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BOUQUET DECOMPOSITION FOR DETERMINANTAL MILNOR FIBERS

MATTHIAS ZACH

Abstract. We provide a bouquet decomposition for the determinantal Milnor fiber of an

Essentially Isolated Determinantal Singularity (EIDS) of arbitrary type. The building blocks
of the decomposition are (suspensions of) hyperplane sections in general position off the origin

of the generic determinantal varieties. For the special case of 2 × n-matrices we give a full
description of the homotopy types of the determinantal Milnor fibers as a wedge of spheres.

1. Results

In this note we will apply a general Bouquet Decomposition Theorem by M. Tibăr [13] in the
case of an Essentially Isolated Determinantal Singularity (EIDS, see [4]) to prove the following:

Theorem 1.1. Let (X0, 0) = (A−1(M t
m,n), 0) ⊂ (CN , 0) be an EIDS of type (m,n, t) and di-

mension d = dim(X0, 0) = N − (m− t+ 1)(n− t+ 1) > 0 given by a holomorphic map germ

A : (CN , 0)→ (Mat(m,n;C), 0).

Suppose Au is a stabilization of A and Xu = A−1u (M t
m,n) the determinantal Milnor fiber. Define

s0 := min{s ∈ N : (m− s+ 1)(n− s+ 1) ≤ N}.
Then Xu is homotopy equivalent to the bouquet

(1) Lt,Nm,n ∨
∨

s0≤s≤t

r(s)∨
i=1

SN−(m−s+1)(n−s+1)+1(L
t−s+1,(m−s+1)(n−s+1)−1
m−s+1,n−s+1 )

for some numbers r(s) with s0 ≤ s ≤ t.

The spaces M t
m,n and Lt,km,n appearing in this theorem are defined as follows. For any triple

(m,n, t) of non-negative integers we set

M t
m,n := {M ∈ Mat(m,n;C) : rankM < t},

the generic determinantal variety. We define the space Lt,km,n to be the interior of the determi-
nantal Milnor fiber of a linear EIDS of type (m,n, t), i.e. the singularity obtained from a generic
linear map germ

Φ: (Ck, 0)→ (Mat(m,n;C), 0).

Note that for the particular case k = m · n− 1 the space Lt,km,n is the complex link of M t
m,n.

In Formula (1) we denote by Sr(X) the r-fold repeated suspension of a topological space
X. We use the same convention as in [13] and set S1(∅) = S0, the sphere of dimension 0, and
S0(X) = X for any X.

Theorem 1.1 is a major reduction step in the understanding of the vanishing topology of
essentially isolated determinantal singularities. In particular it implies the known results for the
Milnor fiber of an isolated complete intersection singularity (X0, 0) = (f−1({0}), 0) ⊂ (CN , 0)
given by a holomorphic map germ

f : (CN , 0)→ (Cd, 0)
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which can naturally be regarded as EIDS of type (d, 1, 1). In this particular case one has
Lt,Nm,n

∼=ht {pt}, s0 = t = 1, and r(s) = µ is the classical Milnor number of (X0, 0). Formula (1)
therefore reads

Xu
∼=ht {pt} ∨

r(1)∨
i=1

SN−d+1(∅)

∼=ht

µ∨
i=1

SN−d

In fact, it has already been shown in [13, Corollary 4.2] how to apply the Handlebody Theorem
to reprove the known results [8] on isolated complete intersection singularities and we will follow
the ideas presented there to obtain our generalization for EIDS.

While for ICIS the Milnor fiber is always homotopy equivalent to a bouquet of spheres of the
same dimension, this is no longer the case for determinantal Milnor fibers of EIDS, see e.g. [3],
[5], and Section 4. Several groups have studied the vanishing Euler characteristic for EIDS, see
e.g. [4], [6], and [12]. One approach is to study the behavior of a generic hyperplane equation h
in a determinantal deformation of a given EIDS (X0, 0). The determinantal Milnor fiber Xu is
then obtained from its hyperplane section Xu ∩ {h = 0} by attaching cells, or, more generally
in the context of stratified Morse theory, so-called “thimbles1”, at Morse critical points of h on
Xu. This way, one obtains nice formulas for the vanishing Euler characteristic in terms of the
polar multiplicities of the singularity (X0, 0). However, it is hardly possible to describe the loci
in the hyperplane section Xu ∩ {h = 0} at which the attachments take place. This fact destroys
any hope to arrive at a precise description of the homotopy type of Xu.

It is the Carrousel by Lê which sits at the heart of the proof of the Handlebody Theorem
(stated as Theorem 2.4 below) from [13] and which allows us to understand the attachments of
the thimbles. As we will see, however, the setup for the application of the Handlebody Theorem
is quite different from the viewpoint of EIDS. We will describe the transformation of any EIDS
(X0, 0) = (A−1(M t

m,n) ⊂ (CN , 0) to an isolated relative complete intersection singularity (IRCIS,
see Definition 3.2)

(X0, 0) = ({f1,1 = · · · = fm,n = 0}, 0) ⊂ (Z, 0)

on a controlled Whitney stratified ambient space

(Z, 0) ∼= (CN , 0)× (M t
m,n, 0)

in Section 3.1. Then, rather than doing an induction argument by cutting down with generic
hyperplanes, we proceed by an inductive argument where we always trade one equation fi,j
defining (X0, 0) in (Z, 0) for a generic hyperplane equation and eventually end up with the space
Lt,Nm,n – a generic linear section of M t

m,n off the origin. During this process, the Handlebody
Theorem allows us to really keep track of the involved attachment processes.

