elements wy, ..., w, € K for which
v(wi) =71, ,0(w,) =9, and acw; =E&i,...,acw, = &y

It is not difficult to check that there exists an L-definable subset E of R which is determined
by a finite number of parametrized congruence conditions (in the many-sorted language Lge
described in Section 7) imposed on v(t) and the conditions @ét = 1 such that the subset

F:={(wy-t",...,w,-t"™): t € E}
of the arc
P:R=Y, Yt)=(wy -t .. w, - tT)

is contained in B;. Then ¢ := oo is the map we are looking for. This completes the proof. O

11. THE LOJASIEWICZ INEQUALITIES

In this section we provide certain two versions of the Lojasiewicz inequality which generalize
the ones from [44, Propositions 9.1 and 9.2] to the case of arbitrary Henselian valued fields.
Moreover, the first one is now formulated for several functions g1, ..., g,. For its proof we still
need the following easy consequence of the closedness theorem.

Proposition 11.1. Let f : A — K be a continuous L-definable function on a closed bounded
subset A C K™. Then f is a bounded function, i.e. there is an w € I such that v(f(z)) > w for
all x € A.

We adopt the following notation:
v(z) =v(x1,...,2y) == min {v(z1),...,v(z,)}
for x = (z1,...,2,) € K™

Theorem 11.2. Let f,g1,...,9m : A — K be continuous L-definable functions on a closed (in
the K -topology) bounded subset A of K™. If

{zreA:qg1(x)=...=gn(z)=0} C{z € A: f(x) =0},

then there exist a positive integer s and a constant § € I' such that

s-o(f(@)) + 8 = v((91(2), .., gm(x)))
for all x € A.
Proof. Put g = (g1,...,9m). It is easy to check that the set A, :={x € A: v(f(z)) =~} isa
closed L-definable subset of A for every v € I'. By the hypothesis and the closedness theorem,
the set g(A,) is a closed L-definable subset of K™\ {0}, v € I". The set v(g(A,)) is thus bounded
from above, i.e. v(g(A,)) < a(y) for some a(y) € I'. By elimination of K-quantifiers, the set
A= {(v(f(2),v(g(x))) €T?: w € A, f(z) #0} C {(,0) €T*: § <a(y)}

is a definable subset of I'? in the many-sorted language L,¢ from Section 7. Applying Theorem 7.1
ff., we see that this set is described by a finite number of parametrized linear equalities and
inequalities, and of parametrized congruence conditions. Hence

ANn{(7,0) €T?: y>v}C{(7.0) €T?: 6 <s-7}
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for a positive integer s and some 7y € I'. We thus get

vg(@) < s-o(f(2) if @€ A, v(f(2)) > 0.
Again, by the hypothesis, we have g({z € A: v(f(x )) <v}) € K™\ {0}. Therefore it follows
from the closedness theorem that the set {v(g(x)) € v(f(x)) <70} is bounded from above,
say, by a 8 € I'. Taking an w € T" as in Proposition 11 1 and putting 5 := max {0, § — s - w}, we
get

s-v(f(z)) —v(g(x)) +B >0, forall ze A,
as desired. (]

A direct consequence of Theorem 11.2 is the following result on Holder continuity of definable
functions.

Proposition 11.3. Let f : A — K be a continuous L-definable function on a closed bounded
subset A C K™. Then f is Hélder continuous with a positive integer s and a constant 5 € T, i.e.

s-u(f(x) = f(2)) + B = v(z—2)
for all x,z € A.
Proof. Apply Theorem 11.2 to the functions

f(l‘)*f(y) and gl(may):lﬁ*yla Z:L,Tl

We immediately obtain

Corollary 11.4. FEvery continuous L-definable function f: A — K on a closed bounded subset
A C K™ is uniformly continuous.

Now we state a version of the Lojasiewicz inequality for continuous definable functions of a
locally closed subset of K™.

Theorem 11.5. Let f,g: A — K be two continuous L-definable functions on a locally closed
subset A of K™. If

{reA:g(x)=0}C{zeA: f(z) =0},
then there exist a positive integer s and a continuous L-definable function h on A such that
fe(x) = h(z) - g(z) for all x € A.
Proof. It is easy to check that the set A is of the form A := U N F, where U and F are two
L-definable subsets of K™, U is open and F is closed in the K-topology.

We shall adapt the foregoing arguments. Since the set U is open, its complement V := K™\ U

is closed in K™ and A is the following union of open and closed subsets of K™ and of P"(K):
Xg={xe K": v(z1),...,v(zn) > =B, viz—y)<p foral yeV},

where 8 € ', B > 0. As before, we see that the sets

Ag i ={x e Xg: v(f(z)) =~} with 8,v€T

are closed L-definable subsets of P™(K), and next that the sets g(Ag ) are closed L-definable
subsets of K \ {0} for all 8,y € T'. Likewise, we get

A= A{(B,v(f(2)),v(g(x))) €T°: w € Xp, f(x) #0} C {(8,7,0) €T7: & <a(B,)}
for some «(f,7) €T
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A is a definable subset of I'® in the many-sorted language L4, and thus is described by a
finite number of parametrized linear equalities and inequalities, and of parametrized congruence
conditions. Again, the above inclusion reduces to an analysis of those linear equalities and
inequalities. Consequently, there exist a positive integer s € N and elements vy(8) € I' such that

AN{(B,7,0) €% v>0(B8)} C{(B.7,0) €T?: § <57}
Since A is the union of the sets Xg, it is not difficult to check that the quotient f°/g extends by

zero through the zero set of the denominator to a (unique) continuous L-definable function on
A, which is the desired result. O

We conclude this section with a theorem which is much stronger than its counterpart,
[44, Proposition 12.1], concerning continuous rational functions. The proof we give now re-
sembles the above one, without applying transformation to a normal crossing. Put

D(f)={ze€A: f(x)#0} and Z(f):={x e A: f(z) =0}

Theorem 11.6. Let f: A — K be a continuous L-definable function on a locally closed subset
A of K™ and g : D(f) = K a continuous L-definable function. Then f* - g extends, for s > 0,
by zero through the set Z (f) to a (unique) continuous L-definable function on A.

Proof. As in the proof of Theorem 11.5, let A = U N F and consider the same sets Xg C K™,
B €T, and A C I'3. Under the assumptions, we get

Ac{(B7,0) €T%: 6> a(B,7)}

for some a(B,7) € I'. Now, in a similar fashion as before, we can find an integer r € Z and
elements (8) € I' such that

AN{(B,7,8) €T%: v >70(B)} C{(B,7,0) €T%: 6 >r -7},

Take a positive integer s € N such that s + > 0. Then, as in the proof of Theorem 11.5, it
is not difficult to check that the function f® - g extends by zero through the zero set of f to a
(unique) continuous L-definable function on A, which is the desired result. O

Remark 11.7. Note that Theorem 11.6 is, in fact, a strengthening of Theorem 11.5, and has many
important applications. In particular, it plays a crucial role in the proof of the Nullstellensatz
for regulous (i.e. continuous and rational) functions on K".

12. CONTINUOUS HEREDITARILY RATIONAL FUNCTIONS AND REGULOUS FUNCTIONS AND
SHEAVES

Continuous rational functions on singular real algebraic varieties, unlike those on non-singular
real algebraic varieties, often behave quite unusually. This is illustrated by many examples from
the paper [30, Section 1], and gives rise to the concept of hereditarily rational functions. We
shall assume that the ground field K is not algebraically closed. Otherwise, the notion of a
continuous rational function on a normal variety coincides with that of a regular function and,
in general, the study of continuous rational functions leads to the concept of seminormality and
seminormalization; cf. [1, 2] or [29, Section 10.2] for a recent treatment. Let K be topological
field with the density property. For a K-variety Z, let Z(K) denote the set of all K-points
on Z. We say that a continuous function f : Z(K) — K is hereditarily rational if for every
irreducible subvariety Y C Z there exists a Zariski dense open subvariety Y C Y such that
flyo(k) is regular. Below we recall an extension theorem, which plays a crucial role in the theory
of continuous rational functions. It says roughly that continuous rational extendability to the
non-singular ambient space is ensured by (and in fact equivalent to) the intrinsic property to
be continuous hereditarily rational. This theorem was first proven for real and p-adic varieties
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in [30], and next over Henselian rank one valued fields in [44, Section 10]. The proof of the latter
result relied on the closedness theorem (Theorem 1.1), the descent property (Corollary 1.7) and
the Lojasiewicz inequality (Theorem 11.5), and can now be repeated verbatim for the case where
K is an arbitrary Henselian valued field K of equicharacteristic zero.

Theorem 12.1. Let X be a non-singular K-variety and W C Z C X closed subvarieties.
Let f be a continuous hereditarily rational function on Z(K) that is regular at all K-points of
Z(K)\W(K). Then f extends to a continuous hereditarily rational function F on X (K) that
is reqular at all K-points of X (K)\ W(K).

The corresponding theorem for hereditarily rational functions of class C*, k € N, remains an
open problem as yet. This leads to the concept of k-regulous functions, k£ € N, on a subvariety
Z(K) of a non-singular K-variety X (K), i.e. those functions on Z(K') which are the restrictions
to Z(K) of rational functions of class C¥ on X (K).

In real algebraic geometry, the theory of regulous functions, varieties and sheaves was devel-
oped by Fichou-Huisman—Mangolte-Monnier [19]. Regulous geometry over Henselian rank one
valued fields was studied in our paper [44, Sections 11, 12, 13]. The basic tools we applied are
the closedness theorem, descent property, the Lojasiewicz inequalities and transformation to a
normal crossing by blowing up. We should emphasize that all those our results, including the
Nullstellensatz and Cartan’s theorems A and B for regulous quasi-coherent sheaves, remain true
over arbitrary Henselian valued fields (of equicharacteristic zero) with almost the same proofs.

We conclude this paper with the following comment.

Remark 12.2. In our recent paper [48], we established a definable, non-Archimedean version
of the closedness theorem over Henselian valued fields (of equicharacteristic zero) with analytic
structure along with several applications. Let us mention, finally, that the theory of analytic
structures goes back to the work of many mathematicians (see e.g. [12, 14, 37, 16, 15, 38, 39, 9,
10, 11)).
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Dedicated to Professor Goo Ishikawa on the occasion of his 60th birthday

ABSTRACT. Given a null-cobordant oriented framed link L in a closed oriented 3-manifold
M, we determine those links in M ~ L which can be realized as the singular point set of a
generic map M — R? that has L as an oriented framed regular fiber. Then, we study the
linking behavior between the singular point set and regular fibers for generic maps of M into
R2.

1. INTRODUCTION

Topology of generic C'™° maps of manifolds of dimension > 2 into the plane R? has been
extensively studied as a natural generalization of Morse theory, which studies generic maps into
the real line R. For a Morse function, singular points, or critical points, are isolated and their
positions in the source manifold are not interesting except for their cardinalities or indices. On
the other hand, for a generic map into the plane, the singular point set is a smooth submanifold
of dimension one in the source manifold and its position may be non-trivial. In [14], the author
studied the position of the singular point set and characterized those smooth 1-dimensional
submanifolds which arise as the singular point set of a generic map.

On the other hand, each regular fiber of such a generic map into R? is of codimension two
and is disjoint from the singular point set. Therefore, the singular point set and regular fibers
may be non-trivially linked.

In September 2018 Professor David Chillingworth asked the author the following question:
for a generic map f : R® — R2?, must every component of a reqular fiber be linked by at least
one component of the singular point set 22

In this paper, we concentrate on generic maps of closed (i.e. compact and boundaryless)
3-dimensional manifolds, instead of R3, and study the linking behavior between the singular
point set and regular fibers in the source 3—manifold. More precisely, let M be a closed oriented
3-manifold and f : M — R? a generic C* map. Generic maps that we consider in this paper
are called excellent maps, as defined in §2, and have fold and cusp singularities. In our 3—
dimensional case, both the singular point set and regular fibers have dimension one, and they
constitute disjoint links in M. We study their relative positions in the 3—manifold M.

For example, let us consider the unit sphere S C R* and let 7 : R* — R? be the standard
projection defined by 7(z1, xo,x3,74) = (21, 12) for (z1, 29, x3,24) € R* Then,

fo=mlgs : > = R?

2000 Mathematics Subject Classification. Primary 57R45; Secondary 58K30, 57M25, 57R20, 57R70.

Key words and phrases. Excellent map, 3—manifold, singular point set, regular fiber, relative Stiefel-Whitney
class, framing.

1n the conference “Geometric and Algebraic Singularity Theory” held in honor of the 60th birthday of Goo
Ishikawa, in Bedlewo, Poland.

2This question originates from a physical study of phase singularities, nodal lines, or optical polarization knots.
For details, the reader is referred to [1, 2, 4, 8].
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FIGURE 1. Singular point set and a regular fiber for a specific map fp : 5% — R?

is an excellent map whose singular point set S(fy) = {(x1,72,0,0) € S3} consists only of definite
fold singularities and is a trivial knot in S3. Furthermore, for y = (y1,y2) with 32 +y3 < 1,
the regular fiber f5 ' (y) = {(y1,y2, 73,24) € S*} is an unknotted circle linked with S(fo) (see
Fig. 1). So, in this example, the answer to the above question is positive.

The present paper is organized as follows. In §2, we will first see that regular fibers are
naturally oriented and framed; i.e. they have natural normal framings induced by the generic map
f: M — R2. Furthermore, they bound compact oriented normally framed surfaces embedded in
M. Conversely, in [13], it has been shown that if an oriented normally framed link in M bounds
a compact oriented normally framed surface, then it is realized as a regular fiber of a generic map
of M into R?. Then, in Theorem 2.3, given such a framed link L in M, we characterize those
unoriented links in M ~. L that arise as the singular point set of a generic map f : M — R? such
that L coincides with a framed regular fiber of f. The characterization is given in terms of a
relative characteristic class (see [7]) which is the obstruction to extending a certain trivialization
of the tangent bundle of M on a neighborhood of L to the whole M.

In §3, we will study the relative characteristic class which arises as the obstruction as above.
As a consequence, we will show that if a regular fiber has an odd number of components, then it
necessarily links with the singular point set (see Remark 3.5). We will also give a result which
enables us to identify the obstruction for local links that are embedded inside an open 3-disk.

In §4, by utilizing the results obtained in §3, we show that there exist generic maps S® — R?
such that a regular fiber, which is a 2—component link, and the singular point set are split; i.e.
they lie inside disjoint 3—disks. We also see that there exists such an example for every closed
oriented 3-manifold M. We also give two explicit examples of generic maps S — R? which
exhibit non-linking phenomena between regular fibers and the singular point set.

Finally in §5, we address the original question concerning generic maps of R? into the plane.
By utilizing results obtained in [6] on regular fibers of submersions R3 — R?, we answer to the
question negatively, by constructing counter examples.

Throughout the paper, manifolds and maps are differentiable of class C'°° unless otherwise
indicated. All (co)homology groups are with Zs—coefficients unless otherwise indicated. The
symbol “>” means an appropriate isomorphism between algebraic objects.

2. MAIN THEOREM

Let M be a closed oriented 3-dimensional manifold. We say that a map f : M — R? is
excellent if its singularities consist only of fold and cusp singularities, where a fold singularity
(or a cusp singularity) is modeled on the map germ

(2,y,2) = (2,y° £2°) (resp. (z,y,2) = (2,9° + 2y — 27))
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R2

FIGURE 2. Framing for a regular fiber

at the origin. We say that a fold singularity is definite (resp. indefinite) if it is modeled on the
map germ (z,y, 2) — (z,y* + 22) (resp. (x,y,2) = (z,y* — 2?)).

It is known that the set of excellent maps is always open and dense in the mapping space
C>°(M,R?) endowed with the Whitney C* topology (for example, see [5, 18]).

In the following, for a map f : M — R?, we denote by S(f) the set of singular points of
f. If f is an excellent map, then we see easily that S(f) is a link in M, i.e. a disjoint union
of finitely many smoothly embedded circles. For a regular value y € R?, if L = f~!(y) is non-
empty, then we call it a regular fiber, which is also a link in M and is disjoint from S(f). We
fix an orientation of R? once and for all, and then a regular fiber is naturally oriented, since
M is oriented. Furthermore, L is naturally framed: its framing is given as the pull-back of the
trivial normal framing of the point y in R? (see Fig. 2). In other words, taking a small disk
neighborhood of y in R? consisting entirely of regular values, let ¢’ be a point in its boundary,
then f~1(y’) represents the framed longitude of the framed link L.

LEMMA 2.1. A framed reqular fiber L of an excellent map f : M — R? over a regular point
y € R? is always framed null-cobordant. In other words, there exists a compact oriented surface
V' embedded in M whose boundary coincides with L and which is consistent with the framed
longitude.

Proof. Let £ be a half line in R? emanating from y. We may assume that it is transverse to the
map f. Then, V = f~1(¢) gives the desired surface (see Fig. 3). O

In [13, Proposition 5.1], it has been shown that every null-cobordant oriented framed link L
in M can be realized as an oriented framed regular fiber of an excellent map f : M — R2. In
this case, the singular point set S(f) is a link disjoint from L. Then, it is natural to ask which
links in M ~\ L appear as the singular point set of such an excellent map.

In order to state our first theorem, let us prepare some notations and terminologies. For a
(unoriented) link J in M\ L, we denote by [J]o € Hy(M \ L) the Zs—homology class represented
by J. Let N(L) be a small tubular neighborhood of L in M disjoint from .J. Since L is a framed
link, we have a natural 3-framing of M over ON(L), i.e. a trivialization of TM|yn(z). The
obstruction to extending this framing over M ~\ Int N(L) is the relative Stiefel-Whitney class
(see [7]), denoted by wa(M, L), which is an element of the Zs—cohomology group

H*(M ~Int N(L),ON(L)) = H*(M,N(L)) = H*(M, L),
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L=f"y)

R2

F1GURE 3. Constructing a framed null-cobordism

where the first isomorphism is given by excision and the second one is given by the natural
homotopy equivalence (M, L) — (M, N(L)). Note that by Poincaré-Lefschetz duality, we have

H*(M ~TInt N(L),ON(L)) = Hy (M ~Int N(L)) = H,(M \ L).

REMARK 2.2. Let j : (M,0) — (M, L) be the inclusion. Then the induced homomorphism
§* : H*(M,L) — H?*(M) maps wa(M, L) to the second Stiefel-Whitney class wo(M) of M,
which vanishes. By the cohomology exact sequence

HY(L)—— H?(M, L)~ —H*(M),
we see that wa (M, L) = () for some o € H(L).
Now, one of the main theorems of this paper is the following.

THEOREM 2.3. Let L be an oriented null-cobordant framed link in a closed oriented 3—manifold
M, and J be an unoriented link in M disjoint from L. Then, there exist an excellent map
f: M — R? and a regular value y € R? such that f~(y) coincides with L as an oriented framed
link and that S(f) = J if and only if [J]2 € H1(M~ L) is Poincaré dual to wa(M, L) € H?(M, L).

Proof. Suppose that f : M — R? is an excellent map such that L coincides with f~!(y) as a
framed link for a regular value y € R? and that J = S(f). Then, we have the following, which
is originally due to Thom [16].

LEMMA 2.4. If f : M — R? is an excellent map and y € R? is a reqular value, then for
L= f"Yy), [S(f)]2 € Hi(M \ L) is Poincaré dual to we(M,L) € H*(M,L).

For the sake of completeness, we include a short proof here.

Proof of Lemma 2.4. Since f is a submersion outside of S(f), we can extend the framing on
N(L) to M ~ S(f). Then, we see easily that S(f) is exactly the obstruction locus and by
definition of the relative Stiefel-Whitney class, we have the desired conclusion. O

Conversely, suppose that [J]a € Hi(M ~ L) is Poincaré dual to wo(M, L). Let g: M — R?
be an arbitrary excellent map for which there exists a regular value y € R? such that g~!(y)
coincides with L as a framed link. Such an excellent map always exists by [13]. Then, we see
that [S(g)]2 € Hi(M ~\ L) is Poincaré dual to wy(M, L) by Lemma 2.4. By our assumption, this
implies that J and S(g) are Zy—homologous in M \ L. Set S(g) = Jo.
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FIGURE 4. Starting from .Jy, we get J up to isotopy by a finite iteration of band
operations inside M ~ L.

LEMMA 2.5 ([14]). If [Jo]e = [J]2 € H1(M ~\ L), then by modifying Jo by a finite iteration of
band operations inside M ~. L, we can get J, up to isotopy.

Here, a band operation on Jy is defined as follows. Set I1 = Ir = [—1,1], and let
©: I xIs - M~ L

be an embedding of a band such that ¢(I; x I3) N Jy = o({—1,1} x I3). Then a band operation
applied to Jy transforms it to (Jo~¢({—1,1} x I1))Up(l; x {—1,1}) with the corners smoothed.
Lemma 2.5 states that repeating this procedure finitely many times, we get a link isotopic to J
in M \ L, starting from Jy (see Fig. 4).

Proof of Lemma 2.5. First, we may assume that both Jy and J are connected, by using band
operations. Here, note that the reverse of a band operation is again a band operation.

Now, we orient Jy and J arbitrarily. Since [J]2 = [Jo]2 in Hy (M ~\ L), we have [J] = [Jo] +2v
for some v € Hy(M ~\ L;Z), where [J] and [Jo] € H1(M \ L;Z) are the Z-homology classes
represented by J and Jy, respectively. Using a band whose center curve corresponds to v, we
may assume [Jo] = [J] in Hy(M ~\ L;Z) (see the left hand side picture of Fig. 5).

Recall that Hy(M ~ L;Z) is the abelianization of 71 (M ~ L). By realizing commutators in
m1(M ~ L) by band operations, we may assume Jy and J are freely homotopic (see the right
hand side picture of Fig. 5).

Then, for dimensional reasons, Jy is regularly homotopic to J. This implies that Jy is trans-
formed to J by a finite iteration of “crossing changes” in knot theory, up to isotopy.

Finally, we can realize each “crossing change” by two band operations as depicted in Fig. 6.
This completes the proof of Lemma 2.5. (For more details, the reader is referred to [14].) O

LEMMA 2.6 ([14]). Each band operation applied to S(g) can be realized by a generic deformation
of g : M — R? which does not modify g~ (N (y)) for a small disk neighborhood N (y) of y in R2.
In other words, for a link Jy obtained by a band operation to S(g) in M ~ g~(y), there exists a
generic 1-parameter deformation from g to g1 in such a way that g1 : M — R? is an excellent

map with $(g1) = J1, g1 (N(y)) = 97 (N (Y)) and 1], (n(y)) = 9lo1 (N w))-

The above lemma can be proved by using Levine’s cusp elimination techniques [9] (see Fig. 7).
For details, the reader is referred to [14].
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F1cure 5. Modifying Jy appropriately

FIGURE 6. Realizing a crossing change by two band operations

band
indefinite fold §
\ /

swallow- §§ (7
'

tail

) */ B " o W

definite fold image cusp elimination

FIGURE 7. An example of a cusp elimination along a curve corresponding to a
band operation. The upper row depicts a change of the singular point set in the
source 3—manifold M, while the lower row depicts the corresponding change of
the singular point set image in R2.