The homotopy type of the spaces Lt,km,n has been studied in a few particular cases, see e.g. [5].

The Euler obstructions of the generic determinantal varieties M t
m,n, which are closely related

to their hyperplane sections Lt,m·n−1m,n , can be found in [6] and the Chern-Schwartz-MacPherson

classes of their projectivizations P(M t
m,n) have been studied in [16]. However, there is – at least

to the knowledge of the author – no complete understanding of the homotopy and homology
groups of Lt,km,n for arbitrary values of m,n, t, and k.

1By a thimble we mean the pair of topological spaces given by the product of the tangential and the normal
Morse data at a given critical point. This might differ from the cell (Dλ, ∂Dλ) occurring in classical Morse theory,

see [7].
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leading to the study of the work by M. Tibăr, H. Hamm for his encouraging interest in the subject
and discussion during a workshop on determinantal singularities in Hannover, M. Tibăr himself
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2. Preliminaries

2.1. Notations and Background. In this article we will make use of the common terms of
stratified Morse theory. The reader may consult the standard textbook reference [7]. Suppose we
are given a manifold N and a closed subspace Z ⊂ N with a Whitney stratification Σ = (Sα)α∈A.
For any point p ∈ Z we will write

TpZ := TpSα

for the tangent space of the stratum Sα containing p. Furthermore, we say that a smooth map

f : M → N ⊃ Z
from a manifold M to N is transverse to Z if f is transverse to all the strata.

Consider the set X = f−1(Z). It naturally decomposes into the sets Σα = f−1(Sα) given
by the preimages of the strata of Z. Whenever f : M → N ⊃ Z is transverse to Z in M , the
Σα form a Whitney stratification for X and we also say that X inherits the stratification of Z.
In particular, this applies to the case of a closed embedding such as for example the fiber of a
stratified submersion on Z induced from a map on N .

Throughout this article we usually consider closed Milnor balls B for singularities. This
convention always assures that one automatically keeps track of the boundary behavior in de-
formations which can be a particularly tricky task in the setting of non-isolated singularities.
Moreover, the resulting Milnor fibers are always compact stratified spaces which simplifies their
treatment by Morse theory.

Since this note is merely an application of methods which had been developed before, we
will restrict ourselves to the description of how the techniques can be used on determinantal
singularities. To this end, we will review the cornerstones of the proofs of e.g. the Handlebody
Theorem by Tibăr and other ideas behind it. However, the reader who is unfamiliar with the
mathematical rigor on singularity theory on Whitney stratified spaces is strongly encouraged to
consult the articles [13], [11], the references given there, and the standard textbook on stratified
Morse theory [7].

2.2. Essentially Isolated Determinantal Singularities. Let (M t
m,n, 0) ⊂ (Mat(m,n;C), 0)

be the generic determinantal variety of type (m,n, t):

M t
m,n = {M ∈ Mat(m,n;C) : rankM < t}.

The canonical rank stratification by

Ssm,n = Ms
m,n \Ms−1

m,n

for 0 < s ≤ min{m,n}+1 is a Whitney stratification of Mat(m,n;C) and M t
m,n. This can easily

be deduced by induction from the observation that at any point p ∈ Ssm,n one has a product

(2) (M t
m,n, p)

∼= (M t−s+1
m−s+1,n−s+1, 0)× (C(m+n)·(s−1)−(s−1)2 , 0)

of analytic spaces. Consequently, the complex link of M t
m,n along the stratum Ssm,n is

L
t−s+1,(m−s+1)(n−s+1)−1
m−s+1,n−s+1 .
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The complex links play a central role in the stratified Morse theory on complex analytic varieties
because they determine the normal Morse data, see [7]. In the case of the generic determinantal
variety M t

m,n we find from (2) that the normal Morse data along the stratum Ssm,n for s ≤ t is
given by the pair of spaces

(3)
(
C(L

t−s+1,(m−s+1)(n−s+1)−1
m−s+1,n−s+1 ), L

t−s+1,(m−s+1)(n−s+1)−1
m−s+1,n−s+1

)
,

where C(X) denotes the real cone over a given topological space X. We adopt the convention
that C(∅) = {pt} is just one point.

Definition 2.1 ([4]). A determinantal singularity of type (m,n, t) is given by a holomorphic
map germ

A : (CN , 0)→ (Mat(m,n;C), 0)

such that the space

(X0, 0) := (A−1(M t
m,n), 0) ⊂ (CN , 0)

has expected codimension codim(X0, 0) = codimM t
m,n = (m− t+ 1)(n− t+ 1).

A determinantal singularity (X0, 0) given by a matrix A is called essentially isolated, if the
map A is transverse to the rank stratification of Mat(m,n;C) in a punctured neighborhood of
the origin.

It follows directly from this definition that, away from the origin, X0 inherits a canonical
stratification by the strata

Σs := A−1(Ssm,n).

Counting dimensions yields that these strata are nonempty if and only if

(4) min{r ∈ N : (m− r + 1)(n− r + 1) < N} ≤ s ≤ t.

and that

dim Σs = N − (m− s+ 1)(n− s+ 1) > 0.

We supplement this stratification with the one-point stratum {0} ⊂ X0 at the origin.
An essential smoothing of (X0, 0) is a family

X0
� � //

��

X

u

��
{0} // C

coming from a stabilization

A : (CN , 0)× (C, 0)→ (Mat(m,n;C), 0)× (C, 0)

of the map A. That is A = A(x, u) = (Au(x), u) with A0 = A and Au transversal to M t
m,n for all

u 6= 0 sufficiently small. Then, the total space of the family above appears asX = A−1(M t
m,n×C)

and u is the map given by the deformation parameter.
From a stabilization we can construct the determinantal Milnor fiber as follows. Choose a

representative

A : W × U → Mat(m,n;C)× U
of the stabilization A for some open sets W ⊂ CN and U ⊂ C and let B ⊂ CN be a Milnor ball
for (X0, 0) in W . By this we mean a closed ball around the origin such that X0 := X0 ∩ B is
closed, the boundary ∂B intersects X0 transversally, and

X0
∼= C(∂X0)



194 MATTHIAS ZACH

is homeomorphic to the real cone over its boundary ∂X0 = ∂B ∩X0. We can then consider the
family u : X ∩ (B × U)→ U . It may be deduced from Thom’s first Isotopy Lemma that u is a
trivial topological fibration along the boundary X ∩ (∂B × U) over U and that

u : (X ∩ (B × U)) \X0 → U \ {0}
is a topological fiber bundle for U small enough.

Definition 2.2. It is the fiber of this bundle

Xu
∼= A−1u (M t

m,n) ∩B
that we call the determinantal Milnor fiber.

Using the theory of versal unfoldings, one can show that in fact for any given EIDS (X0, 0)
the determinantal Milnor fiber is unique up to homeomorphism, see [2] or [15].

Example 2.3. Consider the EIDS (X0, 0) ⊂ (C5, 0) of type (2, 3, 2) given by the matrix

A =

(
x y z
v w x

)
together with the essential smoothing induced by the perturbation with(

u 0 0
0 0 −u

)
.

It is easily seen that indeed the total space (X, 0) ⊂ (C5+1, 0) is isomorphic to the generic
determinantal variety M2

2,3 ⊂ Mat(2, 3;C) ∼= C6 and the map u is a generic linear form on it.
Hence, the determinantal Milnor fiber of (X0, 0) is nothing but the (closure of the) complex link

L2,5
2,3 of (M2

2,3, 0). It is known that L2,5
2,3 is homotopy equivalent to the 2-sphere S2, see [5].

2.3. The Handlebody Theorem. In [13], M. Tibăr proofs the following theorem for the Milnor
fiber F of an isolated hypersurface singularity

f : (Z, 0)→ (C, 0)

on a complex analytic, Whitney stratified space (Z, 0) of dimension dim(Z, 0) ≥ 2 and the
complex link L of (Z, 0):

Theorem 2.4 ([13], Handlebody Theorem). The Milnor fiber F is obtained from the complex
link L to which one attaches cones over local Milnor fibers of stratified Morse singularities. The
image of each such attaching map retracts within L to a point.

We give a rough outline of the idea of the proof. We may assume (Z, 0) ⊂ (CN , 0) to be
embedded in some smooth ambient space. Let h be the linear equation on CN defining the link
L of (Z, 0) and consider

(5) Φ = (h, f) : B ∩ Z ∩ Φ−1(D ×D′)→ D ×D′

for a sufficiently small, closed ball B and discs D,D′ ⊂ C around the origin. In [11], Lê has

shown the following. There exists a Zariski open set Ω ⊂
(
CN
)∨

of linear forms on the ambient
space such that for h ∈ Ω the polar variety

Γ(h, f) := {z ∈ Z \ f−1({0}) : ∃a ∈ C : dh(z)|TzZ = a · df(z)|TzZ},
i.e. the critical locus of h on Z relative to f , is a curve which is branched over its image

∆ = ∆(h, f) = Φ(Γ(h, f)) ⊂ D ×D′,
the so-called Cerf-diagram. The proof for the set Ω of admissible hyperplane equations to be
Zariski open can be found in [9]. Moreover, one can choose D′ small enough such that the
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intersection ∆∩ (∂D×D′) is empty. Then Φ is a topological fibration away from ∆ and one has
homeomorphisms

F ∼= Φ−1(D × {δ})

and

L ∼= Φ−1({η} ×D′)

for 0 6= δ, resp. 0 6= η, sufficiently small. It is also shown in [9] that Ω can be chosen such that
the restriction of h ∈ Ω to any fixed fiber Φ−1(D × {δ}) has only Morse singularities over the
intersection points ∆ ∩D × {δ} for 0 6= δ ∈ D′.