Now let us go back to the proof of Theorem 2.3. Combining Lemmas 2.5 and 2.6, we can
deform g with S(g) = Jo to an excellent map f : M — R? with S(f) = J, keeping the condition
g *(y) = f~'(y) = L. This completes the proof. O
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REMARK 2.7. As in [14], suppose J is decomposed as a disjoint union
J=FUFUC,

where Fjy and F} are finite disjoint unions of open arcs and circles, C' is a finite set of points,
and each point of C' is adjacent to both Fjy and Fi. If both Fy and F} are non-empty, then in
Theorem 2.3, we can find an excellent map f such that S(f) = J, Fy is the set of definite fold
singularities, F} is the set of indefinite fold singularities, and C' is the set of cusp singularities.

REMARK 2.8. Let g : M — R? be an excellent map for which there exists a regular value y
such that g~!(y) coincides with L as a framed link. In the situation of Theorem 2.3, we see that
[J]2 € H1(M) is Poincaré dual to wy (M), which vanishes, by Remark 2.2. Then, we can apply
the modification techniques developed in [14] without touching L to obtain an excellent map
h : M — R? homotopic to g such that S(h) is isotopic to J in M. However, in order to obtain
an excellent map h’ such that S(h’) coincides with J, we need to further modify h. In such
a modification process, the regular fiber over y may change, since in the course of the isotopy,
the link may cross L. In §3, we will see that not every Zs null-homologous link J in M can be
realized as above, depending on its position relative to L.

Generalizing our Theorem 2.3, we can also obtain the following, which can be proved by the
same argument. Details are left to the reader.

THEOREM 2.9. Let M be a closed oriented 3—-manifold and Ly, Lo, ..., Ly, and J be disjoint
links in M. Suppose that Ly, Lo, ..., Ly are oriented and null-cobordant framed links, and that
they bound disjoint compact oriented framed surfaces. Furthermore, J is an unoriented link.
Then, there exist an excellent map f : M — R? and distinct reqular values y1,yo,...,ye € R?
of f such that f~1(y;) = L; as framed links for i = 1,2,...,¢, and J = S(f) if and only if
[J]2 € Hi(M ~\ L) is Poincaré dual to wa(M, L), where L = Ly U LaU---U Ly.

For maps into S?, we have a similar result as follows. Recall that, for a closed oriented 3—
dimensional manifold M, the homotopy classes of M into S? are in one-to-one correspondence
with the framed cobordism classes of closed oriented framed 1-dimensional submanifolds in M
by the Pontrjagin-Thom construction. For the classification of the homotopy set [M, S?] for a
closed oriented 3—manifold M, the reader is referred to [3].

THEOREM 2.10. Let M be a closed oriented 3—manifold and fix a homotopy class of a map
g: M — S%. Let L be an oriented framed link in M which corresponds to the homotopy class of
g. Then, for an unoriented link J in M ~ L, there exist an excellent map f : M — S? homotopic
to g and a regular value y € S? of f such that f~'(y) coincides with L as a framed link and
J = S8(f) if and only if [J]2 € Hi (M ~ L) is Poincaré dual to we(M,L).

The proof of Theorem 2.10 is similar to that of Theorem 2.3 and is left to the reader. Note
that Theorem 2.3 corresponds to the case of a null-homotopic map g in Theorem 2.10 in a certain
sense.

3. OBSTRUCTION

In order to apply Theorem 2.3 in practical situations, let us study the obstruction class
wa (M, L) more in detail, where M is a closed oriented 3—manifold and L is a framed link in M.

As we saw in Remark 2.2, there exists an o € H'(L) such that d(a) = we(M, L), although
such a cohomology class may not be unique. In fact, such an « can be explicitly given as follows.
Set L =Ly ULsU---U Ly, where L, are the components of L, s =1,2,...,¢t. It is known that
a closed oriented 3-manifold M is always parallelizable, i.e. its tangent bundle is trivial. Let
us fix a framing 7 of M, where 7 can be identified with a trivialization of the tangent bundle
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TM. Once such a framing 7 is fixed, we can compare it with the specific framing given on each
component L, of the framed link L. This defines a well-defined element as in 71 (SO(3)) = Zs.
Then, we have the following.

LEMMA 3.1. Let a« € H*(L) be the unique cohomology class such that the Kronecker product
(o, [Ls]2) € Zy coincides with as for each component Ly of L. Then, we have §(a) = wa(M, L).

Proof. For each component Ly, let K, be the boundary of a small meridian disk D? of L,. We
may assume that K is contained in M ~ N(L). Then, by using 7, we can extend the framing
over ON (L) given by the framed link L to

(M~ Int N(L)) ~ (Ui, Ky)

If as = 0, then this framing further extends across K: otherwise, it does not. Therefore,
wy (M, L) is Poincaré dual to the sum of those [K;]a such that as # 0.
Let us consider the commutative diagram

HY(L) —%  H*(M,L)

dl dl
Ho(M, M~ L) —2— H{(M~ L),

where the first (or the second) row is a part of the cohomology (resp. homology) exact sequence
for the pair (M, L) (resp. (M, M ~ L)), and the vertical maps are the duality isomorphisms.
By the construction of , we see that p(a) is represented by the sum of those [D?,dD?]5 such
that as # 0, where [D2,0D?|y € Ho(M, M \ L) is the Zo—homology class represented by the
pair (D%,0D?). Since 9[D%,0D?)5 = [Ks]a € H1(M \ L), we have the desired conclusion by the
commutativity of the diagram. 0

For example, if the framing on L coincides with 7 up to homotopy, then @ = 0 and conse-
quently we have wo(M, L) = 0.

Note that the framing 7 may not be unique. The set of homotopy classes of such framings
is in one-to-one correspondence with the homotopy set [M,SO(3)]. If we consider the set of
homotopy classes of framings on the 2-skeleton of M, then each such framing up to homotopy
defines a spin structure on M, and the set of spin structures is in one-to-one correspondence
with H'(M) (see [11]).

By the cohomology exact sequence,

HY (M)—"—H'(L)—°

H?(M, L)——H*(M),

we see that for every element 8 € Imi*, we could choose o + 3 instead of «, where i : L — M
is the inclusion map. The observation in the previous paragraph shows that this corresponds to
choosing another framing, say 7', which is “twisted along 8”.

REMARK 3.2. As we saw in Remark 2.2, wo(M, L) is in the kernel of
j* : H2(Ma L)—>H2(M)7

which coincides with Im¢§ = H'(L)/Imi*. Note that if L is framed null-cobordant, then this
latter group is non-trivial, since L bounds a compact surface in M and hence [L]y = 0 in Hy(M).

If we change the framing of a component L of L, then wo(M, L) changes in general. The
difference is described by d[Ls]5, where [Ls]5 is the dual to the homology class [Ls]s € Hy(L)
represented by Ly with respect to the basis of Hi(L) consisting of the homology classes repre-
sented by the components of L. This follows from the observation described in [7, pp. 520-521].
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(However, we need to be careful, since if we change the framing of L, then the resulting framed
link may not be framed null-cobordant any more.)

REMARK 3.3. Let L be an oriented link in a closed oriented 3-manifold M. Then, we can

easily show that it bounds a compact oriented surface in M if and only if L represents zero in
Hy(M;Z).
In order to apply Theorem 2.3 in practical situations, we have the following proposition which

helps to identify the obstruction wq (M, L).

PROPOSITION 3.4. Let L be an oriented framed link which bounds a compact oriented surface V
consistent with the framing. Let « € HY(L) be an element such that §(ct) = wo(M,L). Then,
we have

(wa (M, L), [V, 0V]s) (0(a), [V, 0V]2)
(o, [L]2)
x(V)  (mod 2)

= {L (mod 2),
where (-, -) is the Kronecker product, [V,0V]a € Hao(M, L) is the fundamental class of V in
Zs—coefficients, x(V) denotes the Euler characteristic of V', and L denotes the number of com-
ponents of L.

The above proposition is similar to the Poincaré-Hopf theorem for vector fields. It can be
proved by decomposing V' into simplices, and by computing the contribution of each simplex.
We omit the details.

The above proposition can also be proved as follows. First, we construct an excellent map
f: M — R? such that for a regular value y, f~(y) coincides with L as a framed link and that for
a half line £ emanating from y in R? transverse to f, we have f~1(¢) = V. Such an excellent map
is constructed in [13]. Then, the map f|y : V — £ is a Morse function and its number of critical
points coincides with the number of intersection points of V' and S(f). As [S(f)]2 is Poincaré
dual to we(M, L), we see that this number modulo 2 coincides with (ws (M, L), [V,dV]3). Since
the number of critical points of the Morse function is congruent modulo 2 to x(V'), we get the
result. The congruence x (V) = L (mod 2) is obvious, since V' is a compact orientable surface
and 0V = L.

REMARK 3.5. The above proposition shows the following. If f : M — R? is an excellent map and
y € R? is a regular value such that L = f~!(y) has an odd number of components, then every
compact oriented surface V' in M bounded by L compatible with the framing of L intersects
with S(f). If H;(M) = 0, then this implies that the Zs linking number of L and S(f) in M does
not vanish. Thus, in this case, the regular fiber L necessarily links with S(f) (see Fig. 8). In
particular, if a regular fiber is connected, then it is necessarily linked with at least one component

of S(f).

Let us now consider the case of a local knot component. Suppose that the oriented framed
link L contains a component K that lies in the interior of a closed 3—disk D embedded in M.
Set U = Int D, which is an open set of M diffeomorphic to R3. In the following, let us identify
U with R3. In this case, up to homotopy, we may assume that the framing 7 for M over U is
given by the standard framing of R3.

Let 7 : R® — H be the orthogonal projection onto a generic hyperplane H = R? in the sense
that 7|k is an immersion with normal crossings. On the other hand, we may assume that the
first vector field defining the framing 7 over K is tangent to K consistent with the orientation.
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., S(f)
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FIGURE 8. Regular fiber with an odd number of components links with the
singular point set.

Since 7|k is an immersion, we may assume that at each point « of K the remaining two vector
fields give a basis for a 2-plane N, C T,R? transverse to T, K containing the direction H*
perpendicular to H. Then, we count the number of times modulo 2 the 2-framing rotates in N,
with respect to a fixed positive direction of H+ while 2 € K goes around K once. This number
is denoted by ¢, (K), which is an element in Zs. Then, we have the following.

LEMMA 3.6. Let « € HY(L) be an arbitrary element such that 6(o)) = wa (M, L). Then, we have
(o, [K]2) =ty (K)+c¢(K)+1 (mod 2),

where ¢(K) denotes the number of crossings of the immersion w|x : K — H with normal
crossings.

Proof. Since the framing 7 is standard on U = R3, in order for the obstruction to vanish on K,
we need to have that the winding number of 7(K) on H is even as long as ¢,(K) = 0. On the
other hand, by [17], we have that the winding number has the same parity as ¢(K)+1. Thus,
by the observation in [7, pp. 520-521], we have the conclusion. O

4. EXAMPLES

In this section, we give some explicit examples which imply that the answer to the problem
posed in §1 for closed oriented 3-manifolds is negative in general.

EXAMPLE 4.1. Let L be a 2-component framed link A= ({y1,y2}) in S? that consists of two
framed fibers of the positive Hopf fibration h : 3 — S2, for y; # yo in S?, where we reverse
the orientation of one of the components and the framings are induced by h. By taking the
inverse image h~!(a) of an embedded arc a in S? connecting y; and 2, we see that L is framed
null-cobordant (see Fig. 9). By Lemma 3.6, we have that w(S3, L) vanishes. This can also be
proved as follows. Let us take two distinct points p1,pe € S\ {y1,y2}. Since S? \ {p1,p2} is
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F1GURE 9. Framed Hopf link which is null-cobordant

diffeomorphic to an open annulus S* x (—1, 1), it has a 2-framing. By pulling back this 2-framing
by the Hopf fibration h, we see that the framing of T'S®|;, naturally extends to S*~h~*({p1,p2}).
This means that wy(S®, L) is Poincaré dual to h=!({p1, p2}). Since

(W™ (p1)]2 = [h " (p2)]2 € Hi(S® \ L),

we see that wo(S®, L) vanishes.

Therefore, by Theorem 2.3, an arbitrary link J split from L can be realized as the singular
point set of an excellent map S* — R? with L a framed regular fiber, since [J]2 = 0 is Poincaré
dual to wy(S®,L) = 0. In this example, the components of the regular fiber L do not link with
the singular point set!

Note that L has an even number of components. This is consistent with the observation given
in Remark 3.5.

Let M be an arbitrary closed oriented 3—manifold. By considering the above 2—component
link L as embedded in R? C S% and by embedding it to M, we get the same result for M as well.
This gives counter examples to the question presented in §1 for closed oriented 3-manifolds.

We will give two explicit examples of excellent maps on S® which give counter examples.

EXAMPLE 4.2. Let h : S — S? be the (positive) Hopf fibration. Let px = (0,0,1) and
ps = (0,0, —1) be the north and the south poles of S2, respectively, where we identify S? with
the unit sphere in R®. We decompose S? as S? = Dy U Dg U A, where Dy (or Dg) is a small
2-disk neighborhood of py (resp. ps) in S? with Dy N Dg = (), and A is the annulus obtained
as the closure of 5% \ (Dy U Dg).
Note that the fibration h is trivial on each of Dy, Dg and A. Let us fix a trivialization
(4.1) hHA) =8 x A= 8" x ([-1,1] x S*) = (S* x [-1,1]) x S,
where we identify A with [—1,1] x S so that {1} x S* (or {1} x S1) coincides with Dy (resp.
dDg). We take the trivialization of h=!(A) in such a way that it extends to a trivialization of h
over Dy U A. Note that in (4.1), the first S*factor corresponds to the fibers of h and the last
S1-factor corresponds to the equatorial direction of S? in the target.
Let k: S! x [-1,1] — [1,00) be a Morse function such that
(1) k=1(1) = St x {—1,1},
(2) k has no critical point in a small neighborhood of S! x {—1,1},
(3) k has exactly two critical points in such a way that one of them has index 1 and the
other has index 2.

Using the above ingredients, let us now construct an excellent map f : S — R? as follows.
On h=Y(Dy) (or on h=Y(Dg)), we define f = ix o h (resp. f = igoh), where iy : Dy — R?
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Si(f)

h~!(ps)

FIGURE 10. Framed regular fiber and the singular point set of the excellent
map f: 5% — R? in Example 4.2

(resp. is : Dg — R?) is an orientation preserving (resp. reversing) embedding onto the unit disk
in R? such that iy (pn) = is(ps) coincides with the origin 0. Furthermore, we choose iy and
is such that for each t € S, in(1,t) = is(—1,¢) holds for (1,¢) and (—1,t) € [-1,1] x ST = A.
On h=1(A) = (S* x [-1,1]) x St, we define f by f(z,t) = n(k(z),t) for z € S! x [~1,1] and
t € S, where 1 : [1,00) x S — R? is an embedding such that its image is the complement of
the open unit disk in R? and that n({1} x S') coincides with the unit circle in R?. We choose
n consistently with ix and ig, i.e. we require the condition that n(1,t) =in(1,t) = ig(—1,t) for
every t € S1. Then, the map f : S% — R? thus constructed is well-defined.

By modifying f near the attached tori h=1(0Dy U dDg) appropriately, we may assume that
f is a smooth excellent map. Furthermore, the origin 0 of R? is a regular value and f~1(0) is
a framed regular fiber as in Example 4.1. Note that S(f) has two components: one consists of
definite fold singularities and the other of indefinite fold singularities.

The situation is as depicted in Fig. 10. The torus in the top figure represents h =1 ({0} x S1) for
{0} x St € [-1,1] x St = A, and it separates the regular fiber components h~*(px) and h~*(ps)
of f. The annulus depicts A~ ([—1, —¢] x {t}) for some small ¢ > 0 and for some ¢t € S'. We may
assume that the critical points of k on h=1([—1,1] x {t}) are contained in A= ([—1, —¢] x {t}). As
t varies in S! in the positive direction, the annulus rotates as depicted in that figure. Therefore,
the critical points of & on the annulus sweep out a 2—-component link S(f) = So(f) U S1(f) as
depicted in the bottom figure, where Sy(f) (or S1(f)) is the set of definite (resp. indefinite) fold
singularities of f.

In this example, the regular fiber component h~!(pgs) of f does not link with S(f).

EXAMPLE 4.3. We have yet another example g : S3 — R? constructed as follows. In the
following, we use the same notations as in Example 4.2. We define g on h™'(Dy U Dg) in
exactly the same way as f. On the other hand, we replace f on h=!(A) with the map F defined
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FIGURE 11. Level sets of k; : ST x [~1,1] — [1,00) for t = t1,t2,t3 and t4 € S,
which correspond to those in Fig. 12.

by F(z,t) = n(ki(x),t) for z € S* x [-1,1] and t € S, where 1 : [1,00) x S! — R? is the
embedding as in the above example, and k; : St x [-1,1] — [1,00), t € S%, is a generic 1-
parameter family of functions on the annulus whose level sets are as depicted in Fig. 11, where
the green circles depict the boundary components of the annulus and correspond to the level set
k;*(1). Note that for t € S, k; is a Morse function, except for two values where a birth or a
death of a pair of critical points occurs. In the figure, the red points depict critical points of
index 2 and the black ones of index 1. The singular value set of F' is as depicted in Fig. 12, and
the critical points in Fig. 11 correspond to the curves «, 3,7, 6, e and ¢ in Fig. 12.

In this way, we get an excellent map g : S — R? with exactly two cusp singularities such
that S(g) consists of a circle. Furthermore, we see that S(g) bounds a 2-disk in S® disjoint
from the regular fiber ¢~1(0). Such a disk can be found by tracing the brown curves in Fig. 11.
Therefore, S(g) is an unknotted circle in S? and is split from the regular fiber over the origin 0.
This again gives a desired counter example.

REMARK 4.4. The above examples show that the answer to the following question (see §1) is,
in general, negative for excellent maps of 52 into R?: must every component of a reqular fiber
be linked by at least one component of the singular point set ?

REMARK 4.5. Let f : M — R? be an excellent map of a closed oriented 3-manifold M. We
assume that f is C°° stable, i.e. f[g(y) satisfies certain transversality conditions (for details,
see [5, 10]). Such a C*° stable map f is simple if it has no cusp singularities and for every
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AN

FIGURE 12. Singular value set of F', where the green circle in the center corre-
sponds to the image of ({1} x S1), the red curve corresponds to the image of
the definite fold singularities, and the black one to the image of the indefinite
fold singularities. The values t1, ¢, t3 and t4 € S! correspond to those in Fig. 11.

y € f(S(f)), each component of f~1(y) contains at most one singular point. In this case, by
[15], regular fibers, the singular point set, or their unions are all graph links: i.e. their exteriors
are unions of circle bundles over surfaces attached along their torus boundaries. The realization
problem of graph links as regular fibers or the singular point set has been addressed in [15]. See
also [12].

5. Maps oF R? iNTO R?
Let us consider the following problem (see §1 and Remark 4.4).

PROBLEM 5.1. For a generic map f : R®> — R2, must every component of a regular fiber be
linked by at least one component of the singular point set S(f) ?

In order to answer negatively to the above problem, we use the following theorem which is
due to Hector and Peralta-Salas [6].

THEOREM 5.2 (Hector and Peralta-Salas, 2012). Let L = LyULyU---UL, C R? be an oriented
link. Then, there exist a submersion f : R® — R? and a regular value y € R? such that
f~Y(y) = L if and only if for all i with 1 <i < pu, we have

> Ik(Li,L;) =1 (mod 2),
i
where 1k denotes the linking number.

Now, let L be a link that satisfies the condition as described in Theorem 5.2 (for example,
a Hopf link). Then, there exist a submersion f : R?® — R? and a regular value y € R? with
L=f"y).

Take a point p € R? \ L and its small 3-disk neighborhood N(p) C R® \. L. Then, we can
deform f in N(p) so that the resulting map g : R®* — R? is excellent and S(g) is an unknotted
circle in N(p) (use the move called “lip” or “birth”. See [14, Lemma 3.1]). Then, no component
of L = g~(y) links with S(g).
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This gives a negative answer to Problem 5.1.
We finish this paper by posing some open problems.

PROBLEM 5.3. Can we generalize Theorem 2.3 for generic maps f : M — R? for closed non-
orientable 3—manifolds? How about generic maps of general closed n—dimensional manifolds into
RP withn>p>17
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ABSTRACT. Any ruled surface in R? is described as a curve of unit dual vectors in the algebra
of dual quaternions (=the even Clifford algebra C¢*(0,3,1)). Combining this classical frame-
work and A-classification theory of C°° map-germs (R?,0) — (R3,0), we characterize local
diffeomorphic types of singular ruled surfaces in terms of geometric invariants. In particular,
using a theorem of G. Ishikawa, we show that local topological type of singular developable
surfaces is completely determined by vanishing order of the dual torsion 7, that generalizes an
old result of D. Mond for tangent developables of non-singular space curves. This work sug-
gests that Geometric Algebra would be useful for studying singularities of geometric objects
in classical Klein geometries.

1. INTRODUCTION

A ruled surface in Euclidean space R? is a surface formed by a 1-parameter family of straight
lines, called rulings; at least partly, it admits a parametrization of the form F(s,t) = r(s)+te(s)
with |e(s)| =1, s € I, t € R, where I is an open interval. A developable surface is a ruled surface
which is locally planar (i.e. the Gaussian curvature is constantly zero). The parametrization
map F : I x R — R? may be singular at some point (sg,to), that is, the differential dF(sq,to)
may have rank one, and then the surface (= the image of F') has a particularly singular shape
around that point. In this paper, we study local diffeomorphic types of the singular surface and
its bifurcations (see Fig.1). All maps and manifolds are assumed to be of class C*® throughout.

The main feature of this paper is to combine classical line geometry using dual quaternions
2, 3, 17, 21] and A-classification theory of singularities of (frontal) maps R? — R? [15, 5, 9, §].
Here A denotes a natural equivalence relation in singularity theory of C* maps; two map-germs
f,9: (R%20) — (R3,0) are A-equivalent if there exist diffeomorphism-germs o : (R?,0) — (R2,0)
and ¢ : (R3,0) — (R3,0) such that g = ¢ o foo~1. We simply say the A-type of a map-germ to
mean its A-equivalence class. As a weaker notion, topological A-equivalence is defined by taking
o and ¢ to be homeomorphism-germs. We also use the .A-equivalence with the target changes
being rotations ¢ € SO(3), which is called rigid equivalence throughout the present paper. Our
aim is to classify germs of parametrization maps F of ruled surfaces in R? up to A-equivalence
and rigid equivalence.

1.1. Ruled surfaces. Geometric Algebra is a neat tool for studying motions in classical geom-
etry; in case of Euclidean 3-space, it is the algebra of dual quaternions (e.g. Selig [21]). As an
application, any ruled surface in R? is described as a curve of unit dual vectors

0: T —-UcCD? @(s)=wvo(s) +cvi(s).
2010 Mathematics Subject Classification. 53A25, 53A05, 15A66, 57TR45, 58 K40.