At this point the so-called “carrousel” is furnished by the geometric monodromy of F along
the boundary of D′, i.e. by the variation of the value δ of f . But contrary to the classical
viewpoint on monodromy one does not only construct a lifting of the unit tangent vector field
along ∂D′ to Φ−1(D × ∂D′), but one also keeps track of the monodromy induced on the disc
D×{δ}, the intersection points C = ∆(h, f)∩D×{δ}, and the corresponding critical points of
h on the Milnor fiber Φ−1(D × {δ}) over them.

Let F ′ = Φ−1({(η, δ)}). Then up to homotopy the Milnor fiber F is obtained from F ′ by
attaching thimbles along suitably chosen paths in D × {δ} from (η, δ) to the critical values of
the stratified Morse points of h on F . The topology of each of these attachments is governed by
the Morse data. In the situations we will encounter in the context of EIDS, the Morse data will
always be of the following form:

Proposition 2.5. Let (X, p) ∼= (Ms
m,n, 0)× (Ck, 0) and h : (X, p)→ (C, 0) a holomorphic map

germ with a stratified Morse singularity at p. Then the thimble corresponding to this critical
point is

(C(Sk(Ls,m·n−1m,n )), Sk(Ls,m·n−1m,n )),

i.e. one attaches the real cone C(Sk(Ls,m·n−1m,n )) along its boundary Sk(Ls,m·n−1m,n ).

The key observation from the Carrousel is that keeping track of the relative critical points
of the hyperplane equation h on F allows one to determine exactly at which loci on F ′ these
attachments take place.

As a final step, one constructs another homeomorphism L ∼= Φ−1(W ) ⊂ F on a certain
subspace Φ−1(W ) of F by “sliding along ∆”. The space W is chosen such that F ′ ⊂ Φ−1(W )
and one can use the carrousel monodromy to show that for each thimble e one has to attach
to Φ−1(W ) to complete it – up to homotopy – to F , there is already one thimble e′ that had
been attached to F ′ in the same spot as e to complete it to Φ−1(W ). This explains, why each
attaching map in the statement of the Handlebody Theorem 2.4 retracts within L to a point.

3. Proof of the Main Theorem

3.1. The Graph Transformation. Let (X0, 0) ⊂ (CN , 0) be a determinantal singularity of
type (m,n, t) given by a matrix A. In this section we will explain how to transform (X0, 0) into
a relative complete intersection singularity on a canonical ambient space

(Z, 0) ∼= (CN , 0)× (M t
m,n, 0),

see Definition 3.2.
Let Y = Mat(m,n;C) ∼= Cm·n, C[y] = C[yi,j |1 ≤ i ≤ m, 1 ≤ j ≤ n] the associated coordinate

ring and Om·n = C{y} the local ring of (Y, 0). By abuse of notation, we will also write y for the
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tautological matrix y ∈ Mat(m,n;C) with entries yi,j :

y =

 y1,1 · · · y1,n
...

...
ym,1 · · · ym,n

 .

Choose a representative A : U → Y of the matrix A defining (X0, 0) and let

ΓA = {(x, y) : y = A(x)} ⊂ U × Y
be the graph of A. Set Z := U ×M t

m,n. Then, by construction, X0
∼= ΓA ∩ Z.

We define two maps

p : U × Y → Y, (x, y) 7→ y −A(x),

q : U × Y → U, (x, y) 7→ x

and form the commutative diagram

(6) Xy
� � //

��

Z

p

��

q // U

{y} �
� // Y.

While q is the projection to the first factor, the map p can be considered as the “projection to Y
along the graph ΓA”. Clearly, for every point y ∈ Y the space Xy is the determinantal variety

Xy = (A− y)
−1

(M t
m,n) = q

(
p−1({y})

)
defined by the perturbation of A by the constant matrix y and we can consider Xy as a deter-
minantal deformation of the EIDS (X0, 0).

Note that (Z, 0) enjoys a canonical Whitney stratification by the strata

(S̃sm,n, 0) = (Ssm,n, 0)× (CN , 0)

inherited from the rank stratification on M t
m,n. Whenever A is defining an EIDS, i.e. A is

transverse to the rank stratification in a punctured neighborhood of the origin in CN , the above
construction turns (X0, 0) into the fiber of a map p|(Z, 0) which is a stratified submersion along
X0 ⊂ Z on a punctured neighborhood of the origin in CN × Cm·n:

Lemma 3.1. Let (x,A(x)) be a point in the graph ΓA of A. The restriction p|Z is a stratified
submersion on Z at (x,A(x)) if and only if the map A : U → Y is transverse to the rank
stratification at x ∈ U .