Key words and phrases. Differential line geometry, Clifford algebra, Ruled surfaces, Developable surfaces,
Singularities of smooth maps.


http://dx.doi.org/10.5427/jsing.2020.21o

250 J. TANAKA AND T. OHMOTO

FIGURE 1. Deforming Mond’s Hs-singularity via a family of ruled surfaces: the sur-
face has two crosscaps and one triple point.

Here D = R @ ¢R with €2 = 0 is the R-algebra of dual numbers, and D3 = R3 @ eR? is the space
of dual vectors, and especially, the space of unit dual vectors is given by

]U::{’DZ’U()-FE’Ul €D3, |’Uo|:1, Uo~’l)1:0},

which is a 4-dimensional submanifold in the 6-dimensional space D3. Obviously, U is diffeomor-
phic to the total space of the (co)tangent bundle 7'S?. It is naturally identified with the space of
oriented lines in R?, by assigning to a unit dual vector ¥ an oriented line vy x v1 + tvg (t € R),
see §2.1 for the detail. In our context, as the space of ruled surfaces in R?, we consider the space
C*(I,1) of all smooth curves in U endowed with the Whintey C'*-topology.

Assume that our ruled surface is non-cylindrical, i.e., v{(s) # 0 for any s € I, then the curve
© admits the Frenet formula in D3 with complete differential invariants, the dual curvature and
the dual torsion

i(s) = ko(s) +eri(s), 7(s)=70(s) +em(s) €D.
Here we may take s to be the arclength of the spherical curve wvg(s), that is equivalent to
ko(s) = 1, thus three real functions k1, 79,71 are essential. In particular, x1(sp) = 0 if and only
if F is singular at (so, o) for some #o; such ¢g is unique (Lemma 2.3).

We determine which A-types of singular germs (R?,0) — (R3,0) appear in generic families
of ruled surfaces. Assume that F is singular at (sg,tp) = (0,0) and F(0,0) = 0, after taking
parallel translations if needed. From the dual Bouquet formula of ¥ at s = 0 in D3, we derive
a canonical Taylor expansion of parameterization map F' (§3.2), where o(n) denotes Landau’s
notation of function-germs of order greater than n:

r = t—its*+ %@33 + 0(3),

ts— 10 g2 _ 20O OFriO) g3 4 o(3),

502y 02 | HO200n0) 8 o)

z == 9

Then we apply to the jet of F' the criteria for detecting A-types of map-germs in Mond [14, 15].

Theorem 1.1. The A-classification of singularities of F' arising in generic at most 3-parameter
families of non-cylindrical ruled surfaces is given as in Table 1; in particular, for each A-type in
that table, the canonical expansion with the described condition is regarded as a normal form of
the jet of ruled surface-germ under rigid equivalence.
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‘ normal form ‘ 12 ‘ cond. at s = sg (with k1(sg) =0)
SO ($7y279€y) 2 5'1 7é 0
St |yl y*+a%y) 3|k =0, 1 #0, (] —27m) 20
Sy | @2 +ady) [ 4] s =] =0 57 rom #0
B2i (z,92, 2%y £ 9°) Ky =0, kK =21911 #£0, by 20
Hy | (z,2y+9°,9°) =71=0, K{ #0, hg #0
53[ (z,92, 9% £ 2ty) 5|k =k = /153) =0, /@§4)7'07'1 20
CF | (2o £a%y) | | wy=r{=m=0, 7 #0, s (6" —216m) 2 0
By | (z, 92,22y £y") Ky =0, k) =211 #0, bp =0, b3 20
H3 ($,$y+y7,y3) HIIZTIZOa Klll#oa hQ:Oa h37é0

z, vy +y°,

P3 ( Zy21p4y4) "@/1 :Kllllezov TOT]/_#O7 p47é071a%a%'

TABLE 1. A-types of singularities of ruled surfaces. Assume that k1(sg) = 0,
then F' is singular at a unique point lying on the ruling corresponding to sq.
This table characterizes the A-type of the germ of F' at that point. Here,
Ky, kY, -+ denote derivatives at s = sg for short, e.g. k) means %m(so), and
ba, bs, ha, hs, ps are some polynomials of those derivatives (see §3.2). The letters
<, 2, £ are in the same order. In the second column, ¢ means .A-codimension
of the map-germ.

Precisely saying, via a variant of Thom’s transversality theorem (§3.3), we show that there
exists a dense subset O in the mapping space Ry consisting of families of non-cylindrical
© : I x W — U with parameter space W of dimension < 3 so that for any family belonging to O
and for any A € W, the germ of the corresponding paramatrization map F(—,\) : I x R — R3
at every point (8o, to) is A-equivalent to either an immersion-germ or one of the singular germs
in Table 1.

Obviously, normal forms under rigid equivalence have functional moduli: those are nothing
but %1(s), 7o(s) and 71 (s) satisfying the prescribed condition on derivatives at s = sg.

Remark 1.2. (Realization) Izumiya-Takeuchi [10] firstly proved in a rigorous way that a
generic singularity of ruled surfaces is only of type crosscap Sp, and Martins and Nufio-Ballesteros
[13] showed that any A-simple map-germ (R?,0) — (R3,0) is A-equivalent to a germ of ruled sur-
face. By our theorem, A-types which are not realized by ruled surfaces must have A-codimension
> 6. This is sharp: for example, the 3-jet (z,y>, 2%y), over which there are A-orbits of codi-
mension 6, is never A3-equivalent to 3-jets of any non-cylindrical nor cylindrical ruled surfaces
(Remark 3.3). The realizability of versal families of A-types via families of ruled surfaces can
also be verified: for each germ in Table 1, an A.-versal deformation is obtained via deforming
three invariants k1, 79, 71 appropriately (Remark 3.4).

Remark 1.3. (Conformal GA) Our approach would be applicable to other Clifford alge-
bras and corresponding geometries. For instance, Izumiya-Saji-Takahashi [9] classified local
singularities of horospherical flat surfaces in Lorentzian space (conformal spherical geometry); a
horospherical surface is described by a curve in the Lie algebra s0(3,1). Conformal Geometric
Algebra may fit with this setting as well and our approach should work.

Remark 1.4. (Framed curves) Take the space of dual vectors D? instead of U. A curve I — D?
corresponds to a framed curve, which describes a 1-parameter family of Euclidean motions of R3;
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‘normal form ‘f ‘ cond. at s = sg
cE (;(;y y) 1 T()?éo, 71 #0
cSo | (z,9?, ) 21 #0, =0, 7)#0
St | @@ ) 3| m A0 = =0 7 #0
cCy | (z, 7 (@’ + ay?)) 4 n#0, n=m=7=0, 70" #0
Sw (x,wy+2y3,my2+3y4) 2[00 #0, =0, T{%O
cAy (x,a:y+2y :cy +4y) 3| 170#0, m=7=0, 77/ #0
cAs | (x, J:y+3y zy? +5y5)1 |4 | 10 #0, m=1{=1/=0, 7" #0
T (z, 2y + y>,0) + o(3) 3l1o=m1=0, 1#0
T (z,2y,0) + o(3) 4|l79g=m1=7=0

TABLE 2. A-types of singularities of developable surfaces. An exception is the
type cAs; the condition implies that the germ is topologically A-equivalent to the
normal form f (in this case, the striction curve o is topologically determinative
in the sense of Ishikawa [5]).

various geometric aspects of framed curves have recently been studied by e.g. Honda-Takahashi
[4]. Since the dual Frenet formula is available for regular framed curves, we may rebuild the
theory by using dual quaternions. That would be useful for singularity analysis in several topics
of applied mathematics such as 3D-interpolation via ruled/developable surfaces, 1-parameter
motions of axes in robotics, and so on (cf. [17, 21]).

1.2. Developable surfaces. For a non-cylindrical ruled surface, it is developable (the Gaussian
curvature is constantly zero) if and only if k1 = 0 identically, see §2. Thus two real functions
To, 71 are complete invariants of such developables. Izumiya-Takeuchi [10] classified generic
singularities of developable surfaces rigorously, and Kurokawa [12] treated a similar task for 1-
parameter families of developables. We generalize their results systematically using the complete
invariants.

Theorem 1.5. The A-classification of singularities of F' arising in generic at most 2-parameter
families of non-cylindrical developable surfaces is given as in Table 2; in particular, for each A-
type in that table, the canonical expansion with the described condition is regarded as a normal
form of the jet of developable-germ under rigid equivalence.

Remark 1.6. (Realization) In our classification process §4.1, we see that non-cylindrical de-
velopables do not admit A-types

eSy (w42, 3 (2 — ¢?)) nor cCy : (z,92, v (2% — 2y?))
(for the former, it was shown in [12]), while ¢S;" and c¢Cj appear. Furthermore, 7, # 0 and

0 = 74 = 7§ = 0 if and only if the 5-jet of F' is equivalent to (z,y?,0), and thus, for instance,
we see that frontal singularities of cuspidal S and B-types

Sy (z, % v (W7 + h(z,y%))), By (z,y% y*(a® + h(z,y?)))

(h(x,5?) = 0(2)) never appear in our developable surfaces. Similarly, since 7; = 0 if and only if
the 2-jet is reduced to (x,zy,0), wavefronts of cuspidal beaks/lips type AT and purse/pyramid
types Dy never appear. Indeed, their 2-jets are equivalent to (z,0,0) and (22 & y2,xy,0) re-
spectively (it is obvious to see no appearance of Dy, for the corank of our maps F' is at most
one).
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A non-cylindrical developable surface, which is not a cone, is re-parametrized as the tangent
developable of the striction curve o(s) (Lemma 2.4). Here o(s) may be singular; recall that for
a possibly singular space curve, its tangent developable is defined by the closure of the union of
tangent lines at smooth points; indeed, it is a frontal surface, see §2.4 (cf. Ishikawa [6]). A space
curve-germ is said to be of type (m,m + £,m + £ + r) if it is A-equivalent to the germ

r=s"4o0(m), y=s"+om+10), z=s""Lom+Ll+7)

(the curve is said to be of finite type if m,n,¢ < o). A type of curve-germ is called smoothly
determinative (resp. topologically determinative) if it determines the A-type (resp. topological
A-type) of the tangent developable. Ishikawa [5, 6] gave the following complete characterization
(Mond [16] for the case of m = 1, i.e. smooth curves):
(i) smoothly determinative types are only (1,2,247), (2,3,4), (1, 3,4), (3,4,5) and (1, 3,5);
(ii) (m,m+ ¢, m+ £+ r) is topologically determinative if and only if £ or r is odd, or m =1
and /£, r are both even.
Using this result, we obtain a complete topological A-classification of singularities of non-
cylindrical developable surfaces:

Theorem 1.7. (Topological classification) For a non-cylindrical developable surface, the
germ of its striction curve o(s) at s = sg has the type

(mym+1,m+1+r),

where m — 1 and r — 1 are orders of 71 and 1y at s = sq, respectively, i.e.,

o _(m=2) _ s _ _ (r=2) _
TI=T|=:"=T, =Tg=Tp='""=T, =0,

Tl(mfl)Térfl) #0.

In particular, topological A-types of the germ of F at singular points are completely determined
by orders of the dual torsion T = 19 + €71.

Remark 1.8. Theorem 1.7 is regarded as the dual version of a result of Mond [16] and Ishikawa
[5]: A-type of the tangent developable of a non-singular space curve o with non-zero curvature
is determined by the vanishing order of its torsion function. This is the case that o is of type
(1,2,2 + r), and then the torsion of ¢ has the same order of 7y (Lemma 2.4). Note that in
our theorem above, o(s) can be singular (i.e., m > 2) and the non-zero curvature condition is
replaced by the non-cylindrical condition.

Remark 1.9. Table 2 is separated into three parts. One is the case of 71 (sg) # 0; they are the
tangent developables of non-singular curves of type (1,2,2 + r), which are frontal singularities
as mentioned in Remark 1.8. The second is the case of 79(sg) # 0; they are the tangent
developables of singular curves of types (2, 3,4), (3,4,5) and (4,5, 6), which are wavefronts — the
former two types are smoothly determinative, while the third one is topologically determinative,
by Ishikawa’s characterization. In the remaining part, types Ty and T; are tangent developable
of curves of type (2,3,4+ r) (r > 1). Tangent developables of curves of other types (e.g.,
(1,3,3+71),(2,4,4+r)) are cylindrical at s = s.

Remark 1.10. Not only striction curves but also several other kind of characteristic curves
on a ruled surface can be discussed. For instance, flecnodal curves are important in projective
differential geometry of surfaces [11, 20].

The rest of this paper is organized as follows. In §2, we briefly review two main ingredients for
non-experts in each subject — the first is the algebra of dual quaternions, which is the most basic
Geometric Algebra, and the second is about useful criteria for detecting A-types in singularity
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theory of maps. In §3, we apply the A-criteria to the canonical Taylor expansion of F' at singular
points and prove Theorem 1.1. In §4, we proceed to the case of developable surfaces and prove
Theorems 1.5 and 1.7.

This paper is based on the first author’s master thesis [22]. This work was supported by JSPS
KAKENHI Grant Numbers JP15K13452, JP17H0612818 and JP18K18714.

2. PRELIMINARIES

Geometric Algebra is a new look at Clifford algebras, which is nowadays recognized as a very
neat tool for describing motions in Klein geometries in the context of a variety of applications
to physics, mechanics and computer vision. In §§2.1 and 2.2, we give a very quick summary on
the geometric algebra for 3-dimensional Euclidean motions and its application to the geometry
of ruled surfaces. A good compact reference is the nineth chapter of Selig’s textbook [21] (also
see [2, 10, 7, 17]).

In §52.3 and 2.4, we briefly describe some basic notions in Singularity Theory, which will be
used in §§3 and 4. We deal with two classes of C*™ maps from a surface into R?; ordinary smooth
maps of corank at most one, i.e. dimkerdf < 1 (Mond [15]) and frontal maps (Ishikawa [5],
Izumiya-Saji [8]).

2.1. Dual quaternions. Let H denote the field of quaternions: ¢ = a + bi + ¢j + dk. The
conjugate of ¢ is § = a — bi — ¢j — dk and the norm is given by |¢| = 1/q¢. Decompose H into
the real and the imaginary parts, H = R & Im H, where one identifies bi + cj + dk € Im H with
v = (b,c,d)T € R? equipped with the standard inner and exterior products. We write ¢ = a + v,
then the multiplication of H is written as

(a+v)b+u)=(ab—v-u)+ (au+bv+v X u).
The quaternionic unitary group
Hy = Sp(1) = {q € H, |¢| = 1}
is naturally isomorphic to SU(2), that doubly covers SO(3); indeed, ¢ € H; defines the rotation
x — gxq. The Lie algebra of Hj is just Im H = R3.
Put D = R[e]/(e?), and call it the algebra of dual numbers. A dual number a+ ¢b is invertible
if a # 0, and it has a square root if a > 0. The R-algebra of dual quaternions is defined by
H:=D'=HerD={d=q+ecq |qp acH}

That is identified with the even Clifford algebra C¢7(0,3,1) [21, §9.3]. The conjugate of ¢ is
defined by ¢* := go+¢q1, and then §¢* = |qo|?>+eRe[q1d0]. The Lie group of unit dual quaternions
is defined by

Hyi:={¢eH|¢q =1}
This group is isomorphic to the semi-direct product Hy x ImH = Sp(1) x R? via the correspon-
dance ¢ < (qo,q1do). Then, H; doubly covers SE(3) = SO(3) x R3, the group of Euclidean
motions of R3; the action © of H; on = € R? is given by

1+e0(§)x = G(1 +ex)q* =1+ e(qoxqo + 291 G0)-
That is, go and 2¢1go express a rotation and a parallel translation, respectively. The Lie algebra
of H is canonically identified with the space of dual vectors
D =ImH®D, ©=wvy+ecv; (vo,v; € ImH=R3),

which is a D-submodule of Fl = D*. The standard inner and exterior products of R? are extended
to D-bilinear operations on D?;

X 0= 5(ud —vu) € D3

[~
S«
|
|
|
¢
S«
+
S«
&
m
=
N
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A unit dual vector means a dual vector ¥ € D? with -9 = 1, i.e., |vg| = 1 and v - vy = 0 (it is
also called a 2-blade in the Clifford algebra C¢(0,3,1) [21, §10.1]). Denote the set of unit dual
vectors by U, which is identified with the space of oriented lines in R? in the following way:

. . 1:1 . g
oriented lines : vg X v1 + tvg <— unit dual vectors : ¥ = vg + cv;.

This expression is very useful [21, §9.3]: for instance,

(i) a point a € R? lies on the line corresponding to a unit dual vector vg + gv; if and only
if @ X vg = vy;

(ii) two lines intersect perpendicularly if and only if the corresponding unit dual vectors @
and © satisfy that @ - v = 0.

2.2. Ruled and developable surfaces. Using the identification just mentioned above, a ruled
surface is exactly described as a curve of unit dual vectors:
0: 1 -TUcCD? o(s) =vg(s) 4 evi(s)
(I an open interval) with |vg(s)| = 1 and vo(s) - v1(s) = 0 (s € I). Interpreting it as an object
in R3, we have a parametrization
F(s,t) =7(s) +te(s) (r=wvgxwviy, e=muvgp).
Note that |e(s)] =1 and r - e = 0. Let R, denote the ruling defined by #(s) and put
R=R(v):=|JR, CR®
sel
Formally, ©(s) looks like a D-version of the velocity vector of a space curve. That leads us to

define the curvature i(s) of © by
v - V]
i(s) = ko(s) +er1(s) := 1/ (s) - ' (s) = |vy| + 5% e D,
Yo
provided ¥ is non-cylindrical, i.e., vj(s) # 0 (s € I). Here ()’ means -£. From now on, we
assume that
[vo(s)

1
by taking s to be the arc-length of vg. Then, & = 1 + v}, - v} and thus £~ =1 — ev}, - v|. Put

n(s) = ng(s) +eny(s) := & 19'(s),
and

t(s) = to(s) + eti(s) := 0(s) x n(s).
Then for every s € I, three dual vectors ©(s), n(s) and #(s) form a basis of the D-module
ImH = D? satisfying

=1
From these relations and the property (ii) of unit dual vectors mentioned before, we see that three
lines corresponding to unit dual vectors ¥, 12, t meet at one point and are mutually perpendicular;

in particular, vg, ng, o forms an orthonormal basis of R3.
We define the torsion 7(s) of © by

7(s) = 10(s) +em(s) :=n/(s) - t(s) €D.
The following theorem is classical:

Theorem 2.1. (cf. Guggenheimmer [2, §8.2], Selig [21, §9.4]) Assume that s is the arc-length
of vo, i.e. ko(s) =|vy(s)] =1.
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(1) (Frenet formula) It holds that

FREI0 0 E(s) 0 (s)
Ts [ 'r:L(s) ] = [ —E&(s) 0 7(s) ] [ (s) ] .
t(s) 0 —7(s) 0 (s)

(2) The dual curvature k(s) and the dual torsion 7(s) are complete invariants of the ruled
surface R up to Euclidean motions. That is, for two curves v, and 2, they have the same
invariants & and ¥ if and only if ruled surfaces R(91) and R(92) in R® are transformed
to each other by some Euclidean motion.

(3) R(v) is a developable surface (including a cone) if and only if k1 = 0 identically. In
particular, 19,7 are complete invariants of the developable surface.

S0 Q¢

The striction curve of a ruled surface R is the curve having minimal length which meets all
the rulings of R. Let F(s,t) = r(s) + te(s) be a canonical parametrization

(T~€=0, |€| = |€/| = 1)7
/

then the striction curve o(s) is characterized by the equation o’ - e’ = 0 (cf. [21, p.218],
[10, Lemma 2.1], [17, §5.3]). We then have the following:

Lemma 2.2. For a non-cylindrical ruled surface, it holds that
(1) o(s) =7(s) = (v'(s) - €'(s))e(s),
(2) 0 X Vg =71, 0 XNy =Ny andaxtoztl,
(3) 0'(s) = ma(s)vo(s) + r1(s)to(s),
(4) k1 = det(e, €', r"), 1o = det(e,e’,e"), 71 =0’ - e.

From (2) and the property (i) of unit dual vectors in §2.1, it follows that o(s) lies on each
of three lines corresponding to unit dual vectors ¥(s),7(s),£(s), that is, o(s) is the locus of
the center of moving orthogonal frames. For completeness we prove the lemma, although it is
elementary.

Proof : It is easy to see (1) by differentiating o(s) = r(s) + t(s)e(s). We show (2). First, by
n-v = 0, we see that nq -vg = —v1 - g, and similarly n, -tg = —t; - ng. By the Frenet formula,
v = ny, ty = —ToMg, V| = K1y +ny and ] = —Ton; — TNo. Since 7 = vy X v; and e = vy,
it follows from (1) that

ag = —(tl . ’I’lo)’vo — (’Ul . to)’no — (n1 . ’Uo)to.

Thus o x Vo = 7(’01 ~t0)n0 X Vo — (TLl "Uo)to X Vg = (’Ul 'to)to + (’Ul ”I’Lo)no = v, for V1-Yg = 0.
That yields (2). Differentiating the first one of (2),

0= (0 xvg) —v] = (0 xvg+0xmng) — (k11 +n1) =0 xvy—KiNg

and similarly ¢’ X ty + 7119 = 0. Substitute ¢’ = avy + bng + ctg for those equalities, we obtain
a=m,b=0,c= k1, thatis (3). Finally, (4) is easy, e.g., k1 = v(-v] = €’-(r' xe) = det(e, €', 17).
O

Lemma 2.3. (cf. Izumiya et al [10, Lemma 2.2], [7, §1]) For a non-cylindrical ruled surface,
F is singular at (so,to) if and only if k1(so) = 0 and to = —7'(so) - €'(s0). The singular value
F(so,to) is the point o(so) where the curve o(s) is tangent to the ruling Rs, or o'(sg) = 0.

Proof : %—Z(so) X %—f(so) = (r"(s0) +to€'(50)) X e(sp) =0 < 7'(s0) = ae(sp) —toe’(sg) for some
a # 0 < det(e(so), € (s0),7'(s0)) = 0 and tg = —r'(so) - € (sp). The second claim follows from
(3) in Lemma 2.2. O
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In case of k1 = 0 identically, Lemmas 2.2 and 2.3 imply that singular points of F' form a
non-singular curve s — (s, —7'(s)-€’(s)) € I x R and the image of this curve is just the striction
curve o(s). Note that o(s) is a non-singular space curve, if 71 # 0; especially, F' is written by
o(s) +1to'(s) with t = (t +7/(s) - €'(s))/71.

Lemma 2.4. (Izumiya et al [7, §1]) A non-cylindrical developable surface, which is not a cone,
is re-parametrized as the tangent developable of the striction curve o(s). The curve o is non-
singular whenever T, # 0, and then the curvature K, and the torsion 7, of o are given respectively
by

o' x| 1 _det(o’,0",0") 10

Ko = /|3 = 7-71’ To = |0/ % O.//|2

|o o

2.3. A-classification of map-germs. A singularpoint of f : M — N between manifolds means
a point p € M where df,, is neither injective nor surjective (then f(p) € N is called a singular
value of f); we denote by S(f) C M the set of singular points of f. Two maps f: U — N and
g : V. — N on neighborhoods U and V of p € M define the same map-germ at p if there is a
neighborbood W C U NV of p so that f|W = glw; a map-germ at p is an equivalence class of
maps under this relation, denoted by f : (M, p) — (N, f(p)). Two map-germs at p have the same
k-jet if they have the same Taylor polynomials at p of order k in some local coordinates; a k-jet is
such an equivalence class of map-germs, denoted by j* f(p). Two germs f : (M, p) — (N, q) and
g: (M',p') = (N',q') are A-equivalent if they commute each other via diffeomorphism-germs o
and 7:

(M',p") ——= (N',¢)

For simplicity, we consider map-germs (R™, 0) — (R™,0) and the A-equivalence by the action
of diffeomorphisms o and 7 preserving the origins. At the k-jet level, A*-equivalence is defined.
A germ f : (R™,0) — (R™,0) is said to be k-A-determined if any germs ¢ : (R™,0) — (R",0)
with j%g(0) = j*f(0) is A-equivalent to f; such germs are collectively referred to as finitely
A-determined germs. For instance, the germ (z,y?, zy) is 2-determined. Let J*(m,n) be the
jet space consisting of all k jets of (R™,0) — (R™,0), which is identified with the affine space of
Taylor coefficients of order r (1 < r < k) in a fixed system of local coordinates. The codimension
of the A-orbit of a germ f in the space of all map-germs (R™,0) — (R"™,0) is called the A-
codimension of f; the A-codimension of f is finite if and only if f is finitely .A-determined (see
e.g. [1]).

Thanks to finite determinacy, the process of A-classification is reduced to a finite dimensional
problem: we stratify J*(m,n) invariantly under the A¥-equivalence step by step from low order
k and low codimension. For instance, using several determinacy criteria, A-classification of map-
germs (R%0) — (R3,0) up to certain codimension has been established in Mond [14, 15]. In §3,
we will follow Mond’s classification process.

Furthermore, in Mond [14, 16], a special class of map-germs (R?,0) — (R3,0) is considered.
A map germ f : (R2,0) — (R3,0) is of class CF (i.e. cuspidal edge), if rank df(0) = 1 and the
singular point set S(f) is non-singular. A germ f in CE is k-A-determined in CE if any germ g
in CE with the same k-jet as j* f(0) is A-equivalent to f. In §4, we will use the following criteria
of determinacy in CE [16, Lem.1.1, Prop.1.2].
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Proposition 2.5 (Mond [16]). It holds that
i) If f € CF and j*£(0) = (x,42,0), then f is A-equivalent to the germ

9(z,y) = (z,y*, v*p(z, y?))

for some smooth function p(u,v);

ii) f(z,y) = (x,9°%,9y3) is 3-determined in CE;

iii) f(z,y) = (z,9%, yp(z,y?)) and g(z,y) = (z,y? yq(z,y?)) are A-equivalent if and only if
f(w,y) = (2, v%, v3p(z,y?)) and g(z,y) = (2,92, v3q(x,y?)) are A-equivalent. In particular, f is
(k — 2)-determined if and only if f is k-determined in CE.

2.4. Singularities of frontal surfaces. There is a special class of surfaces, called frontal sur-
faces. Let ST*R? be the spherical cotangent bundle with respect to the standard metric of R3
equipped with the standard contact structure. Let U be an open set of R2. Amap ¢ : U — ST*R3
is called isotropic if it satisfies that the image di(T},U) is contained in the contact plane K, for
any p € U. A frontal map is the composed map f = wo¢ : U — R? of an isotropic map ¢ and the
projection 7 : ST*R3 — R3. The image (possibly singular) surface is called to be frontal. An
isotropic immersion ¢ is usually called a Lagrange immersion, and 7wo¢ and its image are called a
Lagrange map and a wavefront, respectively. Let f : U — R? be a frontal map with v : U — S?
so that « = (f,v) : U — ST*R?® = R3 x S? is an isotropic map. We identifies TR? ~ T*R? using
the standard metric, then the unit vector v is always orthogonal to the subspace df (T,U) at any

p € U. Let z,y be coordinates of U and put A(z,y) = det {Bi, gg,y} (x,y); then the singular

point set S(f) is defined by A(z,y) = 0. If dA\(p) # 0, then p is called a non-degenerate singular
point. In particular, if p is non-degenerate and rank df, = 1, the germ f at p is of class CE.
For a developable surface with e x €’ # 0, set f: U — R3 to be f(s,t) := r(s) + te(s). Then

f is a frontal map; in fact, it suffices to put v = e x €’/|e x €'| (then % -v=e-v=0and

gf v=(r"+te) v =det(r’ e e’) =0). Note that any singularities of f are non-degenerate
and have corank one (see the comment before Lemma 2.4). There are two cases:

If . = (f,v) is singular, then it is easy to see that the 2-jet of f is A%-equivalent to (z,y?,0),
and hence Mond’s criteria for map-germs of class CE (Proposition 2.5) can be applied.

If ¢ is non-singular, i.e. ¢ is a Legendre immersion, then the 2-jet is equivalent to (z,xy,0),
and thus Proposition 2.5 is useless. In this case, we employ the Legendre singularity theory.
There are known useful criteria of [8] (precisely saying, the topological type cAs is not dealt in
[8] but the same argument as in Appendix of [8] works as well):

Proposition 2.6. (Izumiya-Saji [8, Theorem 8.1]) Let f: U — R?® be a Legendre map, and p
a non-degenerate singular point with rankdf, = 1. Let n be an arbitrary vector field around p so
that n(q) spans kerdf, at any g € S(f). Then f is A-equivalent to cE, Sw, cAy or cAs if the
following condition holds:

cE | nA(p)
Sw | nA(p)
cAy | nA(p)
cAs )\(P)

II\H\

0 mmA(p) # 0,
7777>\( ) =0, mmA(p) # 0,
mA(p) = nmA(p) = 0, nmmuA(p) # 0.

Through the theory of frontal maps and generating functions, Ishikawa [5, 6] showed that the
tangent developable of a curve of type

(m,m+£L,m+L+7)
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has a parametrization F : (R2,0) — (R?,0) defined by
= t,
s s G(s) +t(sh + s p(s)),
: = (€+r)(m+€+r)/0 ur 20
= (L4+r)(m+Os™TT ot (Um A+ L4 7)sTT )
with some C* functions ¢(s) and ¢(s). These two function must be related to invariants 7
and 7. It is also shown [5, Thm 2.1] that the topological type of the tangent developable of a

space curve is determined by type (m,m + £,m + £ 4 r) of the curve, unless both ¢, r are even,
as mentioned in Introduction.

du

3. SINGULARITIES OF RULED SURFACES

In this section, we prove Theorem 1.1 (2); first we give a certain stratification of the jet space
of triples of functions (k1, 79, 71), and then discuss a variant of Thom’s transversality theorem.

3.1. Dual Bouquet formula. Consider a curve @ : I — D3, 9(s) = vo(s) + cv1(s), with
©-0 =1and |vj(s)] =1 as in §2.2. We are concerned with the germ of ¥ at the origin (sg = 0).
Throughout this section, let &, 7, k', 7/, - - denote their values at s = 0 for short, e.g. &’ = &'(0),
unless specifically mentioned.

By iterated uses of the Frenet formula (Theorem 2.1 (1)), we obtain the “Bouquet formula”
of the curve in D3 at s = 0;

o
(s) = Z '(0) s"+o(r) €D?

ne0 n:
with
v'(0) = &n(0),
0"(0) = —&*9(0)+ & n(0) + &7 E(0),
23(0) = —3&F 0(0) + (& — &* — k7% n(0) + (2&'F + &7') (0),
oW (0) = (B4 & - 48E")0(0) + (B® — 68%% — 3k'7* — 3877 )1 (0)
+(38"F + 387 — &7 + &7 — RT)E(0),
20) = (108%F + bii'#2 + 5277 — bei®)o(0) + (&Y — 6&%F — 67"
—128'7F — 3R(F)? — 4rFF 4 BF 4 &FYR(0) + (48D F 4 6877
~ ! 1 2./ 3./

4357 — R 7 — BB 4 &+ kS — 4k — 6k7%F)E(0),
and so on. A similar but more naive expansion written by Pliicker coordinates, instead of dual

quaternions, can be found in a classical book of Hlavaty [3].
Since dual vectors {©(0),7(0),#(0)} form a D-basis of Im H = D3, we may write

o(s) = [©(0),12(0),2(0) ] w(s),
and by the above derivatives 'I)(k)(O)7 one computes
w(s)=[1—1k%s 4+ ks+i&/s+ - Lkis®+..]T € D3
Recall that three oriented lines in R? determined by unit dual vectors ©(0),72(0), £(0) meet at
one point, which is nothing but the striction point ¢(0), as mentioned just after Lemma 2.2.

By an Euclidean motion, the triple of lines can be transformed to standard coordinate axises of
R3, i.e., v0(0),10(0),0(0) are sent to the standard basis 4, j, k of ImH = R3, respectively, and
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=t,(0) = 0 € R3. Namely, we may assume that the 3 x 3 matrix (with entries in
D) [9(0),7(0),%(0)] is the identity matrix, so 9(s) = w(s). Then

1 0
0(s) =wvo(s)+evi(s)=| s | +&| kis | +o(1).
0 0

At a point (0,t) € I xR, the Taylor expansion of F(s,t) = vg(s) X v1(s)+tvo(s) is immediately
obtained; in particular, F(0,ty) = [to,0,0]7 and

0 1
dF(0,t0)= | to 0
K1 0

This gives an alternative proof of Lemma 2.3: F' is singular at (0, %) if and only if 5, (0) = ¢, =0
(to = 0 means that the point is just the striction point ¢(0) lying on the ruling). Assume that
F is singular at the origin. Then we obtain a canonical Taylor expansion of F':

(1) F(s,t) =

1 21r0Kk" +7! K} r! —2710T
(t — gts? + s, b — Ds? — TGS Dlg? 4 Togg? 4 MT0TLG3 ) 4 o(3).

Remark 3.1. (Truncated polynomial maps) Let F(s,t) be as in (1), and set

F(s,t) = (vo(s) x 01(s)) + tvo(s)

to be a polynomial map of order k with j*F(0) = j*F(0). Denote by 5 the arc-length of the
curve 0g(s), then 5 := s+o0(k), and thus k-jets at 0 of the dual curvature and the dual torsion do
not change from those of F'. That gives examples of polynomial ruled surfaces with prescribed
k-jets of £ and T at a point.

3.2. Recognition of singularity types. Now our task is to find appropriate diffeomorphism-
germs of the source and the target for reducing jets of F(s,t) to normal forms in .A-classification
step by step; for such computations, we have used the software Mathematica.

Let (X,Y,Z) be the coordinates of the target R3. Below, k1, k), - denote their values at
s = 0 unless specifically mentioned. From now on, assume that x1(= #1(0)) = 0. Put y = s and
z=1t—1ts? + Zs® + ... which is the first component of F' in the form (1) above. With this
new coordinates (,y) of the source R?, we set

(2) f(2,y) = Fy, t(x,y)) = (z, fa(z,y), fs(2,y))

= (z, zy — tmy* — %leS, kY + droxy® + %(n’l’ —27om1)y%) + 0(3).
Note that f(z,y) is still of the form 7(y) + zé(y). Now, we apply to this germ f(z,y) the
recognition trees in Mond’s classification [15, Figs.1, 2]. Below, S,::, B,:ct, Cfct, Hj, and Fy denote
Mond’s notations of A-simple germs [15].

e 2-jet: Crosscap Sy is 2-determined, thus it follows from (2) that

fNASO:(x7xy,y2) — k1 =0, K] #0.



DUAL QUATERNIONS AND SINGULARITIES OF RULED SURFACES 261

Let x} = 0. Then the 2-jet is equivalent to either of (x,zy,0) or (z,y?,0), according to whether
71 = 0 or not. We compute the second and third component of f as

fo = wy-— %7’192 - %T{ys
+2%1((8 —418)zy® + (=511 + 3131 — 37K — yt)
+ 150( 1570mh2y* + (127074 — 97 + 6787, — 6747 47'0/<ag3) — 7'1(3))y5)
—|—0(5)
f3 = (3T0£L'y -+ ( — 27'07'1)y3)
ﬂ(47'0$y + (=3m7h — 3107 + n(ls)) 4)
120((257'0 575 + 578wyt + (—167971 + 47T — 674tau) — 673KY
~4yPrirf — Ayiror! + 51 )y%) + 0(5).

e 3-jet: Let k1 =k} =0 and 71 # 0. First, let us remove the term xy from fa; take T = x and

y=y— T%x, then we see that

(3) F2F0) ~ (2,97 + lx Y+ 5 Ly, wiaety + L2 (] — 2mom)yP).

The first two components can be transformed to (z,y?) by a coordinate change of (z,y) with
identical linear part and by a target coordinate change of (X,Y), since the plane-to-plane germ
(x,9?) is 2-determined (stable germ). Hence j2f(0) is equivalent to one of the following:

(2,92, 9% £ 22y) k(K] —270m) =0, 1 #0 ---ST,

(4) (:E7y27y3) K/Il/ = 07 ToT1 7é 0 T Sv
(xayzaxzy) K‘/ll :27-07-1 750 B7
(z,92,0) Kl =1=0, 1 #0 - Cl

Note that ST is 3-determined, thus this case is clarified.
Let 71 = 0. Then from (2), we have

J3f0) ~ (z, zy — g71y3, 3T0y® + §K1Y%) .

In the same way as above, j2f(0) is reduced to one of the following:

(mxyy) kY #0, 71=0 < H,
(l‘ xy—i—y 'Ty) H/ll:T1207 7-07-]/.7é0 P7
5 T, 1Y, T K{=m=7=0, 19 #0,
(5) Exachry)O ,1/717170 97’40
Yy ya) Ry =To=T1 = 77—17é )
(z,2y,0) Kl=m=m=1=0.
Each of last three types has codimension > 6, so we omit them here. Below, for types S, B,--- , P

in (4) and (5), we detect A-types with codimension < 5 by checking higher jets and the deter-
minacy.

e S-type: Let k1 = k] =0 and 1971 # 0. Then a computation shows that

(3)
=0 = 0~ (x99 - 52=2%y ),

27'07'

(3) 5 Kt
Kjl_’%l _0 = Jf(O)N Z‘y y_gTO.,.Sxy )

3 X (5)
k=P =k =0 = 5F0)~ (2,295 - 45T0T69c y>
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Note that S is (k + 2)-determined (its codimension is k + 2), thus f is of type S,:f (k=2,3,4)

_ x® (k+1)

if and only if k1 = k] = =0and & To71 S 0 (seemingly, it is so for any k).
y 1 1 =

e B-type: Let k1 = k] = k] — 2797 = 0 and &} # 0. Then it would be A-equivalent to Bj-type
[15, 4.1:17, Table 3]. For instance,

3°f(0) ~ (2,9, 2%y + bay”)
with
bo = 48737 (18 — 2) — 20(73(19)% + 7E(74)?) — 56701 T T,
=249 (107 + T17Y) + 20&53)(%7{ +7n7) — 5(/<a(13))2 + 6/{54)707'1.
Since Bsg is 5-determined,
fraBy:(zy Py +£9°) = 520

Let b3 be the coefficient of y” in the last component of j7 f(0 ) which is written as a polynomial
in derivatives of invariants at s = 0, then Bi (x,9y% 2%y £9y7) is detected by the condition that
bo = 0 and b3 # 0. Here Bs is of codlmensmn 5.

o C-type: Let k1 = k) =k{ =79 =0, 11 #0. Through
P(X,Y, Z) = (%X, Y, 2(Z—aY? - bXQY))

(3)

with a = i(ngs) —3n1), b= Ky~ —T1T,), we see that

2‘r (
7410 ~ (2, 12, £Pady+ (6 - 2mm)ay?) .
Since Cj3 is 4-determined (of codimension 5),

3 3
FraCE: (e £y — PP -2n7) 20

e H-type: Let k1 = kf = 7 = 0 and kY # 0. Then it would be A-equivalent to Hy-type
[15, 4.2.1:2]. A lengthy computation shows that

jsf(o) ~ (l‘, Ty + h2y5a yB)
with
hy = —1578(7))3 — 2474 (m9)%kY — 367 (kY)? — 1578 7] (k])? — 247 (K))?
—tryr{nt + 20m(rl R — (el + SR 72
—4(k /1/)2 (3) + 47! )RS (4)
Since H, is 5-determined,
f~a H2i S(xyxy £9°,9%) = ho20.

Let h3 be the coefficient of y® in the middle component of j8£(0), then Hs : (z,zy + 9%, y3) is
detected by he = 0 and h3 # 0 (Hs is of codimension 5).

e P-type: Let k1 = k] = k{ =1 =0 and 797y # 0. Then we see that there is a polynomial p,
in derivatives of k1, 79, 71 so that

froa Py (z, ay+9y°, 2y + pay®)
for ps #0,%,1,3 [15, §4.2].
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Remark 3.2. (Characterization of Cj and F,) Among A-simple germs obtained in Mond
[15], we have just discussed germs of type Sfct, B,f and Hj. So there remain Cy (k > 4) and Fy,

which are the next to Cs-type above. Suppose that KEB)(,%&S) —2774) = 0. Then we have the
following condition for each of them.

o If mgg) =0 and 77 # 0, then j4£(0) ~ (z,y? xy3) and

(3) _ 5 2 3 &Y 4
kio =0 = JPHO)~ |2y 2y - oty )

8714 T

3 4 - P
) =kP =0 = jOF0) ~ (2,97t - 457}67f‘x5y> :

Since CF : (92, 2y® £ 2¥y) is (k + 1)-determined, we see that f is of type Ci (k = 4,5) if and
onlyif gp=k1 =k} == ﬁ%kil) =0 and ﬁgk)r(’)ﬁ < 0 (seemingly, it is so for any k).
o If /{53) =277 # 0, we have j*£(0) ~ (z,y?, z3y) and
fra Fy(x,92, 2%y +9°) — 3/154) — 8y — 1217 # 0.

Remark 3.3. (Non-realizable jets) Let us continue the argument in Remark 3.2. If

mgg) =74 =0, then f should be of codimension > 7 and a computation shows that
72 f(0) ~ (x, v, n§4)x4y + (KJ§4) — At + 2\/5(/$§4) - 27’17’6/)1'2:[/3) .
In particular, if two of three coefficients 5(14), 5(14) —An Ty, n(14) — 21 7)) are zero, then all are

zero. Thus, for instance, the following 5-jets are not equivalent to jets of any non-cylindrical
ruled surface:

(x, 9%, 2'y), (9% 2%%), (2,97 ¢°).
The 5-jet (z,y?,y°) is obviously realizable by a cylinder, while the 5-jets

(z,y%,2'y) and (z,y° 2%

are not equivalent to jets of any ruled surfaces, even if we drop the condition €’(0) # 0. In fact,
put F' = r(s)+te(s) with r(s)-e(s) = 0 and e(s) = (1,0, 0)4o(s). If F is singular at (s,t) = (0,0)
and 7(0) = 0, then r(s) = o(s). It is easy to see that F ~4 f = (z,y*h(x,y),y>g(x,y)) with
some functions h,g of the form p(y) + xzq(y), and thus the 5-jet of F is never equivalent to
those two jets mentioned above. By the same reason, the A3-orbit of the 3-jet (z,y3, z2y) is not
realized by jets of any ruled surfaces (the 2-jet (x,0,0) never appears in non-cylindrical ruled
surfaces as seen before, and the 3-jet is not realizable by ruled surfaces with e’(0) = 0, that is
shown in the same way as above).

3.3. Transversality. To precisely state gemericity of ruled surfaces, we need an appropriate
mapping space (moduli space) equipped with a certain topology. By the definition, a residual
subset of a mapping space is a union of countably many open dense subsets. When maps having
a prescribed condition form a residual subset, we often say that such a map is generic, abusing
words. Let I be an open interval containing 0 € R and let u denote the coordinate of I. As the
mapping space of non-cylindrical ruled surfaces, we take

R = {® =y +evy € C(I, ) |vj(u) £0(ue )}

equipped with Whitney C'* topology. As a remark, Izumiya and Takeuchi [10] and Martins and
Nufio-Ballesteros [13] took the space C* (I, R? x §?) instead of C°°(I,U), but the difference does
not affect the matter of genericity arguments — given a pair (r,e) of base and director curves,
we simply assign a curve @ : I — U with vg = e and v; =T X e.
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Also we put
M= COO(I, R>0 X RB)

of quadruples (kg, k1, 7o, 71) of real-valued functions with xo(u) > 0 equipped with Whitney C*°
topology. Any curve 9(u) in R defines D-valued functions, #(u) and 7(u) (parameterized by
a general parameter u € I), that produces a continuous map ® : R — M. Obviously, ® is
surjective. In fact, given a quadruple of functions (kg (u), k1 (w), 70(w), 1 (u)) € M, put a new
parameter s := s(u) = [ ko(u)du and define r1(s) := r1(u(s)), etc. Then, three functions
k1(s),70(8), T1(s) determines, up to Euclidean motions, the curve #(s) = vg(s) + evi(s) by
solving the ordinary differential equation determined by the Frenet formula. The ambiguity is
fixed by the initial values ©(0),7(0),%(0), which corresponds to the initial orthogonal axes in
R3 at u = 0. Put ¥(u) := 9(s(u)) € R; the set of such cruves is exactly the preimage via ® of
the given quadruple of functions. That implies that for a dense subset O C M, the preimage
®~1(0) is also dense in R.

The above construction is extended for a parametric version. Let W be an open subset
of R? (0 < p < 3), and consider the subspace Ry of C(I x W, U) which consists of maps
D(u, A) = vo(u, A) + vy (u, \) with parameter A € W satisfying dvg/0u # 0 at any (u, A). Put
My to be the mapping space of I x W — Ry x R3, and then a surjective continuous map
® : Ry — Myy is defined in entirely the same way as above. For a dense subset O C My, the
preimage ®~1(0) is also in Ry .

As seen in the previous section, we have obtained a semi-algebraic stratification of the jet
space J” := R? x J"(1,3) up to codimension 4 (r sufficiently large). In fact, any strata are
defined by the conditions in Table 1 of (in)equalities in Taylor coefficients {H(lk), Ték), Tl(k)}og k<rs
which form a system of coordinates of the affine space J". Notice that these Taylor coefficients
are with respect to the arclength parameter s. For each quadruple (kg, K1, 70,71) € M, we put

s=s(u,\) == /Ou ko(u, A)du, o(u, A) = (k1(u, A), To(u, A), 71 (u, A)).