Proof. Let (v1, . . . , vd) be local coordinates at y = A(x) of the stratum Ssm,n containing y.
Together with the standard coordinates of U , they form a coordinate system (x, v) of the stratum

S̃sm,n of Z at (x,A(x)). Now note that on the one hand the jacobian matrix of p|Z at this point
is of block form (

∂p(x,v)
∂x

∂p(x,v)
∂v

)
=
(
−∂A(x)

∂x
∂y(v)
∂v

)
and p is a stratified submersion at (x,A(x)) if and only if this matrix has full rank m · n. On
the other hand, the map A is transverse to the rank stratification of Y at x, if and only if the
tangent space TyY of the ambient space Y at y = A(x) can be generated by both the image of

the differential of A – i.e. the span of the columns of the matrix ∂A
∂x – and the tangent space

TyS
s
m,n of the stratum Ssm,n. Since TyS

s
m,n is by definition the span of the second block ∂y

∂v in
the jacobian matrix of p, the claim follows. �
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The components of the map p define the graph ΓA via

pi,j(x, y) = yi,j − ai,j(x) = 0

and clearly, ΓA is a complete intersection in U ×Y . The determinantal singularity X0
∼= Z ∩ΓA

appears as the intersection of ΓA with Z = CN×M t
m,n. WhileM t

m,n is not a complete intersection
in general, it is nevertheless always a Cohen-Macaulay space, see [10]. Since (X0, 0) has expected
dimension and

OX0,(x,y)
∼= OZ,(x,y)/〈p1,1, . . . , pm,n〉,

the components pi,j(x, y) of p must also form a regular sequence on OZ , the structure sheaf of
Z; cf. [1, Theorem 2.1.2 c)]. We give a general definition of the object we just encountered.

Definition 3.2. Let (Z, 0) ⊂ (Cr, 0) be a germ of a complex analytic space and

f : (Cr, 0)→ (Cc, 0)

a holomorphic map.
We say that the restriction f |(Z, 0) is a complete intersection morphism, if the components

f1, . . . , fc form a regular sequence on OZ,0.
If, moreover, (Z, 0) is endowed with a Whitney stratification, we say that f |(Z, 0) has an

isolated relative complete intersection singularity (IRCIS) on (Z, 0) whenever there exists a
punctured neighborhood U of 0 in Cr such that at every point z ∈ U ∩ Z ∩ f−1({0}) in the
central fiber, the restriction f |(Z, 0) is a stratified submersion at z.

We have just verified:

Proposition 3.3. The restriction p|(Z, 0) is a complete intersection morphism which realizes
(X0, 0) = p−1({0}) ∩ (Z, 0) as an IRCIS of p on (Z, 0).

We will refer to the above construction as the graph transformation of the EIDS
(X0, 0) = (A−1(M t

m,n), 0). This transformation allows us to study (X0, 0) with the classical
methods for complete intersections. To this end, we will fix some notation. Let

W = ({0} = W0 (W1 (W2 ( · · · (Wm·n−1 (Wm·n = Cm·n)

be a maximal ascending flag in Y = Mat(m,n;C) and

V =
(
CN ×Mat(m,n;C) = V0 ) V1 ) · · · ) Vm·n−1 ) Vm·n

)
a descending flag in CN ×Mat(m,n;C) with dimVi/Vi+1 = 1 for each i.

For each k > 0 we set

(7) Zk := Z ∩ p−1(Wk) ∩ Vk−1.

The two projections p and q induce natural maps

(8) Zk
fk

zz

hk

$$
Wk/Wk−1 Vk−1/Vk.

Proposition 3.4. If the flags W and V are in general position, then the following holds.

(1) Each of the spaces Zk inherits the canonical Whitney stratification from (Z, 0) outside
the origin.

(2) Each fk defines an isolated hypersurface singularity on (Zk, 0) relative to the given strati-
fication.
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(3) The function hk is a linear equation on (Zk, 0), which can be used to define the complex
link and the carrousel.

Proof. We do induction on k. Let k = 1. By definition Vk−1 = V0 = CN × Mat(m,n;C).
Consider the map

Pp : Z \X0 → Pm·n−1, (x, y) 7→ (p1,1(x, y) : · · · : pm,n(x, y))

and let [W1] ∈ Pm·n−1 be a regular value of this map. Choose a splitting Cm·n ∼= (Cm·n/W1)⊕W1

and write p = (p̃, f1) with

p̃ : z 7→ p(z) +W1 ∈ Cm·n/W1
∼= Cm·n−1.

Then Z1 = p−1(W1) = p̃−1({0}) does not have critical points of p̃ outsideX0 = {f1 = 0} ⊂ Z1.
Suppose (x, y) ∈ X0, x 6= 0 was a critical point of p̃ on Z1 inX0 and S the stratum of Z containing
it. Then the differential d(p̃|S)(x, y) does not have full rank and, hence, also d(p|S)(x, y) can
not have full rank – a contradiction to X0 being an IRCIS. We conclude that p̃ is a stratified
submersion on Z at all points of Z1 except the origin. Therefore, Z1 inherits the Whitney
stratification from (Z, 0) and f1 : (Z1, 0)→ C defines an IRCIS on (Z1, 0).

For a given isolated singularity f1 : (Z1, 0) → (C, 0) the condition on a linear equation h1
to be sufficiently general to define the carrousel is Zariski open; cf. [13]. We may choose h1
accordingly and set V1 = {h1 = 0}.