By the assumption that 9s/0u = kg > 0, let @(s,\) := ¢(u(s, ), \). Then we define
U:IxWx My —J, U(u, A, (Ko, @) := jop(s(u, A), A),

where jI ¢ means the r-jet respect to the parameter s. By a version of Thom’s transversality
theorem (Lemma 4.6 in [1]), there is a dense subset O of My so that for any ¢ € O, the jet
extension W, , : I x W — J" is transverse to every stratum of our stratification of J". Hence,
®~1(0) is dense in Ry, and for any element of ®~1(0), only A-singularity types listed in Table
1 appears. This completes the proof of (2) in Theorem 1.1. (Il

Remark 3.4. (A.-versal deformations) For each type in Table 1, an A.-versal deformation
of the germ is realized by a generic family of non-cylindrical ruled surfaces. This is directly
checked by computations. For instance, as in Table 1, the Sf—singularity of ruled surface at
s = 0 is characterized by x1(0) = «1(0) = 0, Y(0) # 0,279(0)71(0) and 71(0) # 0. Suppose
that ¢ = (k1(s),70(s),71(s)) : I — R3 satisfies this condition. Define a l-parameter family
I xR — R by ¢(s,\) := ¢(s) + (A,0,0), then obviously, its 1-jet extension jly is transverse
at (0,0) to the stratum defined by k1 = &} = 0 in J! = R® x J(1,3). This family yields a
1-parameter family F'(s,t,\) = (¢t,ts — %82, As) + 0(2) of ruled surfaces. By using a coordinate
change of x = ¢t + --- (= first component of F(s,t,\)) and y = s and some target changes, we
see that the germ of F(s,t, \) is equivalent to (z,y?,y® + 2%y + \y), which is an A.-miniversal
deformation of Sli—singularity.
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4. SINGULARITIES OF DEVELOPABLE SURFACES

4.1. Recognition of singularity types. For non-cylindrical developable surfaces, x1(s) = 0

identically. Hence the Taylor expansion of f is (2) with ng) =0 for all &:

f(‘rvy) = F(y,t((ﬁ,y)) = (.’E, Y — %le2 - %T{ySa %Toxyz + %TOleS) + 0(3)
Using the A-criteria mentioned in §2, we classify singularities arising in generic families of de-
velopable surfaces. Notice that there are two different aspects; singularities of frontal surfaces

correspond to the case of 7 # 0, while singularities of wavefronts correspond to the case of
71 = 0. Below we prove Theorem 1.5.

e Caseof 11 #0: By s=y+ Tflx and some linear change of the target, we have

f=(z,9* +0(2), fs(x,y)) with f3 =710y + 0(3).
Note that (z,y?) is 2-determined and that each term 2*y?! in f3 can be removed by a coordi-
nate change of the target (X,Y,Z) — (X,Y,Z — X¥Y!). Use Proposition 2.5 in §2 ([16]) for
determinacy in CE.
(i) If 79 # 0, then f ~4 (x,9%,y?), since it is 3-determined in CE.
(ii) Let 790 = 0. Computing the 4-jet, we see

fs = 75(62%y* + 8may® + 3r7y") + o(4).
If 7 # 0, then f ~4 (z,y?, zy?), for the germ is 4-determined in CE. Hence f is of type

cuspidal crosscap.
(iii) Let 79 = 74 = 0. Computing the 5-jet, we see
fz = 7 (1023y? + 207 2%y® + 15772y + 477y°) + o(5).
If 7/ # 0, by target changes using X = z and Y = g2, terms z3y? and zy* can be
removed from Z = f3, thus we see that f ~4 (x,vy% y3(2® + y?)), for this germ is

5-determined in CE. That is cuspidal S; -type. Note that cuspidal S never appears.
iv) Let 19 = 7y = 7/ = 0. Computing the 6-jet, we see
0 0 g
f3 = 70 (152 + 40m 23y® + 4573 2%y* 4 24132y + 5719°%) + 0(6).

If 7" # 0, then f ~4 (z,y? y3(a® + xy?)), for the germ is 6-determined in CE. That is
cuspidal Cy-type, while cuspidal C; does not appear. Note that 7o = 7, = 7§/ = 0 if
and only if the 5-jet of f is equivalent to (z,y?,0), thus cuspidal S and B-types never
appear, as mentioned in Remark 1.6.

e Case of 7y = 0: Then f = (z,zy — +7{y%, 119zy?) + 0(3). Note that j2f(0) ~ (z,zy,0), thus
types Agi and Dy, never appear (Remark 1.6).

If 7o = 0, 72£(0) is equivalent to either (z,zy + y>,0) or (z,ry,0), that is of type T} or Tj
(codimension 3,4) in Table 2. Now assume that 79 # 0. Write

f = (I’7 fQ(I,y), f3(I7y)) = (I, Y — %T{ygvny) + 0(3)
The singular point set S(F) is defined by (f2)y, = (f3)y = 0, and through a computation, it is
simplified as A = 0 with
A= defy? = ey — ("~ Bri)yt + o)

We may take n = 9/0y as a vector field which generates ker dF along S(F'). Then, nA(0) = 0,
"

nmA(0) = —71, nqmA(0) = —7{ and nmmnA(0) = — (7" — 37]). Hence, by Izumiya-Saji’s criteria
in §2.5, we have the conditions for detecting Sw, cA4 and cAs.
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4.2. Topological classification. We prove Theorem 1.7. Let o(s) be the striction curve of
a non-cylindrical developable surface. Assume that o(0) = 0 € R3, and consider the germ
o: (R,0) — (R3,0). Since {vo(s),no(s),to(s)} form a basis of R? for each s, we denote the k-th
derivative by
o™ (s) = Ap(s)vo(s) + Bi(s)no(s) + Cr(s)te(s) (k>1)

where Ay (s), Bi(s), Cr(s) are some functions. Then, with respect to the basis {vo(0), 10(0),t0(0)},
the expansion of ¢ at s = 0 is given by

o(s) = (A1(0)s + 2 A5(0)s* + - -+, B1(0)s + 3B2(0)s* + - -+ ,C1(0)s + £C2(0)s* + - - -).

Now assume that o is of type (m,ny,ns), i.e.,

A1(0) == A,-1(0) =0, A,,(0) #0,

B1(0) =+ = Bn,-1(0) =0, By, (0) #0,

CI(O) == nz—l(o) =0, an(o) #0
Since ¢’(s) = 71(s)vg(s) for a developable surface (Lemma 2.2 (iii)), we see that A;(s) = 71(s)
and Bi(s) = 1( ) = 0. By the Frenet formula (Theorem 2.1 (1)),

0(k+1) = (O'(k))/ = {Akvo + Bk’no + th()}/
= (A;c - Bk)UO + (B,/C + Ay — CkTo)’I’LO + (O;’c + BkTo)to
= Ap41v0 + Brp1mno + Crpito.

Thus for & = 1, we have As(s) = 7{(s), Bz2(s) = 71(s), Ca(s) = 0, and for k = 2,
As(s) = 74 (s) — 11(s), Bs(s) = 27{(s) and C5(s) = 7o(s)71(s). For k > 3, there are some
smooth functions ay (), bk «(s), ¢k« +(s) and positive numbers B, vx,0, -, Vkk—3 > 0 such
that

Ak(s) = aro(8)7a(s) + -+ + aps—a(s)m" 2 (s) + 71V (s),

Bi(s) = bio(s)71(8) + - + byaa ()7L () + Bert¥ 2 (s),

Ci(s) = {ero.0(s)mo(s) + - mmo - <>}n<>
+{ern0(8)70(8) + -+ ars 7 (s) b () +
+{Crr-2,0(8)70(8) + W—arh(s) 7" <s>w,k_gTo(s)rf‘“‘?’)(s).

Hence, by the assumption on Ax(0), we have

and thus
Bi(0) =+ =By (0) =0, Bmny1(0) #0, C1(0) == Cpy2(0) =0.
In particular,
np=m+1, ngo=m+1+r (r>1).
By the above formula of Cy(s) with k =m + 1+ r, we see
n(0) = =720 =0, 7"V #0.

Conversely, if the order of 79 and 7, are r and m — 1, respectively, then the type of o is

(m,m+1,m+1+r).
This completes the proof. O
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APPLICATION OF SINGULARITY THEORY TO BIFURCATION OF BAND
STRUCTURES IN CRYSTALS

H. TERAMOTO, A. TSUCHIDA, K. KONDO, S. IZUMIYA, M. TODA, T. KOMATSUZAKI

ABSTRACT. Starting from the mean-field Hamiltonian of an electron in a crystal, we briefly
review some known facts about its spectral structures and how singularities come into play
in such spectral structures, and then provide our future perspective. We also estimate lower
bounds of codimensions for the case where more than two bands to cross at a point.

1. INTRODUCTION

As in the song by Prof. Goo Ishikawa [10], singularity is everywhere. In this paper, we provide
one example of such singularities appearing in solid-state physics [25]. Let

(1) ﬁ:—%AH/@)

be a Schrédinger operator on L2 (Rd), where © = (z1,---,24) € R4, A = Zd 2% is the

i=1 9x?

Laplacian on R?, and V: R¢ — R. We assume there is a basis

(2) {74}

in R? such that V (z 4+ ;) = V () holds for all x € R? and i € {1,...,d}. This Schrédinger
operator appears in the following situation: an electron moving in a periodic potential in the
bulk of a crystal (d = 3) or on the surface of a crystal (d = 2). A crystal consists of atoms
and electrons interacting with each other. This Schrédinger operator is simplified to study the
behavior of one of the electrons in the crystal; the effect of all the other electrons and atoms
on the electron at z € R? is approximated by an averaged potential V (z). One can also add a
spin degree of freedom as in [15]. Some of mathematical justifications of this can be found in
[13, 6, 5].

In Sec. 2, we briefly review what is known about spectral structures of the operator Eq. (1).
There, band structures arise in the spectral structures as a consequence of the periodicity of
the potential. Some of the topological features of the bands may be characterized by twisted-
equivariant K-theory. Explaining the theory is beyond the scope of this paper but one of the
established facts is that the bands cannot change their topology unless some of their band gaps
close. Recently, it has become possible to manipulate band structures by changing the material
properties of crystals and let some of the bands collide with each other [9]. To understand how
such collisions trigger their topological changes, it is important to understand band geometries
in neighborhoods of band crossings and their unfoldings. Having this goal in mind, in Sec. 3, we
review our recent results on classification of band geometries in neighborhoods of band crossings
in terms of the theory of singularities [25]. In Sec. 4, we discuss our future perspective along
this direction.
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2. BRIEF REVIEW OF SCHRODINGER OPERATORS WITH PERIODIC POTENTIALS

In this section, we briefly review spectral properties of Schrédinger operators with periodic
potentials by following [20, 16, 17]. For the definitions of terms in this section, see [21, 19, 20].
In this context, the basis in Eq. (2) is determined by the geometric structure of the crystal [2].
The lattice defined by

d
(3) = ’YGRd’y:an’Yjv(nla"’7nd)€Zd
j=1

is denoted as the Bravais lattice and its dual lattice
(4) I"={keRk-ye2rZforallyel}

is denoted as the inverse Bravais lattice. To fix the notation, we denote the centered fundamental
domain of I' by

d
11
(5) Y = mERdx:Zaj’yj,foraje[— } ,

j=1
and the centered fundamental domain of I'* by
d 11
(6) Y*={keR? k:Z;ajv;,for aj € [—272} ,
j=

where {'yj}je{lv'”’d} is the dual basis to {'Vj}je{L---,d} such that v} - v; = 27d; ; holds for all
i,7€{L,---,d}.

To investigate the spectral structure of the Schrédinger operator Eq. (1) on L2 (Rd), we show
the operator is unitary equivalent to one decomposable by the direct integral decomposition. To
do that, we introduce the following notation.

2.1. Constant Fiber Direct Integral and Direct Integral Decomposition.

Let H' = L? (Td) be a Hilbert space on the torus T¢ = R?/T" with the inner product (-, Vg
and let L2 (Y*, dk; H') be the set of measurable functions f on Y* with values in H’ which satisfy
Sy IS (k‘)||§{, dk < oo, where ||-||,,, is the norm induced from the inner product (-,-),,,. We call
H = L?(Y*,dk;H') a constant fiber direct integral by following [20] and write

(&)
(7) H= [ Hdk.

Y *

Note that H is a Hilbert space equipped with an inner product

Q (9= [ (F )90y b

for f,g € H.

Next we would like to introduce the direct integral decomposition of an operator associated
with a constant fiber direct integral. Suppose A(:) is a function from Y™ to the set of self-
adjoint operators on a Hilbert space H'. The function is measurable if and only if the function
(A()+ i)_l is measurable, where 7 is the operator multiplied by the imaginary number i. Note
that the spectrum of a self-adjoint operator is on the real line and thus —¢ is in the resolvent
set of the operator. Therefore, the function (A (-) 4 i)™ " is a well-defined function from Y* to
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the set of bounded operators on H’, £ (H'). Such a function is called measurable if for each

o, eH, ((Z), (A()+ 2')_1 w) is measurable.
H/
Let A(-) be a measurable function from Y* with the Lebesgue measure to the set of self-
adjoint operators on a Hilbert space H'. We define an operator A on H = f? H' dk having
A (+) as direct sum components with domain

9) D@Mz{weﬂwwﬂﬂﬂAwDaekéW}LJM@Mﬂm@dk<m}

by (Av) (k) = A (k)¢ (k) for all k € Y* and for ¢ € D (A), where D (A (k)) C H’ is the domain
of the operator A (k) for k € Y*. If an operator A on H = f? H' dk can be decomposed in this
form, we say that the operator A admits direct integral decomposition and write

(10) A= /®A(k) dk.

s

Next, let us introduce the modified Bloch-Floquet transformation [28]. By using the trans-
formation, the operator in Eq. (1) is shown to be unitary equivalent to one that admits direct
integral decomposition.

2.2. Modified Bloch-Floquet Transformation. Let S (Rd) be the set of rapid decreasing
functions on RY, i.e.,

) sE)={vec=®)

1¥lla,5 = suﬂg} |xo‘Dﬂ1/) ()| < oo,for all a, 3 € ¢ } ,
TER®

where I¢ is the set of all d-tuples of nonnegative integers, z® = 2{'z5? - - - 25¢ and
918l () d

12 Dﬁqﬁ T)= —F"7 Bl = Ba

(12) R el (Y

for a, 8 € Ii, and |Y*| is the volume of Y*. Let leOC (]Rd) be the set of locally square-integrable
functions on R, i.e.,

loc

(13) LY. (RY) = {wz R = C ‘/ [ib|* dx < oo, for any compact set K C R? } .
K

Fory € S (Rd), we define the modified Bloch-Floquet transform

(14) Upr: S (RY) — LY, (RY, dk; LY, (RY))
as
- 1 )
(15) (Tor) (ko) = —17 S Dy (a4 )
|Y | ~el

for v € R? and k € Rdj where |Y*| is the volume of Y*. In what follows, we construct
Upp: L? (Rd) — H from Upp: S (Rd) — LE. (Rd, dk; L2 . (Rd)) by following [17].
First note that

(16) (Unev) (kex+9) = (torv) (k,2)
(17) (Z;{BFw) (k+~%2) = e (dBFZb) (k,z)

holds for all v/ € I and v* € I'* and the function is periodic in « € R?, and thus (Z;{BF¢) (k,-)

can be regarded as an element of H’ for each k € R?.
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Next, by introducing a unitary representation of the group I'*, 7: I — U (H'), as
(7 (v*) @) (z) = e ¢ (2) for p € H', x € R?, and v* € T, the function

(darv) € 12, (RY, ak; 7))

can be regarded as an element of the Hilbert space
(18)

H, = {y € LY. (R, dk;H') [ (k—~*,") =7 (v*) ¥ (k,) ,for all v* € I* for a.e. k € R }.
Since there is a natural isomorphism between H, and L? (Y*,dk;H') given by restriction from
R? to Y*, we get H, ~H = f}? H' dk.

In addition, (L?Ble,L?BF%)H = (i1, ¥2) L2 (gay holds for ¢, 4 € S (R?). This can be shown

as follows: First, note that

H!

(Z;{BF¢17L~{BF¢2>H = /y (Z:{BF'LZH (k,-) ,Ugpibs (/{7.)> dk
‘Yl*‘ /*/Td Z eik-(w+7')*ik-(w+7)@1 ($+,7/) s (CC-I-"/) dudl
v ver

holds where ~ is the complex conjugate of an operand. Since the sum in the integrand converges
uniformly for all 2 € T? and k € Y* and the domains of the integrations are compact, the sums
and integrals can be interchanged to get

L ik'('y'fv)* /
(19) |Y*|,Y,7;F/*/Tde Uy (x+7") e (z +7) dedk.

By integrating it with respect to k and using

1 ik-(v'—7)
— i dk = 6.,
VA Sy © I

r_
where 0./, = {(1) 8, ; 3;, we get

(20) Z/w (e+7) 2 (w+1) do.

This is equal to

(1) (61,002 asy = [ 1 (0) v (2) o
R
and thus proves the claim. Since § (Rd) is dense in L? (IRd)7 the modified Bloch-Floquet operator
can be extended to be a unitary operator Upp: L? (Rd) — H with inverse given by
_ 1 ik
22 Wt) ()= i [ ) e a

where [-] refers to the decomposition x = ~,, + [z] with v, € ' and [z] € Y.
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2.3. Direct Integral Decomposition of Eq. (1). Suppose d = 1,2,3 and V: R — R is
I-periodic and V € L _ (R%). Then,

loc

52
(23) Hgp =UprHUgp = | H (k) dk

holds with fiber operator '

(24) B (k) = % (=iVa+ k)2 +V (@)

for k € Y* acting on the k-independent domain Dy = W22 (Td) C H’, where
(25) W22 (T4) = {y € H'|D € H',for all |a| <2}

is the Sobolev space where D is the differential of ¥ in the weak sense, i.e., one satisfies
(26) [ 0mi) @@ dz= (0" [ @) 06) (@) dr

for all ¢ € O (’]I‘d).
To prove the claim in Eq. (23), let us show the following:

53]
(27) Upr (—A)Ugp = / (=iVy + k)* dk.
Let A be the operator on the right hand side of Eq. (27). The operator A (k) = (—iV, + k)?
is self-adjoint for k¥ € Y* acting on the k-independent domain Dy = W?2?2 (Td) C H' and is
measurable, therefore, Theorem XIII.85 (a) in [20] guarantees that the operator A is self-
adjoint as well. We shall show that if ¢ € S (Rd), then, Upp) € D (A) and

Usr (—AY) = A(Usry)) .
Since —A is essentially self-adjoint on & (Rd) and A is self-adjoint, Eq. (27) follows because this

means that —A has the unique self-adjoint extension that should coincide with the self-adjoint
operator L[E;I%AL{BF. Take an arbitrary ¢ € S (Rd). Then,

(8)  Upe (-AY)(ka) = — 3O (LAY (2 +9)
‘Y ‘ ~el’

(29) = s S iV k) e (i) (a4 )
‘Y ‘ yel’

(30) = s Y AR Y (o 4 )
‘Y ‘ yel’

holds. Since the sum converges uniformly for € Y, the sum and differential can be interchanged
and we get

(31) Ak) —75 3 ey (24 )
|Y*| ~el’

and this equals to (A (Upr)) (k,z). For each k € Y™,

(32) (AUsry)) (k,x +7) = (AUspy)) (K, )

for all v € T, thus (A (Usr)) (k,-) € H'. This proves Uppy) € D (A). In the same manner, we
can prove

S2]
(33) UprV (2)Ugp = V (z) dk.

Y *
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Let B be the operator on the right hand side of Eq. (33). By noting that

(34) [ V)l < Vs (03 9)q = 0 x (9, A(K) ) + B (4, 9) 50
holds for all k € Y* and ¢ € W22 (T%) where 8 = ||V||,,, and using Theorem XIII.85 (g) in
[20], we conclude that Hgp = fﬁ H (k) dk is self-adjoint on W22 (T?) as well and this proves
the claim in Eq. (23).

Note that A € o (I;TBF> if and only if

(35) Hk’a(ﬂ'(k))ﬂ()\—e7>\+e)7é@}’>0

holds for all € > 0, where |-| is the Lebesgue measure on Y* by Theorem XIII.85 (d) in [20].

By using this fact, we can restore the spectrum of Hpgp from the spectrum of H (k) for each
kEeYr.

2.4. Spectral Structures of H (k). Suppose k € Y*. We investigate the spectral structures of
the operator H (k) on H'. To do that, let us investigate the spectral structures of the unperturbed
operator Hy (k) = 3 (—iV, + k)? on H’. This operator is self-adjoint on W22 (T¢) bounded from

. o 1 i Zd: njyie . .
below, and has the complete set of eigenvectors ¢,, (x) = e 1737 % with the eigenvalues

2
% (Z?Zl n;v; + k) for n € Z. From this information, we deduce the spectral structures of

H (k) in what follows. First, note that Hy (k) has a compact resolvent, which can be shown
by using Theorem XIII.64 in [20]. Second, note that V is in L2 (Td) and is symmetric and
satisfies Eq. (34) for all k € Y* and ¢ € W22 (T¢). Then, H (k) = Ho (k) + V is self-adjoint
and bounded from below as well and has a compact resolvent, which can be shown by using
Theorem XIIL68 in [20]. Then, by using Theorem XIII.64 in [20], we conclude that H (k)
has a complete set of eigenvectors with eigenvalues Ey (k) < Eq (k) < --- where E; (k) — oo as
J — oo. Since

(36) H(k+~y") =7 Hk)r(v")

holds for all v* € I'*, Ej; (k) is I"*-periodic function of k for j € NU{0}. In the context of band
theory in solid-state physics, the eigenvalues E; (k) parametrized by k € Y* for each j € NU{0}
are called a band and we denote a band as a set of the eigenvalues parametrized by k € Y™
having a common index j € NU {0}.

3. SINGULARITIES IN THE SPECTRAL STRUCTURES OF THE SCHRODINGER OPERATOR

In this section, we review our recent progress on classification of geometric structures of bands
in a neighborhood of a band crossing in the bulk of a crystal (d = 3), under the condition that
either time-reversal symmetry or space-inversion symmetry is broken [25]. Under this condition,
band crossings, i.e, E; (k) = E; (k) for j # [, occur only at a finite number of points k € Y* in
general. Among these band crossings, two-band crossings occur most generically and thus we
first focus on a two-band crossing. Such band crossings are important because the band cannot
change its topology unless its band gaps close.

Without loss of generality, we can assume a two-band crossing occurs at the origin k = 0 € R3
in order to analyze the local geometry, and let Fy (k) (E— (k) < E4 (k)) be two bands involved
in the crossing. Let o (k) = {Ey (k)} be the set of the eigenvalues. In addition, we assume that
there exists an open neighborhood of the origin U (C ]Rd) in which the gap condition

(37) inf d (0 (k)0 (H (k:)) \o (k)) >0

keU
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holds, where d(-,-) is the Euclidean distance between the two sets. Under the gap condition,

the projection operator P (k) : H' — H' can be defined by using the Dunford integral such as
1 . -1
(38) Pk)=—— <H (k) — z) dz,

211 C
where the integration path C' on C is chosen so that it encloses o (k) (k € U) counterclockwise.
Under this setting, by using Proposition 2.1. in [17], the map k — P (k) is of class C*
from R? to £ (H') equipped with the operator norm. This implies that there exists an open
neighborhood Uy C U in which ||P (k) — P (0)|| < 1 holds. In the open neighborhood, we can
use Nagy’s formula [12]

—1/2

(39) W)= (1= (P(kR)=P©)*) " (P(k)P©0)+(1-P k)1~ P(0)
to get a smooth orthogonal frame x; (k) = W (k) x; (0) (j =1,2) for
(40)  Ran P (k) = {¢ € H' |There exists ¢’ € H' such that ) = P (k) holds.} (k € Up)

where x; (0) (j =1,2) is an orthogonal basis spanning Ran P (0). By defining

Hio (k) = (x; (k) H (k)i (B))

for j,1 = 1,2, the map

) Hiy (k) Hiz (k)
(41) ek H(Hﬂw H22<k>>

is a C°° map from Uy to the set of 2 x 2 Hermite matrices and the two eigenvalues F (k) can
be written as

(42) Ey (k) =

Hiy (k) + Has (K) % \/ (Hy (k) — Haz (k))® + Hi (6) Hat (k)
‘ .

If we consider the relative difference between the two eigenvalues, the trace part of the matrix

Hy (k) -g Has (k) ((1) (1))

is irrelevant and thus we subtract the trace part so that the target image of the map H is in the
set of 2 x 2-traceless Hermite matrix Hermy (2) for k € Up. Since we assume E, (0) = E_ (0),
the map should satisfy Hyy (0) = Hay (0) and Hy (0)Hay (0) = |Hay (0)° = 0. In conjunction
with Trace H (0) = Hyy (0) + Hao (0) = 0, we get H (0) = O3 where Os is the 2 x 2 zero matrix.
Under this setting, the map H can be written as H: (R3,O) — (Hermg (2),02). Having this
setting in mind, we introduce our framework [25, 11] to classify Hamiltonians in a neighborhood
of a multi-band crossing in the next section.

(43)

3.1. Settings. Let M,, (C) be the set of m x m complex matrices, Hermg (m) be the set of
m X m trace-less Hermite matrices

(44) Hermg (m) = {X € M,, (C) |XT = X, Trace X =0},
and SU (m) be the set of m x m special unitary matrices
(45) SU(m)={X € M, (C) | X'X = XX" =1, det X =1},

where I, is the m x m unit matrix. Let H, H': (R",0) — (Hermg (m) , O,,) be C* map-germs
where n € N and O,, is the m x m zero matrix.
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Definition 3.1. We say that H and H' are SU (m)-equivalent if there exists a map-germ
U: (R",0) — (SU(m),U(0)) and a diffeomorphism-germ s: (R™,0) — (R™,0) such that
Hos(k)=U (k)H (k)U' (k) holds for all k € R".

For example, the case where m = 2 and n = 3 corresponds to the geometric classification of
Hamiltonians in the bulk of a crystal in a neighborhood of a two-band crossing. In this case, a
map-germ H: (R3,0) — (Hermg (2),02) can be written as

(46) Hik o ( 5 (k) ﬁ(k)—mm)

B (k) +iv (k) —6 (k)
(47) = B(k)or+(k)os+6(k)os
(48) = (B(k),v(k),6(k)) o,

where 3,7,6: (R?,0) — (R,0) are map-germs, k = (k1, k2, k3) € R?® a Bloch wavenumber,

0 1 0 —i 1 0
(49) g1 = (1 0) , 02 = <Z O), and g3 — (0 _1),

are three Pauli matrices, 0 = (01,09, 03), and (8 (k),~ (k),d (k))-o is an inner product between
the two vectors (5 (k),~ (k),d (k)) and o. If one considers a map-germ

H':k— Uk H kU (k)

where U: (R™,0) — (SU (m),U (0)), the image of the map-germ H' is also in (Hermg (2),O3)
and H' (k) and H (k) are unitary equivalent for k& € R3. Therefore, it is natural to consider the
two map-germs H' and H as equivalent in their geometric classification of bands. Contrastingly,
the role that the diffeomorphism-germ s: (RS,O) — (R3,0) plays in the definition may be
strange in this context because the source space R? is spanned by a Bloch wavenumber k and
introducing arbitrary nonlinear transformations to that space is not at all natural. Depending
on which geometrical features one wants to preserve, one can have several other choices:

(1) Restrict a class of s: (R3,0) — (R3,0) to the set of orthogonal transformations.
(2) Relax a class of s: (R®,0) = (R3,0) to the set of homeomorphisms.

In case of 1, surely all the details of the graph of the eigenvalues against k are preserved. To
understand a phenomenon such as in [7], in which the star-like shape of the Fermi surface is
essential, it is important not to miss the details. However, if you restrict a class of

s: (R*,0) — (R?,0)

to the set of orthogonal transformations, you will end up with infinitely many classes as many as
all the possible graphs of the eigenvalues against k£ and this classification may be too fine to be
useful. Contrastingly, if you relax a class of s: (RS, O) — (IR{3, O) to the set of homeomorphisms,
you may end up with a finite number of classes up to a certain codimension but you will miss
important information like multiplicity, which tells the maximum possible number of generic
band crossings that can appear if you perturb the Hamiltonians smoothly [25]. Here, we set a
class of s: (R3, O) — (R3, O) to the set of diffeomorphisms as in the definition so that we can
get a finite number of classes up to a certain codimension and at the same time we do not miss
important quantities like multiplicity and Chern number.

Let &, = {f: (R™",0) = (R, f(0))} be the ring of function-germs with the maximal ideal M,,.
Let &, = {H: (R™,0) — (Hermg (m), H (0))} and

MpEnm = MpEnm ={H: (R",0) = (Hermg (m),0p)}.
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For SU (m)-equivalence, we define its tangent space TSU (m) at H € M,E, ., as the set of
infinitesimal actions of map-germs U and s as

H, (k) = U. (k) Ho s, (k) U} (k).
Ue: (R*,0) — (SU (m),U.(0)), (C Enm)
se: (R™,0) = (R™,0), s

UE:O = Im; Se=0 = ldn

OHe (k)

(50) TS (m)(H) = { ==

e=0

where id,,: (R™,0) — (R™,0) is the identity. In a similar manner, we define its extended tangent
space as the set of infinitesimal actions of U and s that may map the origin to a point different
from the origin as

He (k) =Uc (k) Hos. (k) Ul (k),
e (&2,0) = (50 m), U 0), |
se: (R™,0) = (R, 5. (0)), mie

Ue:O = Im7 Se=0 = ldn

OHc (k)

(51)  TeSU(m)(H) = 9%

e=0

Note that the tangent space TSU (m) (H) and the extended tangent space T.SU (m) (H) are
gn,m

————— which
T.SU (m) (HY "¢

modules over &,. We define the codimension of H € M,&, » as dimg

n,m
T.8U (m) (H)
example, if n = 3,m = 2 as in the example above and H (k) = (kl, ko, kg) -0 where £ € N, its
tangent space, extended tangent space, quotient module, and codimension are:

is the dimension of the quotient module regarded as a vector space over R. For

(52) TSU(m)(H) = ((—ka,k1,0) - o, (k5,0, k1) - 0, (0, =k, k2) - o),
+ M, ((1,0,0) - 0, (0,1,0) - 0, (0,0, k5™ ") - 0)e,,
(53) T.SU(m) (H) = ((—k2,k1,0) - 0, (k§,0,—k1) - 0, (0, —K§, k2) - o,
(1,0,0) - 0,(0,1,0) - o, (0,0,£k57") - 0)e, .
5n,m

(54) ToSU (m) (H)

=((0,0,1) - 0,(0,0,k3) - 7, , (0,0, k5 2) - o),

and

gn,m
T.SU (m) (H)
respectively, where (- - ) 4 is the A-module generated by the elements in the bracket. Under this

setting, we get the following classification of M3&3 2 under SU (m)-equivalence [25]. In [25], the
classes represented by the map-germs

(55) (K1, koks, k3 £rk5T?) -0 (r > 0,0 =3,4,5)

dimR =/ - 1,

are missing and we correct the result by adding the representatives to Table 1. The detail of the
correction is reported in [26].

3.2. Classification of M3&; 2 under SU (2)-equivalence.

Theorem 3.1 ([25]). If the codimension of a map-germ in Ms&s 3 is less than 8, the map-germ
is SU (2)-equivalent to one and only one of the map-germs listed in Table. 1.
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H (k) ranges mult | Chy codim
(kl,kg,k‘g) -0 1 :Fl 0
1 (f:odd

(K1, ko, k) - o (=28 ¢ {T) &:everf) (-1
(k1,k3, k3 +1k3) - o r € [0,00) 4 0 5
(ky, kaks, & (K2 = k2)) o |re() 4| %2 5
(kl,kag,kurk‘“) o r€(0,00),£=1,3|0+4]| %1 (+4
(ky, koks, k2 + rkd) o r € (0,00) 6 |0 6
(kl, koks, k2 ’I“]{ig) re (0, OO) 6 +2 6
(kl,k2 k3 + rk‘3,2k2k3) -0 | re(0,00) 4 +2 7
(ky, k2 £ k2,7k3) - o r € (0, 00) 6 |0 7

TABLE 1. List of map-germs in each class of codimension less than 8 where
“ranges” are possible ranges for the parameters r and ¢, “mult” multiplic-
ity, “Ch” Chern numbers of the upper and lower energy levels, and “codim”
SU (2),-codimension.

Here we define the multiplicity [14] and Chern number [27, 3, 23] as follows: Let

(56) (k)= (B(k),7(k),6(K) o

be a map-germ. Let (3,7,d)g, be the ideal in & generated by the matrix elements of the
map-germ. We define the multiplicity of the map-germ as

(57) dlmR 53/<B777 5>537

i.e., the dimension of the quotient ring £3/(8, 7, 0)¢, regarded as a vector space over R. Next, we
define the Chern number. Here, we assume H (k) # (0,0, 0)-0 except for the origin k = 0. In this
case, two eigenfunctions of the matrix, ¢&) (k), can be chosen so that they depend smoothly on
the Bloch wavenumber & (6 R3) except for the origin k£ = 0. Let their corresponding eigenvalues
be

(58) E® (k) (B9 (k) > EO) (k).

Note that H (k)&E (k) = E® (k)& (k) holds. In terms of the two eigenfunctions, Berry
curvatures are defined as

3
. 0 o ®) (k)
59 B® (k) = — (B (k)" L ) dkj A dkj
( ) ( ) ? Z akj w ( ) (9ij/ J 7"
J,3'=1
for k # 0. Note that the Berry curvature is well-defined except for the origin £ = 0. Let S be an
arbitrary 2-dimensional sphere enclosing the origin & = 0. Then, the Chern number is defined

as
1

(60) Chy = - / B (1)
27T S

This number does not depend on how we choose the sphere S as long as the sphere encloses the
origin. For the calculation of the multiplicity and Chern number, see [25].

In this classification, the class of codimension 0 is the most generic class and its normal form
has a Weyl point at the origin £k = 0. Other classes of higher codimension appear on verges of
bifurcations. Bands cannot change their topology without colliding with others and these classes
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are expected to provide invaluable information on which types of geometric changes happen if
two bands collide with each other.

When we presented this result in front of Prof. Goo Ishikawa in a workshop of differential
geometry and singularity theory and their applications in Morioka, Japan, 2017,
Prof. Goo Ishikawa pointed out that band crossings among three or higher number of bands
might be relevant for such a high codimension as 8. To answer Prof. Goo Ishikawa’s question, we
would like to show a list of lower bounds of codimensions of map-germs in &, ,,, under SU (m)-
equivalence. The codimension of a map-germ in &, ,, having an m-fold degeneracy at the origin
should be larger than this lower bound.

3.3. Lower bound of codimension of map-germs in M,,&, ,, under SU (m)-equivalence.
Let v; € Hermg (m) (j =1,--- ,m? — 1) be bases of Hermg (m).

Theorem 3.2. Codimension of a C*° map-germ H € M, &, n, is equal to or greater than

sy (ntd— (n+d —1)!
(61) derlr\llg?o} {(m 1) (n -1 'd' - ; (n—1d" [~

Proof. Take an arbitrary H € M,,&,.m and d € NU {0}. We estimate the lower bound of its
codimension. First note that

n,m g’ﬂ m
62 dimg —————+——— > dim .
(62) RTSU (m) (H) ~ © TuSU (m) (H) + MEE,
holds.
E'I'L m
Second note that . is isomorphic to

T.S8U (m) (H) + MITE, m

gn,m/M;ilJrlgn,m

63
(63) (T.SU (m) (H) + METTE, ) JMETE,

by using (2.6) Theorem. (Third isomorphism theorem) in [1]. &,,,/MIFLE, ,, is an

+d —1)!
(m2 — 1) (Zg,_o W) -dimensional vector space over R.

(64) (T.SU (m) (H) + MITIE, 1) JMETLE, o,
is a vector space over R spanned by

0H (k)

R R R o

d+1
+ M,

for j = 1,---,n and dy +do + --- + d,, < d and k{'kP - kdn [y, H (k)] + MEHLE, ,, for
j=1,---,nanddy +dy+---+d, <d—1 where [A,B] = AB — BA for A, B € Hermg (m),
which is a vector space in &, 1, /MfllHEnmL of dimension at most

max{d—1,0}

) (n+d —1)! 4 o(n+d —1)!
L NP DA 100 I Dl ey

d’'=0
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Therefore,

d+1 d d—1
(65) dimg Enm /Mo Enm <Z nt )>

(T.SU (m) (H) + MEE, 1) M — (- 1)
max{d—1,0} , d y
+d —1)! (n+d —1)
| (m2-1) 3 ngd =1 Pk
— 1N — 1\ 971 )
frr (n —1)ld" = (n — 1)ld"!
d !
— (2 (n+d—1)! (n+d —1)!
=0 =) "
holds. Since d € NU {0} is arbitrary, this proves the theorem. 0

If we set n = 3, we get lower bounds of codimensions for m = 2,3,4,5,6 in Table. 2. The
results in Table 2 imply multiple band crossings may be less generic compared to two band
crossings.

m 2 3 4 5 6
codimension (>) | 0 20 180 840 2783

TABLE 2. Lower bounds of codimensions relative to SU (m)-equivalence for
n = 3 estimated by Eq. (61).

However, if we consider the codimension of a moduli family of map-germs, it can still have a
small codimension. To investigate it, we need to classify &, ,, not based on the codimension of
the extended tangent space in [25] but that substracted by the number of moduli parameters.

4. FUTURE PERSPECTIVES

So far we have classified local geometric structures of bands in a neighborhood of a two-
band crossing by classifying underlying Hamiltonians in the bulk of a crystal when either time-
reversal symmetry or spacial inversion symmetry is broken. We have also estimated lower bounds
of codimension for multi-band crossings. This should be the first step to understand global
geometric structures of bands and their bifurcations. Steps further along this line of research
are: Classification of local geometric structures of bands in a neighborhood of a multi-band
crossing

(1) relative to a Fermi level.
(2) on a surface.
(3) in the bulk under time-reversal and spacial-inversion symmetries.

Point 1 is important to study the geometry of the Fermi surface, i.e., the intersection between
bands and a Fermi level. For example, the geometry of a Fermi surface determines a type of
semimetails [24]. This requires studying not only relative differences between bands, but also
their differences relative to a Fermi level. We also need to take the trace part of Eq. (43) into
account to classify geometric structures of Fermi surfaces.

Point 2 is important to understand geometric structures of bands on a surface, such as a Dirac-
cone [7, 29, 4] and is also important for studying its engineering [9]. The geometric structures
depend strongly on a crystallographic symmetry and the presence or absence of time-reversal
symmetry and thus it is important to take these symmetries into account. This can be done if
we extend our framework [25, 11] to an equivariant framework.
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If the effective Hamiltonian of a crystal has a spin degree of freedom and symmetry as in
Point 3, every band has two-fold degeneracy such as Ey (k) = Ey (k) < Ey (k) = Es (k) < --- for
k € Y* and it is important to take the degeneracy along with symmetries into account. Under
this condition, band crossings that occur most generically are crossings of two pairs of bands.
To classify geometric structures of such crossings, we need to classify 4 x 4 Hamiltonians instead
of 2 x 2 ones because four bands are involved in the crossings. Such crossings appearing at
time reversal invariant momentum (TRIM) points play a major role for topological properties of
global band structures [8, 18]. Bifurcations occurring at TRIMs are shown to trigger topological
changes in a lattice model in Chapter 3 in [22]. To study such bifurcations in our framework,
we need to extend our framework [25, 11] to a framework in a multi-germ setting,.
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Dedicated to Goo Ishikawa on his siztieth birthday

ABSTRACT. In a joint work with Kazuya Kato and Chikara Nakayama, log higher Albanese
manifolds were constructed as an application of log mixed Hodge theory with group action. In
this framework, we describe a work of Deligne on some nilpotent quotients of the fundamental
group of the projective line minus three points, where polylogarithms appear. As a result,
we have g-expansions of higher Albanese maps at boundary points, i.e., log higher Albanese
maps over the boundary.

0. INTRODUCTION

We review the results of [11]: - General theory of log mixed Hodge structures with polarizable
graded quotients endowed with group actions. - Description of the functors represented by higher
Albanese manifolds in terms of tensor functors. - Toroidal partial compactifications of higher
Albanese manifolds to get log higher Albanese manifolds, and describe the functors represented
by them.

We describe a result of Deligne in [3] about polylogarithms, which were appeared in higher
Albanese maps, in terms of the log higher Albanese maps. The advantage of our formulation is
that log higher Albanese maps have ¢ expansions at the boundary points over which we observe
directly {(n) (n > 2) as values of polylogarithms.

For readers’ convenience, we add as Appendix a summary of the related result of Deligne
in [3].

Actually, for the present description in Section 3, it is enough to use the formulation of spaces
of nilpotent orbits in [10] Part III. The formulation of them in [11] is reviewed in Sections 1 and
2 for further study in the case of higher Albanese manifolds with non-trivial Hodge structures.

1. LoGg MIXED HODGE STRUCTURES WITH GROUP ACTION

We review general formulations and results of log mixed Hodge structures with group action
in [11] and [10] Parts III, IV, in a minimal size for the later use of this paper. The full version
will be appeared in [10] Part V.

1.1. A log structure on a ringed space (S,Og) consists of a sheaf of monoids M on S and a

homomorphism « : M — Og such that a1 (0%) = OF.

1.2. Example. Let S = C and {0} a divisor. The associated log structure is
M = {f € Og| f is invertible on S \ {0}}.
2010 Mathematics Subject Classification. Primary 14C30; Secondary 14D07, 32G20.

Key words and phrases. Hodge theory, log Hodge structure, log higher Albanese map, polylogarithm, zeta
value.
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S'°¢ is defined to be the set of all pairs (s,h) consisting of a point s € S and an argu-
ment function h which is a homomorphism M, — S! of monoids whose restriction to O;,s is
In this case, the ringed space (S'°8, Og*) is explained as follows. Let

Slos .— CU (R x i) = R x (R U o)

endowed with coordinate function z = z + iy (—oo < y < o0). Let S°8 := (CU (R x ic0))/Z,
and consider maps S'°& — S8 4 S : 2 = x4 iy > (e 2™, €2™%) s ¢ := €2™%. Note that
(e727Y_ ¢2™®) is a polar coordinate extended over —oco < y < 0o, and S°8 — S is a real oriented
blowing-up at {0}, which is proper. h : My — S' in ¢ := (0,h) € S'°8 sends ¢ to €>™*@. Since
z is considered as a branch of (27i)~!log(q), we have (’)};% = Og[#] which is isomorphic to a
polynomial algebra Og o[T] of one indeterminate T over Og o under z <+ T ([12] 2.2.5).

For more general and finer treatment, see [9], [12] 2.2.

1.3. Let G be a linear algebraic group over Q. Let GG, be the unipotent radical of G and let
Greda = G/G,. Let Rep(G) be the category of finite-dimensional linear representations of G over

Q.

1.4. Let kg : G,, — Gireq be a Q-rational and central homomorphism. Assume that, for one
(hence all) lifting G,,, r — Gr of ko, the adjoint action of G, r on Lie (G,)r = R®q Lie (Gy,)
is of weight < —1.

Then, for any V' € Rep(G), the action of G, on V via a lifting G,, — G of ko defines an
increasing filtration W on V over Q, called weight filtration, which is independent of the lifting.

1.5. Assume that we are given a homomorphism kg : G, — Gieq as in 1.4. A G-mized
Hodge structure (G-MHS, for short) of type ko is an exact ®@-functor ([4] 2.7) from Rep(G) to
the category of Q-mixed Hodge structures keeping the underlying vector spaces with weight
filtrations.

1.6. Asin [2], let Sc/r be the Weil restriction of scalars of G, from C to R. It represents the
functor A — (C®gr A)* for commutative rings A over R. In particular, S¢/r(R) = C*, which
is understood as C* regarded as an algebraic group over R.

Let w : G, — Sc/r be the homomorphism induced from the natural map A* — (C®gr A)*.

1.7. The following (1) and (2) are equivalent:
(1) A finite-dimensional linear representation of Sc/gr over R.
(2) A finite-dimensional R-vector space V' with a decomposition

Ve:i=CarV=p V&1

P,q€EZ

such that, for any p, ¢, V4" is complex conjugate of V&? (Hodge decomposition).
For a finite-dimensional linear representation V' of S¢/gr, the corresponding decomposition is
defined by

V&Y :={ve Vo |[z]v=2Pz% for z € C*}.

Here [z] denotes z € C* regarded as an element of S¢/gr(R).
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1.8. Let H be a G-MHS of type ko (1.5). By 1.7 and Tannaka duality (cf. [4] 1.12 Théoreme), the
Hodge decompositions of gr'" of H(V) for V € Rep(G) give a homomorphism Sc/r — (Gred)R

such that the composite G,, — Sc /R — (Gred)R coincides with kg. We call this

Sc/r = (Gred)rR

the associated homomorphism with H.

1.9. Let ko : Gy — Grea be as in 1.4, Fix a homomorphism hg : Sc/r — (Gred)r such that
ho ow = ko.

G-mized Hodge structure of type hg is a G-mixed Hodge structure of type ko (1.5) whose
associated homomorphism Sc/r — (Gred)Rr (1.8) is Grea(R)-conjugate to hy.

The period domain D = D(G, hg) associated to (G, hg) is defined to be the set of isomorphism
classes of G-mixed Hodge structures of type hg.

1.10. Usual period domains of Griffiths [5] and their generalization for mixed Hodge structures
[13] are special cases of the present period domains.

Let A = (Ho, W, ({ , )w)w, (h?"?),, o) be the Hodge data as usual as in [10] Part III. Let G
be the subgroup of Aut(Hyq, W) consisting of elements which induce similitudes for ( , )
for each w. That is, G := {g € Aut(Hyq,W) | for any w, there is a t,, € Gy, such that
(92, 9Y)w = tw (@, Y} for any z,y € gr!V }. Let Gy := Aut(Ho.q, W, ((, Yuw)w) C G.

Let D(A) be the period domain of [13]. Then D(A) is identified with an open and closed part
of D in this paper as follows.