For the induction step we start by projectivizing the map p̃:

Pp̃ : Z ∩ Vk \ p−1(Wk−1)→ P(Cm·n/Wk−1), (x, y) 7→ [p(x, y) +Wk−1].

Choose a subspace Wk ⊂ Cm·n such that [Wk/Wk−1] is a regular value of this map. The rest of
the induction step is merely a repetition of the above said and left to the reader. �

In what follows, we will from now on assume that the flags V and W have been chosen to
fulfill Proposition 3.4. For any k > 0 let

(9) Fk = f−1k ({δ}) ∩ Zk ∩B

be the Milnor fiber of fk on Zk for a suitable choice of a Milnor ball B and δ ∈ C \ {0} small
enough. We denote the complex link of Zk by

(10) Lk = h−1k ({η}) ∩ Zk ∩B,

η ∈ C \ {0} small enough.

3.2. The induction argument. We can apply the Handlebody Theorem of Tibăr at each step
k in the setup of the previous section to obtain our Main Theorem. The key lemma for this
induction can already be extracted from [13, Corollary 4.2]:

Lemma 3.5. In the final setup of the standard transformation we have for each 0 < k < m · n
a (non-canonical) homeomorphism

(11) Lk ∼= Fk+1.
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Proof. One has homeomorphisms

Fk+1 = Zk+1 ∩ f−1k+1({δ}) ∩B
= Z ∩ Vk ∩ p−1(Wk+1) ∩ f−1k+1({δ}) ∩B
= Z ∩ Vk−1 ∩ p−1(Wk+1) ∩ h−1k ({0}) ∩ f−1k+1({δ}) ∩B
∼= Z ∩ Vk−1 ∩ p−1(Wk+1) ∩ h−1k ({η}) ∩ f−1k+1({δ}) ∩B
∼= Z ∩ Vk−1 ∩ p−1(Wk+1) ∩ h−1k ({η}) ∩ f−1k+1({0}) ∩B
∼= Z ∩ Vk−1 ∩ p−1(Wk) ∩ h−1k ({η}) ∩B
∼= Lk

for a Milnor ball B and sufficiently small values for δ and η. The homeomorphisms are induced
from the parallel transport in the fibration given by

Φ = (hk, fk+1) : Z ∩ Vk−1 ∩ p−1(Wk+1) ∩B → C× C

as in (5) over suitably chosen paths connecting (0, δ), (η, δ), and (η, 0). �

Proof. (of Theorem 1.1) After applying the graph transformation we obtain for k = 1:

Xu = f−11 ({δ}) ∩ Z1 ∩B = F1,

because W1 was in general position. This space is naturally stratified by the strata Σs of
dimension

dim Σs = N − (m− s+ 1)(n− s+ 1)

for s0 ≤ s ≤ t with s0 = min{r ∈ N0 : (m − r + 1)(n − r + 1) ≤ N} and the complex link

along Σs is L
t−s+1,(m−s+1)(n−s+1)−1
m−s+1,n−s+1 . We may apply Proposition 2.5 to determine the thimbles

associated to Morse critical points on the strata. It is the pair of spaces consisting of

SN−(m−s+1)(n−s+1)(L
t−s+1,(m−s+1)(n−s+1)−1
m−s+1,n−s+1 )

and the cone over it. According to the Handlebody Theorem [13], the space F1 then has a
bouquet decomposition

F1
∼=ht L1 ∨

∨
s0≤s≤t

r1(s)∨
i=1

SN−(m−s+1)(n−s+1)+1(L
t−s+1,(m−s+1)(n−s+1)−1
m−s+1,n−s+1 ).

Note that, since the image of the attaching maps in L1 retract to a point, we obtain one more
suspension compared to the formula for the thimble.

We may now proceed inductively and replace Lk by Fk+1 in this formula according to Lemma
3.5. At each step we attach a certain number rk(s) of thimbles and we may add them up to

r(s) =
∑m·n−1
k=1 rk(s). This finishes the proof. �

Corollary 3.6. If the singularity (X0, 0) in the setting of Theorem 1.1 is smoothable (i.e. if
N < (m− t+ 2)(n− t+ 2)), then

(12) Xu
∼=ht L

t,N
m,n ∨

r∨
i=1

Sd,

with d = N − (m− t+ 1)(n− t+ 1) = dim(X0, 0).
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4. EIDS of type (2, n, 2)

In this section we will be concerned with arbitrary EIDS (X0, 0) ⊂ (CN , 0) of type (2, n, 2).
The requirement on (X0, 0) to have expected dimension relates N and the dimension
d = dim(X0, 0) via

d = N − (2− 2 + 1)(n− 2 + 1) = N − n+ 1.

In particular, we always have n− 1 ≤ N . Note that Theorem 1.1 is only applicable if n ≤ N .
If we require (X0, 0) to be smoothable, we also obtain an upper bound on N given by

N < (2− 2 + 2)(n− 2 + 2) = 2n.