Assume that D(A) is not empty and fix an r € D(A). Then the Hodge decomposition of
gr''r induces hg : Sc/r — (Grea)r- (We have ([z]z, [z]y)w = [2[**(z,y)w for z € C* (see
1.6 for [z]).) Consider the associated period domain D (1.9). Then D is a finite disjoint union
of G1(R)G,(C)-orbits which are open and closed in D. Let D be the G1(R)G,(C)-orbit in
D consisting of points whose associated homomorphisms Sc/r — (Dred)r are (G1/Gu)(R)-
conjugate to hg. Then the map H — H(Hp q) gives a G1(R)G,(C)-equivariant isomorphism
D ~ D(A).

1.11. Fix a homomorphism hg : Sc/r — (Grea)r as in 1.9.

Let C be the category of triples (V, W, F') consisting of a finite-dimensional Q-vector space V,
an increasing filtration W on V' (called the weight filtration), and a decreasing filtration F' on
Ve (called the Hodge filtration).

Let Y be the set of all isomorphism classes of exact ®-functors from Rep(G) to C preserving
the underlying vector spaces with weight filtrations.

Then G(C) acts on Y by changing the Hodge filtration F. We have D C Y and D is a
G(R)G,(C)-orbit in Y (cf. [11] Proposition 3.2.5). We define D := G(C)D in Y. Thus

DcD=G(C)DcCY.

Disa G(C)-homogeneous space and D is an open subspace. Hence D and D are complex
analytic manifolds.

1.12. Let ho : Sc/r — (Grea)r be as in 1.9. Let C be the image of i € C* = S¢/r(R) by ho
in (Grea)(R) (Weil operator). We say that hg is R-polarizable if {a € (Grea)'(R) | Ca = aC} is
a maximal compact subgroup of (Greq)’(R). Here (Greq)’ denotes the commutator subgroup of

Gred .

1.13. Let ho : Sc/r — (Grea)r be R-polarizable (1.12).
Let T" be a subgroup of G(Q) for which there is a faithful V' € Rep(G) and a Z-lattice L in V
such that L is stable under the action of T".
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Then the following holds ([11] Proposition 3.3.4):

(1) The action of T on D is proper, and the quotient space I'\ D is Hausdorff.
(2) If T is torsion-free and if yp = p with v € T" for some p € D, then v = 1.

(3) If T is torsion-free, then the projection D — I'\ D is a local homeomorphism.

1.14. Let (G, hg) be as above.

A nilpotent cone is a cone o over R in Lie (G)r generated by a finite number of mutually
commuting elements such that, for any V € Rep(G), the image of o under the induced map
Lie (G)r — Endgr (V') consists of nilpotent operators.

For F € D and a nilpotent cone o, (o, exp(cc)F) is a nilpotent orbit if it satisfies the following
conditions: Take a generators Ni,..., N, € Lie (G)gr of the cone o.

(1) (admissibility) There is a faithful V' € Rep(G) such that the relative monodromy weight
filtrations M(N;, W) on V exist for all 1 < j <n.

(2) (Griffiths transversality) N;FPCEFP~! for any 1 < j <n, p € Z.

(3) (limit mixed Hodge property) exp(Z?:1 iy; N;)F € D if y; € Ry are sufficiently large.

This is well-defined, i.e., independent of choices of generators Ny, ..., N,.
Note that, for admissibility, the above condition (1) is enough under the assumption of R-
polarizability (cf. [7], [10] III Proposition 1.3.4, Remark in 2.2.2, [8] Proposition 2.1.10).

1.15. A weak fan ¥ in Lie (G) is a nonempty set of sharp rational nilpotent cones satisfying
the conditions that it is closed under taking faces and that any o,¢’ € ¥ coincide if they have a
common interior point and if there is an F' € D such that both (o, exp(cc)F) and (0/, exp(oi) F)
are nilpotent orbits.

For a weak fan ¥ in Lie (G), let Dy be the set of all nilpotent orbits (o, exp(o¢)F) with o € &
and F € D.

1.16. Let T be a subgroup of G(Q) as in 1.13.
A weak fan ¥ in 1.15 is said to be strongly compatible with T" if ¥ is stable under the adjoint
action of I" and each cone o € ¥ is generated over R by log of exp(o) NT.

1.17. B denotes the category of locally ringed spaces with a covering by open sets each of which
has the strong topology in an analytic space. B(log) denotes the category of objects of B endowed
with an fs log structure. For precise definitions of these, see [12] 3.2.4, [10] Part IIT 1.1.

1.18. Let S € B(log). A Q-log mized Hodge structure (Q-LMH, for short) with R-polarizable
graded quotients on S is (Hq, W, Hp, F) consisting of locally constant sheaf Hg with an in-
creasing filtration W of Hg on (Slog,(’)lb?g), locally free sheaf Hp with a decreasing filtra-
tion F of Hp on (S,0g) such that grl. is locally free for all p, and a specified isomorphism
Og’g ®q Hq ~ (’)}S?g ®os Ho, whose pullbacks to each fs log point s € S satisfy the following
conditions (1)—(3).

(1) (admissibility) Let Nq,..., N, be a generator of the local monodromy cone

C(s) := Hom (M, /O, Rso) C m1(58).

The relative monodromy weight filtrations M (N;, W) exists for all 1 < j < n.

(2) (Griffiths transversality) VFPCw!'¢ @ FP~! for all p € Z.

(3) (R-polarizability on graded quotients) For each w € Z, there is a non-degenerate (—1)*-
symmetric bilinear form ( , ), : H(gr’)r x H(gr!¥)r — R over R such that the quadru-
ple (H(gr™),{ , )w, H(gr¥)o, F(gr!V)) is an R-polarized log Hodge structure of weight w on
s. The last part means as follows. Let ¢1,...,¢. € M, ~ OF whose classes generate the
monoid M,;/OF. For t € s'°¢ and a € sp(t) with exp(a(log(g;))) sufficiently small for all
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1<j<r, (HgW),{, Yuw H(g¥)o, F(grl¥)(a)) is an R-polarized Hodge structure. Here we

w w

use H(grl¥ ) := R®q H(grll), H(grl )o = O, ®q H(grtl), F(grl) := F(H (gt} )o).

Note that, in [12] Definition 2.4.7, [10] Part III 1.3.2, rational polarizations on graded quotients
were used. But, in the present paper, we use R-polarizability on graded quotients. Even under
this latter condition, the proof of [10] Part III Proposition 1.3.4 works.

1.19. Definition. Given (G, hg) and T as in 1.13. Let S € B(log).

A G-log mized Hodge structure with a I'-level structure on S is (H, ) consisting of an exact
®-functor H : Rep(G) — LMH(S); (V,W) — (V,W, F) and a global section p of the quotient
sheaf T'\Z.

Here Z is the following sheaf on S'°8. For an open set U of S'°¢ Z(U) is the set of all
isomorphisms Hq|y — id of ®@-functors from Rep(G) to the category of local systems of Q-
modules V' on U preserving the weight filtration W.

1.20. Let (G, hg) be as in 1.13 and let ' and ¥ be as in 1.16.

A G-LMH H on S with a I'-level structure p is said to be of type (ho, X) if the following (i)
and (ii) are satisfied for any s € S and any t € s'°8. Take a ®-isomorphism fi; : Hq: = id
which belongs to ;.

(i) There is a cone o € ¥ such that the logarithm of the action of the cone
Hom ((Ms/0%)s,N) C m1(s'°8) on Hq is contained, via fi;, in o C Lie (G)g.

(ii) Let o0 € ¥ be the smallest cone satisfying (i). Let a : (91;% — C be a ring homomorphism
which induces the evaluation Og s — C at s and consider the Hodge filtration F' of the functor
V = fiza(H(V)) in Y. Then this functor belongs to D and (o, F) generates a nilpotent orbit.

If (H,u) is of type (hg,X), we have a map S — T'\ Dy, called the period map associated to
(H, ), which sends s € S to the class of the nilpotent orbit (o, Z) € Dy which is obtained in

(ii).

1.21. Let (G, hg) be as in 1.13 and let T and ¥ be as in 1.16.

Introduce on T'\ Dy, the strong topology, that is the strongest topology for which the period
map S — '\ Dy is continuous for all (S, H, i), and introduce a sheaf of holomorphic functions
O and a log structure M.

Theorem 1.22. Let (G, ho,T,X) be as in 1.21. Assume that hy is R-polarizable (1.12). Then
(1) T'\ Dy, is Hausdorff.

From hereafter, assume that T' is neat.

(2) T'\ Dy, is a log manifold ([10] Part III 1.1.5). In particular, I'\ Dy, belongs to B(log).

(3) T'\ Dy, represents the contravariant functor from B(log) to (Set):

S+ {isomorphism class of G-LMH over S with a T-level structure of type (ho,X) }.

(4) Let S be a connected, log smooth, fs log analytic space, and let U be the open subspace of
S consisting of all points of S at which the log structure of S is trivial. Assume that S\ U is a
smooth divisor.

Let (H,p) be a G-MHS over U of type hy (1.9) endowed with a T'-level structure (1.19). Let
¢ : U —= T\ D be the associated period map. Assume that (H,p) extends to a G-LMH over S
with a T'-level structure of type (ho,X).
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Then, ¢ extends to a morphism @ in B(log) in the following commutative diagram:
S —% 5 '\ Dy

U U
U —*— T\D.

2. LOG HIGHER ALBANESE MANIFOLDS

We review here formulations and results of higher Albanese manifolds in [6] and of log higher
Albanese manifolds in [11].

2.1. Let X be a connected smooth algebraic variety over C. Fix b € X. Let I be a quotient
group of 7 (X, b) which is torsion-free and nilpotent.

Let G = Gr be the unipotent algebraic group over Q whose Lie algebra is defined as follows:
Let I be the augmentation ideal Ker(Q[I'] — Q) of Q[I']. Then Lie (G) is the Q-subspace of
QLN := lim Q[I'])/I™ generated by all log(vy) (y € T'). The Lie product of Lie (G) is defined by
[z,y] = xy — yz. We have T C G(Q).

2.2. Let m; = m(X,b). Let J be the augmentation ideal Ker(Q[m;] — Q) of Q[m;1]. For a
positive integer n, let T';, be the image of m — Q[m1]/J™. Then Lie (Gr, ) has a mixed Hodge
structure induced from de Rham theory on the path spaces over X by Chen’s iterated integral.

For a given I' as in 2.1, there exists n > 1 such that I' is a quotient of I',,. Hereafter we
assume that Lie (Gr) has a quotient mixed Hodge structure of the one on Lie (Gr,). Note that
this mixed Hodge structure on Lie (Gr) is independent of the choice of n.

We note that there is an insufficient statement on mixed Hodge structure on Lie (Gr) in [11]
6.1.2. The authors of [11] agreed to correct this part, so as to assume the existence of this mixed
Hodge structure on Lie (Gr) as above in the present paper.

Let G = Gr. Let F'Lie(G)c be the 0-th Hodge filter on Lie (G)c and let FOG(C) be the
corresponding subgroup of G(C). The higher Albanese manifold associated to (X,T") is defined
in [6] as

AX,F = F\Q(C)/FOQ(C)

2.3. Take a Q-MHS V; with polarizable gr'¥" having the Q-MHS on Lie (G)q with G = Gr in
2.2 as a direct summand.

Let @ C Aut(Vy,q) be the Mumford-Tate group associated to Vj, i.e., the Tannaka group of the
Tannaka category (Vo) generated by Vo: (Vo) = Rep(Q). Explicitly, it is the smallest Q-subgroup
Q of Aut(Vp,q) such that Qr contains the image of the homomorphism & : Sc/r — Aut(Vor)
and such that Lie (Q)r contains 6. Here h and § are determined by the canonical splitting of
the Q-MHS V, ([1], [10] Part II 1.2).

The action of @ on Lie (G) induces an action of  on G. By this, define a semi-direct product
G of Q and G:
1-G—->G—Q—1.
We have G C G,. We have hg : Sc/r — (Qred)R = (Gred)r by using the Hodge decomposition
of gt V.
2.4. Let D¢ (resp. Dg) be the period domain D for G (resp. ) and hg in 2.3. We have a
canonical map I'\ Dg — D¢ induced by G — Q.
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Let bg € Dg be the isomorphism class of the evident functor Rep(Q)) — Q-MHS by definition

in 2.3, and let bg € D¢ be the isomorphism class of Rep(G) — Rep(Q) bg Q-MHS via the section
Q— G.
Let D be the fiber of the map Dg — Dg over bg.

Theorem 2.5. The map G,(C) — D¢g ; g g-bg induces an isomorphism
Axr =T\G(C)/F°G(C) ~T\D
of analytic manifolds.

2.6. Let Cx r be the category of variations of Q-MHS H on X satisfying the following three
conditions:

(1) For any w € Z, gr!¥# is a constant polarizable Hodge structure.

(2) H is good at infinity in the sense of [6] (1.5), i.e., there exists a smooth compactification X
of X with normal crossing boundary divisor X \ X such that the Hodge filtration bundles extend
to sub-bundles of the canonical extension of O-module of H which induce the corresponding thing
for each gr'V¥#, and that, for the nilpotent logarithm Nj of a local monodromy transformation
about a component of X \. X, the relative monodromy weight filtration M (N;, W) exists.

(3) The monodromy action of 71 (X, b) factors through T

Hain and Zucker showed

Theorem 2.7. ([6] (1.6) Theorem). The category Cx r is equivalent to the category of Q-MHS
V' with polarizable g™V endowed with an action of Lie (G) such that Lie(G) @ V. — V is a
homomorphism of MHS.

2.8. Define a contravariant functor Fr : B(log) — Sets as follows: For S € B(log), Fr(S) is
the set of isomorphism classes of pairs (H, u) of an exact ®@-functor H : Cx r — MHS(S) and a
I'-level structure p satisfying the following condition (i). Here a I'-level structure means a global
section of the sheaf I'\ Z, where Z is the sheaf of functorial ®-isomorphisms H(H)q — H(b)q
of Q-local systems preserving weight filtrations.

(i) For any Q-MHS h, we have a functorial ®-isomorphism H (hx) = hg such that the induced
isomorphism of local systems H (hx)q = hq = hx(b)q belongs to u. Here hx (resp. hg) denotes
the constant variation (resp. family) of Q-MHS over X (resp. S) associated to h.

Theorem 2.9. Let the notation be as in 2.8. The functor Fr is represented by Ax r ~T'\D.

This follows from Theorem 2.5 and Theorem 2.7.
Let ¢ : X — Ax r be the higher Albanese map.

2.10. Let ¥ be a weak fan in Lie (G) such that o C Lie (G)gr for any o € ¥. Assume that ¥ and
I’ are strongly compatible. Let I'\ Dg 5 — Dg be a canonical morphism induced by G — Q.
Define

Ax ry:= (the fiber of I'\ D¢ 5; — D¢ over bg) € B(log)

Define a contravariant functor Fr x : B(log) — Sets as follows: For S € B(log), Fr =(S) is the
set of isomorphism classes of pairs (H, p1) consisting of an exact ®-functor H : Cx r — LMH(S)
and a I'-level structure u satisfying the condition (i) in 2.8 and also the following condition (ii).

(ii) The following (ii-1) and (ii-2) are satisfied for any s € S and any ¢ € s'°8. Let

fir : HH)q.e = H(b)q
be a functorial ®-isomorphism which belongs to .

(ii-1) There is a ¢ € ¥ such that the logarithm of the action of the local monodromy cone
Hom ((Mg/0%)s,N) C m1(s'°8) on Hq is contained, via fi;, in o C Lie (G)r.



A DESCRIPTION OF A RESULT OF DELIGNE BY LOG HIGHER ALBANESE MAP 289

(ii-2) Let 0 € X be the smallest cone which satisfies (ii-1) and let a : (9?7% — C be a
ring homomorphism which induces the evaluation Og s — C at s. Then, for each H € Cx r,
(0, fit(a(H(H)))) generates a nilpotent orbit in the sense of [10] Part III, 2.2.2.

Theorem 2.11. Let the notation be as in 2.9 and 2.10.

(1) The functor Fpx is represented by Axr x.

(2) Let X be a smooth algebraic variety over C which contains X as a dense open subset such
that the complement X ~\ X is a smooth divisor. Endow X with the log structure associated to
this divisor. Assume that 3 is the fan consisting of all rational nilpotent cones in Lie (G)r of
rank < 1 (denoted by Z in [11] 6.2.5). Then, the higher Albanese map ¢ : X — Axr extends
uniquely to a morphism @ : X — Ax r.x of log manifolds.

Since an object of Cx r is good at infinity (2.6), it extends to an LMH over X. Hence (2)
follows from (1) and the general theorem 1.22 (4).

3. DESCRIPTION OF A RESULT OF DELIGNE BY LOG HIGHER ALBANESE MAP

For a group I'™ in 3.3 below, Deligne [3] showed that polylogarithms appear in the higher

Albanese map X — Ay r (cf. Section A below). Here we describe them in our framework in
[11] (Section 2 in the present paper).
3.1. Let X := P(C) \ {0,1,00} C X := P!(C) with affine coordinate z. Let b := (0,1)
the “tangential base point” over 0 € X with tangent vy € Tp(X) = Hom c(mg/m2, C) defined
by vo(z) = 1 in [3] Section 15. This is understood in log geometry in the following way. Let
y = (0,h) € X' be the point lying over 0 € X, where h : M%po = (9%0 x x4 — S! is the
argument function which is a group homomorphism sending f € O% o to f(0)/|£(0)] and = to
vo(x)/|vo(z)| =1 ([11] 6.3.7). Let ug € Olyogy be the branch of log(z) having real value on Rx.
(This ug is the branch denoted by f € Olyogy in [11] 6.3.7 (ii), and ug can be also regarded
as the function 27iz on S8 in 1.1.1.) Then the corresponding base point in the boundary in
our sense is b = (y,a), where a : Olyogy = C{z}ug] — C is the specialization which is a ring
homomorphism sending z to 0 and ug to a(ug) = log(vo(z)) = log(1) = 0 ([11] 6.3.7 (ii)).

See [11] 6.3.6, 6.3.7 for more general description of the above correspondence of boundary
points.

3.2. The inclusion X C G,,(C) = C* induces 71 (X,b) = m1(G,,(C),b) = Z(1). Let K be its
kernel, and let T := 71 (X, b)/[K, K] and 'y := K/[K, K|. Then

1-T1->T'—=Z(1) -1

3.3. Let Z"T be the descending central series of I' defined by Z"*!T" := [Z"T, T'] starting with
ZT =T.

Let T(™ := T/Z"*Y(T) and an) := Image (T} — T'™). Let 79,71 € T'™ be the classes of
small loops anticlockwise around 0 and clockwise around 1, respectively. Then, we have

rm = (Y0,71), (adv0)* 'y (1 < k < n) are commutative, an) =0 Z(ad )" 1.
3.4. Let A = (V,W,(( ,)w)wez, (A?"?)p.qcz) be as follows. V is a free Z-module with basis
e1,€e2,€es3,...,ent1. W is a weight filtration on Vg defined by

W_on1=0CW_g,=W_2,41=Qe1 CW_opyo=W_on13=W_2,41+ Qe

C"'CWOZW_1+Q€n+1:VQ.
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(,)w gt (Vq) x gt (Vq) — Q (w € Z) are the Q-bilinear forms characterized by

(ent1+k,Ent1tk)er =1
for k=0,-1,...,—n. h¥* =1for k=0,—1,...,—n, and h?? = 0 for the other (p, q).
Let D(A) be the period domain in [10] Part IIT with universal Hodge filtration F:

Fl =0cC FO :C(€n+1+ Z a]—,n+1ej) C F71 :F0+C(6n+ Z ajwnej)
n>j>1 n—1>j>1
C---CF"=F"11Ce =Vc.
3.5. Let G be the unipotent group G in 2.1 for (™). Define an action of Lie(G) on Vg by
No = log(0), N1 = log(m):
Noej :ej_l (] :2,...,n), Noej :0 (] = ].,77,+1),
Nlen-i-l = —€n, Nlej =0 (.7 =12... an)'
Then
(=No + N1)? = (=No)? + (—AdNo)™'Ny (1 <j<n+1).

3.6. Let X be as in 3.1 and '™ be as in 3.3. We consider the higher Albanese manifold Ax
of X by using the base point b in 3.1.
The Q-MHS on Lie (G) is as follows: Ny and Np are of Hodge type (—1,—1) and compatible
with bracket and hence F°G(C) = {1}. Thus the higher Albanese manifold is
Ax ren =T\ G(C).

Lemma 3.7. Let F' and N; (j =0,1) be as in 3.4 and in 3.5.
(i) We have the following.
(1) (No, F) satisfies the Griffiths transversality if and only if

a1 =0 2<k<n); a1p=a—g+1; (2<k<l<n).
(2) (N1, F) satisfies the Griffiths transversality if and only if
agn =0 (1<k<n-1).
(3) (—No + Ny, F) satisfies the Griffiths transversality if and only if
arp =ai—k+1; 2<k<i<n41).

(ii) The following three conditions are equivalent.

(1) The Lie action Lie (G) @ V. — V in 3.5 is a homomorphism of MHS with respect to the
MHS on Lie (G) in 3.6 and the MHS (V,W, F) in 3.4.

(2) For j =0 and 1, (N}, F) satisfies the Griffiths transversality.

(3) ajr =0 unless (j, k) = (1,n+1).

The assertions are easily verified by direct computation.

3.8. For any fixed a € C, denote by F(a) the Hodge filtration in 3.7 (ii) (3) with aq,n+1 = a.
By the action in 3.5, we define

D :=exp (CNO + i C(AdNO)k1N1> F(a) C D(A).
k=1

Then, this D coincides with D in 2.4. Hence G(C) ~ D and Ay pm) =~ '™\ D as complex
analytic manifolds.
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3.9. Let p: X — Ay pm) '™\ D be the composite of higher Albanese map and the isomor-
phism in 3.8. Let F(x) be the pullback by ¢ of the universal Hodge filtration on T'") \ D.
Since F'(x) is rigid by Theorem 2.7, we consider a connection equation:

dF(z) = wF(2), w:= (2m')‘1d;xNo + (m)‘lldfxm.

That is,
d
daj_1 x(z) = (m)—lg 2<k<n),

dx
1—2x

dan pt1(x) = —(2mi)~ !

)

d
daj(z) = 2mi) laj () (B3<k<n+1,1<j<k-2).
x
3.10. This system is solved by iterated integrals. The solutions are

4(a) = Gy {(2mi) M og(o) Y (2<k<m 1< < k=),

a1 (r) = —(2m) " (@) (1<) <n).
Here the [;(z) are polylogarithms, in particular /;(z) = —log(1 — ).

3.11. Table of solutions:

Lag ... a,n  ainp 1 (2mi)~tlog(z) ... % —(2mi) "1, ()

0 " Gnoim Gnoipy1 | = | ¢ 0 o 2mi)THog(z)  —(2mi) 2l (x)

1 Gn,nt+1 1 —(27T'L)_1l1($)
0 O PR O 1 O O .. O 1
Note that, for 1 < j < n,
1 .
exp((2mi) ! log(z)No)e; = ej + (2mi) "t log(x)ej_1 + - + G- ((2mi) " log(z))’ e,
for j =n+1,
exp | — Z (27ri)_klk(x)(AdNo)k_1N1 €nil = €pi1 — Z (27ri)_kl;€(x)en+1,k
n>k>1 n>k>1

3.12. For o, B, Aa,..., A\ € C, let F = F(a, 3, A, ..., \,) be a Hodge filtration:
Fl :OCFOZC(€n+1 +ﬂ€n+)\26n,1+"'+)\n61)

. o 012 anfl
CF " "=F'+Cley,+taep1+ repa+- -+ ——€ | C---
2! (n—1)!