4.1. The homotopy type of L2,N
2,n . We shall first determine the homotopy type of all the

spaces L2,N
2,n , see (13), (15), (17), and (18).

Whenever N ≥ 2n, any generic linear map

Φ: (CN , 0)→ (Mat(2, n;C), 0)

is a submersion and in particular stable. The interior of the determinantal Milnor fiber of Φ is
therefore given by

(13) L2,N
2,n
∼= CN−2n ×M2

2,n
∼=ht {pt}.

Suppose N < 2n. Let M = M2
2,n be the generic determinantal variety and

W

π

��

� � // Mat(2, n;C)× P1

��

// P1

M
� � // Mat(2, n;C)

its Tjurina transform (see e.g. [14], or [15]) resulting from the blowup of the rational map

Ψ : M 99K P1, y 7→ [ker(y)].

If we let yi,j be the canonical coordinates of Mat(2, n;C) and (s1 : s2) the homogeneous coordi-
nates of P1 then the equations for W are

(14) s1 · y2,j − s2 · y1,j = 0 for j = 1, . . . , n.

We may consider y1,j and y2,j as linear fiber coordinates in local trivializations of the tautological
bundle OP1(−1) for every j. Thus, W is a smooth complex manifold isomorphic to the total
space of the vector bundle (OP1(−1))

n
.

Instead of describing an embedding

Φ: CN → Mat(2, n;C)

of a linear subspace defining an EIDS (X0, 0) = (Φ−1(M2
2,n), 0), we may also choose a linear

form

l = (l1, . . . , l2n−N ) ∈ HomC(Mat(2, n;C),C2n−N )

such that Φ(CN ) = ker(l). Since all equations involved in this process are either linear or
homogeneous, we may neglect the choice of Milnor balls. We obtain an extension of the above
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diagram to the left:

X̃0
� � //

��

W

π

��

� � // Mat(2, n;C)× P1

��

// P1

X0
� � //

��

M
� � //

l

��

Mat(2, n;C)

{0} �
� // C2n−N ,

with X̃0 := π−1(X0). The interior of the determinantal Milnor fiber L2,N
2,n of Φ is then given by

L2,N
2,n = M ∩ l−1({u})

for some regular value u of l on M .
Utilizing the trace pairing (see e.g. [4])

Mat(2, n;C)×Mat(2, n;C)→ C, (A,B) 7→ trace(AT ·B),

we may write the components of l in the form

lk =

(
lk1,1 lk1,2 · · · lk1,n
lk2,1 lk2,2 · · · lk2,n

)
for constant entries lki,j ∈ C. We leave it to the reader to verify that in the range n ≤ N < 2n, a

sufficiently general choice for l is given by choosing the 2n−N components lk from the following
n matrices: (

1 0 0 0 · · · 0
0 1 0 0 · · · 0

)
,

(
0 1 0 0 · · · 0
0 0 1 0 · · · 0

)
, · · ·

· · · ,
(

0 · · · 0 1 0 0
0 · · · 0 0 1 0

)
,

(
0 · · · 0 0 1 0
0 · · · 0 0 0 1

)
,

(
0 0 · · · 0 1
1 0 · · · 0 0

)
.

Fix one value n ≤ N < 2n and the linear form l : Mat(2, n;C)→ C2n−N as above and consider
the algebraic sets

W ⊃ π−1 ({l = 0}) = X̃0
π−→ X0 = M ∩ l−1({0}).

Using the above equations (14) for W and π∗lk, k = 1, . . . , 2n − N we see that X̃0 is a local
complete intersection in Mat(2, n;C)× P1.

Moreover, whenever N > n – i.e. whenever d = dim(X0, 0) > 1 – X̃0 is isomorphic to the
total space of the vector bundle

OP1(−(2n−N + 1))⊕ (OP1(−1))
N−n−1

and in particular smooth of dimension d = N−n+1. Passing from l = 0 to a regular value l = u
therefore results in a flat deformation of X̃0 which is topologically trivial due to Ehresmann’s
theorem. Since the set Xu = M ∩ {l = u} does not meet the locus M1

2,n = {0} where Ψ is not

defined, the projection π : X̃u → Xu is an isomorphism and we obtain homotopy equivalences

(15) S2 ∼= P1 ∼=ht X̃0
∼=ht X̃u

∼=ht Xu
∼=ht L

2,N
2,n for n < N < 2n.

In the particular case where N = n – i.e. when X0 is a curve and the components of l comprise
all of the above listed linear forms – we find the following system of equations for X̃0 in the chart
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{s1 6= 0}:

y2,j =
s2
s1
y1,j , j = 1, . . . , n,

y1,j =

(
−s2
s1

)
y1,j+1, j = 1, . . . , n− 1,

y1,n + y2,1 = 0.

We may eliminate the variables y2,j for all j and express all y1,j in terms of y1,n for j < n.
Substituting this into the last equation yields

y1,n

(
1−

(
−s2
s1

)n)
= 0.