CF ™ = "2 L Cleg+ae)) CF " =F " 4 Cey = V.
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3.13. Let ¢ : X — Ax e ~ '™\ D be the higher Albanese map in 3.9. We have a commu-
tative diagram
p(X)c D

&/ | |
X % p(X) cTMW\D
where ¢ : X — D is a multi-valued map corresponding to the Hodge filtration
x v F((2mi) " og(x), —(2m) "y (2), ..., —(2m8) "I, (x))

in the notation in 3.12. $(X) — X and $(X) — p(X) are T -torsors and ¢ : X 5 ¢(X) is an
isomorphism.

3.14. Let ¥ be the set of all cones of the form R>oN with N € Lie(G). We consider the
extended period domain D(A)y in [10] Part ITI. This is only a set. By using the strong topology
([12] Section 3.1), the quotient '™ \ D(A)s has a structure of a log manifold. Define '™ \ D,
to be the closure of '™ \ D in T\ D(A)sx. This inherits a structure of log manifold. We have
Ax pon x = T'™\ Dy in the category B(log).

Let N € Lie (G) and 0 := R>oN. Let T, be the group generated by the monoid I'™ Nexp(o).
If we use as X the fan consisting of the cone ¢ and 0, also denoted by ¢ by abuse of notation,
we have Axr, , ~ T, \ D, in the category B(log).

3.15. Let Ny be as in 3.5 and set 09 = R>oNg. Let F' = F(a, 3, Ag,...,\,) be as in 3.12. By
Lemma 3.7 (i) (1), (Np, F) satisfies the Griffiths transversality if and only if

B=X==X1=0.

If this is the case, (N, F') generates a og-nilpotent orbit, since admissibility and R-polarizability
on gr'V trivially hold. We describe the local structure of Ty, \ D,, near the image po of this
nilpotent orbit.

Let Y :={(¢,8,\2,...,A\n) €EC"L | B= Xy =--- = \,_1 = 0if ¢ = 0} be the log manifold
with the strong topology, with the structure sheaf of rings which is the inverse image of the sheaf
of holomorphic functions on C**!, and with the log structure generated by g. Then there is an
open neighborhood U of (0,0, ...,0,),) in C**! and an open immersion

YNU < T4 \Dy,

of log manifolds which sends

(¢,8,0,..., ) €Y NU
with ¢ # 0 to the class of F(a,3,)a,..., ), where a € C is such that ¢ = ¢2™*  and which
sends (0,0,...,0,A,) to po.

3.16. Near x = 0, a nilpotent orbit in naive sense is

(1) exp((27i) "  log(z)No) F (0,0, ...,0,A2) = F((27i) ' log(z),0,...,0,\9),
where A = —(2mi)~"1,,(0). The corresponding “higher Albanese map” (i.e., local version about
0 of ¢ in 3.13) is
(2) F((2mi) M log(x), —(2mi) "y (), ..., —(27i) "1, (z))

under the condition /;(0) = 0 (1 < j < n —1). These two are asymptotic when x goes to the
boundary point b = (y,a) with y = (0,h) € X' and a being the specialization at y in 3.1.
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3.17. As above, let ug be the branch of log(z) in 3.1 and 7' an indeterminate over Ox ;.
Then, by 1.1.1, we have an isomorphism Olyoij = Ox oluo] = Ox([T] of Ox j-algebras under

(2mi)"'ug «+ T. Consider an Ox j-algebra homomorphism Ox ([T] = Ox o, T — .
Under the initial condition in 3.16 given by the base point b in 3.1, we have

lj(l‘):Zy (1<j<n-1), ln(a:):c+zk—n
k=1 k=1

on a simply connected neighborhood X of 0 € X, where ¢ := —(274)" 0.
Let a = (27i)~'log(x). Then, as

x — 0, exp(—aNp)(F in 3.16 (2))
converges to F(0,0,...,0,A%) in D (3.8), and hence the class of (F in 3.16 (2)) converges to the
class po (3.15) of the nilpotent orbit (o, exp(co.c)F(0,0,...,0,A2)) in T, \ Dy,. We thus have
an extension of the higher Albanese map over X (Theorem 2.11 (2)):
@O : YO — Fgo \Doo~

This is a morphism in the category B(log). The log structure on the source (resp. the target)
is given by x (resp. ¢). The pullback of the universal log mixed Hodge structure on the target
coincides with the log mixed Hodge structure on the source.

3.18. By using log mixed Hodge theory, 3.16 is described as follows.
Taking the images of the nilpotent orbit in naive sense 3.16 (1) and the “higher Albanese
map” 3.16 (2), we have their real analytic extensions with boundary

_log _log . <71
765 B0 Xo" = (Dog \ Doy ).

Here, Ygog is like Example 1.1.1, and (T'y, \ Dy, )'°® coincides with the moduli of nilpotent i-orbits
I's, \ D%, in the present situation ([10] III Theorem 2.5.6).

_~ log —lo
Let X, be the universal covering of X i) ®. The above maps are still lifted to
~ ~ ~lo
v:)Og7 @:)Og : XO ) - Dg'()
The boundary point b in 3.16 can be understood as the point
_~log
b= (z=0+1i00) = (ug = —o0+1i0) € X, .
We have (exp(—(2mi)~tlog(z)No)(3.16 (2)))(b) = F(0,0,...,0,)2), and
ﬁéog(b) = égog(b) = (nilpotent i-orbit generated by (No, F(0,0,...,0,12))) € Df‘,o.

3.19. Let now o1 = R>oN; for Ny in 3.5. Let F = F(«,B,A2,...,A\,) be as in 3.12. By
Lemma 3.7 (i) (2), (N1, F') satisfies the Griffiths transversality if and only if o = 0. If this is
the case, (N1, F) generates a o-nilpotent orbit, since admissibility and R-polarizability on gr'V
trivially hold. We have a similar description of the local structure of T'y, \ Dy, near the image
p1 of this nilpotent orbit.

Let Y be the log manifold {(a,q, A2,...,\,) € C*"™ | a = 0if ¢ = 0} with the strong topol-
ogy, the structure sheaf and the log structure defined by ¢q. Then there is an open neighborhood
U of (0,0, \z,...,\,) in C"™! and an open immersion

YNU < Ty \Dy,

of log manifolds which sends
(0, q,Aa,..., M) €Y NU
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with ¢ # 0 to the class of F(a, 3, \a,...,\n), where 8 € C is such that ¢ = ¢*™*#, and which
sends (0,0, Aa,..., A,) to p1.

3.20. We assume the initial condition in 3.16. Near x = 1, a nilpotent orbit in naive sense is
(1) exp((2mi) = log(1 — 2)N1) - F(0,0, —(2mi) ~*¢(2), ..., —(2mi) " (¢ + {(n)))

= F(0,—(2mi) " th(x), —(2m1) 7%¢(2), ..., —(270) " (e +{(n))).
The corresponding “higher Albanese map” (i.e., local version about 1 of ¢ in 3.13) is
(2) F((2mi) tlog(x), —(2mi) "y (), ..., —(27) "1, (z)).
These two are asymptotic when x goes to the tangential boundary point p; := (1,—1) with
tangent vy € T1(X) = Hom c(my/m2, C) defined by v;(1 —x) = —1. This is the boundary point
in our sense described as follows. Let u; be the branch of log(1 — x) having real value on R.1.

- . 1
Then the corresponding point in the boundary in our sense is p; = (y,a) with y = (1,h) € X o8

such that the argument function h : M3 = O%  x (1 - r)% — S! is a group homomorphism
sending f € (9% , to f()/1f(M)] and 1 —x to v1(1 —x)/|v1(1 — x)| = —1, and the specialization

a: (’)%Ogy = C{1 — z}[u1] — C is a ring homomorphism sending 1 — z to 0 and u; to

a(ur) = —a(—u1) = log(vi(—(1 — 2))) = log(1) = 0
(ct. [11] 6.3.7 (ii)).

3.21. As above, let uy be the branch of log(1 — z) and T an indeterminate over Ox - Then, by
1.1.1, we have an isomorphism

lo,
Oyi, = OYJ[“ﬂ = O?J[T]
of (’)Xl-algebras under (27i)~lu; > T. Consider an O -algebra homomorphism
Ox.,11 = 0%, T—1-u.

Let B = (2mi)"'log(l — z). Then, as x — 1 in X along the real axis starting from b over
0 to 1, exp(—BNy)(F in 3.20 (2)) converges to F(0,0, —(2mi)~2((2), ..., —(2mi) " (c + ((n))) in
D (3.8), and hence the class of (F' in 3.20 (2)) converges to the class p; (3.19) of the nilpotent
orbit

(o1, exp(a1,6) F(0,0, —(2mi) "2¢(2), ..., —(2mi) " (c + ((n))))
in I';, \ D,,. We thus have an extension of the higher Albanese map over a simply connected
neighborhood X; of 1 in X (Theorem 2.11 (2)):

@1 Syl —>Fgl \Dgl.

This is a morphism in the category B(log). The log structure on the source (resp. the target)
is given by 1—x (resp. ¢). The pullback of the universal log mixed Hodge structure on the target
coincides with the log mixed Hodge structure on the source.

3.22. By using log mixed Hodge theory, 3.20 is described as follows.
Taking the images of the nilpotent orbit in naive sense 3.20 (1) and the “higher Albanese
map” 3.20 (2), we have their real analytic extensions with boundary
_1 1 —lo, o
y10g7 Qplog : Xl ¢ - (FUI \Dgl)l £
Here, Yllog is similar to Example 1.1.1 over = = 1, and (T, \ D,,)'°® coincides with the moduli
of nilpotent i-orbits I'y, \ D% in the present situation ([10] III Theorem 2.5.6).
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_~ log —I
Let X; be the universal covering of X 1Og. The above maps are still lifted to

~log ~log _~ log
1

vy, o X —>Dgl.

The boundary point p; in 3.20 can be understood as the point

_ , N
P1 = (21 =0+1i00) = (u; = —o0 +1i0) € X, ,

(where 27iz; = u;). We have
(exp(—(2mi) ™" log(1 — z)N1)(3.20 (2)))(B1) = F(0,0, —(271)"*¢(2), - .., —(2m1) " (c +¢(n))),
and 7,5(p1) = 3, % (51) € Di, is the nilpotent i-orbit generated by
(N1, F(0,0, —(27mi)72¢(2), ..., —(2mi) " (c + ¢(n)))).
1

3.23. In order to describe the local structure near x = oo, we take a local coordinate £ := ™.
By abuse of notation, let F'(£) be the pullback of the universal Hodge filtration by the com-
posite ¢ : X — Ax pm) >~ I'(™)\ D of higher Albanese map and the isomorphism in 3.8.
Since dlog(z) = —dlog(¢) and —dlog(z — 1) = dlog(§) — dlog(1l — &), a connection equation
in 3.9 now is

dF (&) = wF(§), w:= (zm)*l%(—% + Ny) + (27Ti)’11d7_£§N1.
That is,
dag_1,1(§) = —(2772)_1% (2 <k <n),
dan (€)= ~(2mi) 1 F - (2mi) 2
N1 d¢ .
daj(€) = —(2mi) aj—i—l,k(f)? B<k<n+1,1<j<k-2).
3.24. This system is solved by iterated integrals as before, and the solutions are
04l6) = Gy (~(2m0) M og(@) ) <k <n 1< <k,
1 . A
ajnt1(€) = m(—@m‘rl log (&)™ + (= (2mi) )"l 5(€) (1< <n).

3.25. Table of solutions:

1 ar2 ... a1,n a1, n+1
0 1
0 Up—1,n Opn—1,n+1
1 an,n+1

0 0 ... 0 1
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1 —(2mi)~tlog(é) ... (=(279) " 'log(é)" ! (=(2m8) "' log(é)" + (= (2mi) Y"1, (€)

(n—1)! nl
0 1
= 0 L —(2mi)Mlog(g) ST L@ 4 ((9mi) =)0y (€)
1 —(2mi) " log(€) — (2m) "' (€)
0 0 0 1

3.26. Let now 0o = R>0No with N := =Ny + N; for Ny, N; in 3.5. Let
F=F(=d,p' X,..., )
be as in 3.12. By Lemma 3.7 (i) (3), (Noo, F') satisfies the Griffiths transversality if and only
N2 \n—1
if B/ = —a/, )\, = %,...,)\%_1 = % If this is the case, (Noo, F') generates a 0so-
nilpotent orbit, since admissibility and R-polarizability on gr'V trivially hold. We describe the
local structure of T',_ \ D,_. near the image po, of this nilpotent orbit.
Let

L ! ol \/ / n+1 r_ /_(_0/)2 / _(_a/)n_l- /
Y—{(q7ﬁ7>\2,,>\n)ec |ﬁ— a7>\2—T,7>\n71—mlfq—0

be the log manifold with the strong topology, with the structure sheaf of rings which is the inverse
image of the sheaf of holomorphic functions on C"*!, and with the log structure generated by
¢'. Then there is an open neighborhood U of (0,0, ...,0,)’) in C"*! and an open immersion

YNU T, \D,
of log manifolds which sends (¢/, 8/, Ay, ..., A,) € Y NU with ¢’ # 0 to the class of
Fl=a/, B Ny, L),
where o € C is such that ¢’ = €27 and which sends (0,0,...,0,\),) t0 poo-
3.27. Near x = o0, i.e., £ =0, a nilpotent orbit in naive sense is
(1) exp((27i) 1 log(£) N ) F (0,0, ...,0,X.0)

— (271 —11 2 — (271 —11 n
— F( _ (27Ti)_1 IOg(f), —(27Ti>_1 log(f), ( ( 7”) o Og(g)) e, ( ( 7TZ) ; Og(f))

! n!
where M9 = (—(2mi)~1)",(0). The corresponding “higher Albanese map” (i.e., local version
about oo of ¢ in 3.13) is

(2)  F( - @ri) " log(e), ~(2mi) " log(6) — (2ri) L (€),

N\ —1 n
( (271) n'log('f)) + (—(271'2')_1)7%”(5))
under the condition /;(0) = 0 (1 < j < n —1). These two are asymptotic when { goes to the
boundary point b’ described as follows.
Changing oo and ¢ into 0 and x, respectively, b’ = (00,1) corresponds to the tangential
boundary point (0,1) of Deligne, i.e., b’ is the tangential base point over oo € X with tangent
v € Too (X) = Hom ¢ (mo /m2,, C) defined by v'(£) = 1.

+X°)

cey



A DESCRIPTION OF A RESULT OF DELIGNE BY LOG HIGHER ALBANESE MAP 297

This corresponds to our boundary point ' = (y',a’) with ¢ = (o0, h’) € X' described as
follows. Let u’ be the branch of log(£) having real value on R~ . The argument function

n' M%‘joo =03 % ¢z 58t
is a group homomorphism sending f € (’)%OC to f(€=0)/|f(€ =0)] and & to v'(§)/|v'(§)] = 1,
and the specialization a’ : (9%0‘% , = C{¢}[u'] = C is a ring homomorphism sending £ to 0 and v/
to a'(u') = log(v'(€)) = log(1) = 0.
3.28. Asabove, let u’ be the branch of log(§) and T" an indeterminate over O . Then, by 1.1.1,
we have an isomorphism (’)lyoi!, = Ox W] = Ox [T] of O  -algebras under (2mi) "t < T.

Consider an O _ -algebra homomorphism O I = O T — &
Let o/ = (2mi)~!log(€). Then, as & — 0, exp(—a/ Ny )(F in 3.27 (2)) converges to

F(0,0,...,0,\%)

in D (3.8), and hence the class of (F' in 3.27 (2)) converges to the class ps, (3.26) of the nilpotent
orbit (0o, exp(0ee,c)F(0,0,...,0,\.0)) in T, \ D, . We thus have an extension of the higher

Albanese map over X o, (Theorem 2.11 (2)):
Poo : Xoo 2 Lo\ Dy,

This is a morphism in the category B(log). The log structure on the source (resp. the target)
is given by £ (resp. ¢). The pullback of the universal log mixed Hodge structure on the target
coincides with the log mixed Hodge structure on the source.

3.29. By using log mixed Hodge theory, 3.27 is described as follows.
Taking the images of the nilpotent orbit in naive sense 3.27 (1) and the “higher Albanese
map” 3.27 (2), we have their real analytic extensions with boundary

78, P8 X (T, \ Dy ).

Here, Yi;g is like Example 1.1.1, and (T, \ Dy )'°® coincides with the moduli of nilpotent

i-orbits 'y \ D! __ in the present situation ([10] III Theorem 2.5.6).
=1 ]
Let X Ooog be the universal covering of X Loog. The above maps are still lifted to

~log ~log .;log

X, =D .

oo 0 (IDOO * o0
The boundary point &’ in 3.27 can be understood as the point
=1
bV = (2 =0+i00) = (u = —00+1i0) € X;g
(where 27iz’ := u’). We have (exp(—(27i) ! log(¢)Neo)(3.27(2))) (V') = F(0,0,...,0,\.0), and

~log ~log

Vo (V') = Pou (b') = (nilpotent i-orbit generated by (Nao, F(0,0,...,0, X)) € D,

3.30. For any 0 € %, I';\D, — '™\ Dy, is a local homeomorphism. This is analogously
proved as [12] Theorem A (iv).

Summing-up, we have a global extension over X of the higher Albanese map which is an
isomorphism over its image:

7: X S5 3(X) C Axpmy ~T™\ Dy,
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3.31. To study analytic continuations and extensions of polylogarithms in the spaces of nilpotent
i-orbits Dﬁz, in the spaces of SL(2)-orbits Dgy,(2y, and in spaces of Borel-Serre orbits Dgg is an
interesting problem. See [10] for these extended period domains and their relations which are
described as a fundamental diagram.

A. SUMMARY OF A RESULT OF DELIGNE IN [3]

We add here a summary of a result of Deligne in [3] for readers’ convenience.

A.1. Just as 3.1-3.2, consider the situation X := P'(C) \ {0,1,00} C X := P!(C). Let
b:= (0,1) the “tangential base point” over 0 € X with tangent 1.
Consider the quotient group I' of 71 (X, b) as in [3] 16.14 (cf. 3.2): The inclusion

X c G,(C)=C*
induces m (X, b) = 71 (G, (C),b) = Z(1)p (suffix B means Betti, cf. [3]). Let
K :=Ker (m(X,0) = Z(1) ).
Let T':=m(X,0)/[K, K] and T'; := K/[K, K]. Then, we have an exact sequence
1-T1—>T—>Z(1)p — 1

A.2. ([3] 16.15). Let po, p1 : Z(1)p — T’ be the monodromies around 0, 1, respectively. Take a
generator u of Z(1)p (e.g. u = 2mi), put a; = p;(u) (j =0,1). Then, I = (ap, a1) with relation:
conjugates of a1 are commutative.

I’y is a representation of Z(1)p with basis (conjugates of a) under the action

v po(H)ypo(t) ! (v € Tyt € Z(1) ),

i.e, Ty = Z[Z(1)p] - a1, where >, cr(abajag™) = >, e - (2mi - k) - ay
These are described as

Iy =2Z[Z(1)p]- a1 ~ Zlu,u '] - di‘, I'=2Z(1)px Ty,
u

Z ck(algalao Z ek - (2mi - k) Z ckuk du
k

([3] 16.16). Action of Z(1)p on I'; is given by multiplication in Z[Z( )B] = Zu,u™1].

A.3. The descending central series of I' induces a filtration on I';:
du

Z¥T)ATy = (- )V (N2

Let TV :=T/ZN+(T) and T\ := Image(I'; — T™)). Then

'™ = Zu, w1/ (u— 1)V - du
U
Put v = €” and hence v = logu. Then
Qer{” = Quu)/(u— 1)V - L = Qu/Y) - dv

and we have

N-1
F(lN) = { Z ek exp(kv)dv

k=0

CkGZ}.



A DESCRIPTION OF A RESULT OF DELIGNE BY LOG HIGHER ALBANESE MAP 299

A.4. As groups, identify

N
©: Qu]/(WvN)-dv > HQ(n)B s e = %dv" = u®n,

Then
N-1 N-1 N-1 N /N-1 o1
P n, ®n _ RN
chexp(kv)dv et ch (Z ﬁk U >®U_Z<ch(n—l)!>u .
k=0 k=0 n=0 n=1 \ k=0
Hence

Proposition A.4.1. ([3] 16.17). (n—1)!-pr, o <p(F§N)) =Z(n)g.
A.5. ([3] 16.12). Define a Lie algebra action of Q(1) on Hiv Q(n) by
a * (bl, bg, ey bN) = (0,ab1, ey abN,1),
and Q(1) x Hiv Q(n) the associated semi-direct product of Lie algebra.
Let po, p1 : Q(1) — Q(1) x Hiv Q(n) be morphisms of Lie algebras such that g is the identity
onto the first factor Q(1) and p; is the identity onto the factor Q(1) in the product Hf[ Q(n).

By abuse of notation, let ug, 11 : Q(1) - Q®Lie I'N). Then there exists a unique Lie algebra
isomorphism respecting each pg, p1:

N
Q) x []Q(n) = Q@ Liel™ = Q(1) x (Q® LieI'{")
1

which is given by g and v, := (ad po)" (1) (1 <n < N).
A.6. Let Lie U](DJI\Q be the de Rham realization of iterated Tate motive in [3] 16.13. Let
€o i= pta(1) € Lie USY (1 = exp(27i) € Q(1)pr, a =0,1).

Take coordinates (u, (vy)1<n<n) Of Ugl\:’{) as follows:

N
(11, (v)) — exp(ueo) exp (Z vn<Adeo>“-1<e1)> .

n=1
Lemma A.6.1. ([3] 19.3.1). Let z € C* ~\R>1. The end point of the image in U,(D%)(C) of the
line segment from (0, z) to z has coordinates u =0, v, = —l,(2).
Proof. Let z1, 22 € C* \ Rx>1. Take a path from z; to 22, and take an iterated integral I72 of
dt dt
di(t)y=— SI(t
0= (Feot 727e1) 100
for I(t) =1+ ueg+ Y., vn(Adeg)" !(e1). Note
eo * eg = eg, €o* (Adeg)"'(e1) = (Adeg)"(e1) (1 <n<N),
e1xeg =0, e;xe; = e, eg * (Adeg)" H(e1) =0 (2<n<N).
The corresponding differential equation is

dt dt dt
du—?, d’l}] —m, dvn—vnfl?.

Take I(z1) = identity € U](DJ;?(C) as an initial condition and consider z2 as a variable.
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If z; is a tangential base point (0,7) ([3] Section 15), replace the initial condition by

t
I(t) exp (—log ()) — identity ast — 0.
T

For the line segment from (0, z) to z, we have

z

u:10g<t>7 v, = =l (t). O
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