Thus,

X̃0 = L̃1 ∪ L̃2 ∪ · · · ∪ L̃n ∪ E
π−→ L1 ∪ L2 ∪ · · · ∪ Ln = X0 ⊂ CN(16)

consists of exactly n lines L̃1, . . . , L̃n meeting the exceptional set E = {0}×P1 of π transversally
in the points (s1 : s2) = (1 : −ζkn), k = 0, . . . , n with ζn a primitive n-th root of unity. Since

the projection π is an isomorphism outside E, the L̃i are taken to a set of lines Li ⊂ CN , which
meet pairwise at the origin.

The situation is depicted in Figure 1 for the case n = 3. Note that X0 is drawn as three cones
touching each other at their vertices. This is intrinsically homeomorphic to three complex lines
meeting at the origin, but drawn as embedded in real 3-space. In fact, all the pictures really
capture the described objects up to homeomorphism.

Figure 1. Deformation of a space curve and its Tjurina transform for n = 3

It is not clear a priori how the topology of Xu changes compared to X0 when passing to a
regular value u of l. For X̃0, however, the induced deformation must be a smoothing of the n
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distinct singularities of X̃ at the points (1 : ζkn), because again π : X̃u → Xu is an isomorphism

and Xu is smooth. Locally and up to homotopy, the smoothing replaces a neighborhood Dk∪ L̃k
of the line L̃k in X0 by a punctured disc D∗k at every such point. Thus X̃u has the homotopy
type of a punctured 2-sphere with n points missing:

(17) X̃u
∼=ht L

2,n
2,n
∼=ht S

2 \ {n points} ∼=ht

n−1∨
i=1

S1.

For the last admissible value N = n − 1 of N observe that the space L2,n−1
2,n is given by the

intersection of

X0 = L1 ∪ L2 ∪ · · · ∪ Ln
in (16) from the previous considerations with a further codimension one hyperplane in general
position off the origin. Clearly, this intersection consists of precisely n points and therefore

(18) L2,n−1
2,n = {n points}.

4.2. Arbitrary EIDS of type (2, n, 2). Suppose that

A : (CN , 0)→ (Mat(2, n;C), 0)

defines an arbitrary EIDS (X0, 0) = (A−1(M2
2,n), 0) ⊂ (CN , 0) of type (2, n, 2). We will describe

the homotopy type of its determinantal Milnor fiber in all cases (19), (20), (21), and (22).

Whenever N = n − 1, i.e. if dim(X0, 0) = 0 and (X0, 0) is a fat point, the determinantal
Milnor fiber will consist of a finite number of distinct, regular points

(19) Xu = {k points} if N = n− 1.

Since (X0, 0) is Cohen-Macaulay, we may use the principle of conservation of number and com-
pute this number k directly from the local algebra:

k = dimCOX0,0.

Now let (X0, 0) = (A−1(M2
2,n), 0) be a curve, i.e. d = 1⇔ N = n. Theorem 1.1 is applicable

and we have s0 = t = 2. Hence, there is only one number r = r(2) which is relevant in the
bouquet decomposition (1). The homotopy type of the determinantal Milnor fiber Xu is

(20) Xu
∼=ht

(
n−1∨
i=1

S1

)
∨

(
r∨
i=1

S1

)
if N = n.

Suppose d = dim(X0, 0) > 1 and (X0, 0) is smoothable. This allows a range n < N < 2n for
N and according to the computations in the previous section we find

(21) Xu
∼=ht S

2 ∨
r∨
i=1

SN−n+1 if n < N < 2n.

Note that whenever d ≥ 3, there is still a 2-sphere in the decomposition! This is a striking
difference to any behavior which can be observed for ICIS.

Finally, for values N ≥ 2n, a determinantal singularity (X0, 0) of type (2, n, 2) does not admit

a determinantal smoothing. Nevertheless, the determinantal Milnor fiber X̃u is defined up to
homeomorphism. In this case we find s0 = 1 ≤ s ≤ t = 2 and we have different contributions

in the bouquet decomposition. The complex link L2,N
2,n is homotopically trivial. But the thimble
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which is being attached to L2,N
2,n at a Morse critical point for s = 1 has a nontrivial normal Morse

datum (
C(L2,2n−1

2,n ), L2,2n−1
2,n

)
.

Thus, according to (15) we find

(22) Xu
∼=ht {pt} ∨

r(1)∨
i=1

S3

 ∨
r(2)∨
i=1

SN−n+1

 for N ≥ 2n.

Remark 4.1. The decomposition (1) in Theorem 1.1 reduces the question about the homotopy
type of a determinantal Milnor fiber to the question about the topology of the spaces Lt,km,n ap-

pearing in the formula. In those cases, where all these Lt,km,n themselves are homotopy equivalent
to a bouquet of spheres, the same holds for the determinantal Milnor fiber.

Moreover, the generalized Milnor numbers r(s) measuring the contributions from critical
points on the different strata are invariants of the singularity. Using computer algebra systems
like Singular, one can compute these numbers for any given singularity from the Cerf-diagrams
∆ in the carrousel [13, Section 1.4] at each induction step in the proof of Theorem 1.1. However,
these computations involve random choices of linear equations and it would be appealing to have
a concise formula relating the numbers r(s) to analytic invariants of the singularity itself.
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