ERRATUM FOR "THE SHEAF α_X^{\bullet} "

DANIEL BARLET

1. Erratum for "the sheaf α_X^{\bullet} "

The aim of this erratum is to correct several mistakes in [3]. The main mistake is in Theorem 4.1.1 of [3] which is wrong in the very general setting in which it is stated.

So we give here a much more modest version of the "pull-back theorem" for these sheaves which has a rather simple proof.

Recall that on a reduced complex space X the sheaf α_X^{\bullet} is the integral closure in the sheaf ω_X^{\bullet} of the sheaf $\Omega_X^{\bullet}/torsion$, where Ω_X^{\bullet} is the sheaf of Kähler differential forms and where the sheaf ω_X^{\bullet} is the sheaf of $(\bullet, 0) - \bar{\partial}$ -closed currents on X modulo its torsion sub-sheaf (see [1]).

Theorem 1.0.1. Let $f : X \to Y$ be a holomorphic map between reduced complex spaces and assume that $f^{-1}(S(Y))$ has empty interior in X, where S(Y) is the singular set of Y. Then there exists a natural "pull-back map"

$$\hat{f}^*: f^*(\alpha_Y^{\bullet}) \to \alpha_X^{\bullet}$$

which extends the usual pull-back of the graduate sheaf of holomorphic differential forms

 $f^*: f^*(\Omega^{\bullet}_Y/torsion) \to \Omega^{\bullet}_X/torsion.$

For any holomorphic maps $f: X \to Y$ and $g: Y \to Z$ between reduced complex spaces such that $f^{-1}(S(Y) \cup g^{-1}(S(Z)))$ has empty interior in X and $g^{-1}(S(Z))$ has empty interior in Y we have

(1)
$$\hat{f}^*(\hat{g}^*(\sigma)) = \widehat{f \circ g}^*(\sigma) \quad \forall \sigma \in \alpha_Z^{\bullet}.$$

PROOF. The problem is local. Let σ be a section of the sheaf α_Y^{\bullet} on an open set V in Y. Let V' be the set of regular points in V and let U'' the set of regular points in the open set $U' := f^{-1}(V')$. This is a Zariski dense open set in $U := f^{-1}(V)$ and, as σ is a holomorphic form on V', $f^*(\sigma)$ is a well defined holomorphic form on U'' which is Zariski open and dense in U. Take a point x in U; by definition (see Proposition 2.2.4 in [3]) there exists an open neighborhood W of y := f(x) in V and a monic polynomial

$$P(z) = z^k + \sum_{h=1}^{\kappa} S_h . z^{k-h}$$

such that S_h is a section on W of the symmetric algebra of degree h, $S^h(\Omega^{\bullet}_Y/torsion)$, of the sheaf $\Omega^{\bullet}_Y/torsion$, which satisfies $P(\sigma) = 0$ in $\Gamma(W, S^k(\Omega^{\bullet}_Y/torsion))$. Then the pull-back $f^*(P)$ of P by f is well defined on $f^{-1}(W)$ and is a monic polynomial whose coefficients are sections on $f^{-1}(W)$ of the symmetric algebra of $\Omega^{\bullet}_X/torsion$. On the open set $U'' \cap f^{-1}(W)$ the holomorphic

²⁰¹⁰ Mathematics Subject Classification. 32S05, 32S10, 32S20.

Key words and phrases. singular complex spaces, singularity invariants, meromorphic differential forms.

I thank the referee for several careful readings and for many relevant remarks.

DANIEL BARLET

form $f^*(\sigma)$ is a root of $f^*(P)$ and so the meromorphic¹ form $f^*(\sigma)$ on $U \cap f^{-1}(W)$ is integrally dependent on the sheaf $\Omega^{\bullet}_X/torsion$. So it defines a unique section on U of the sheaf α^{\bullet}_X . As the equality (1) holds generically on X the conclusion follows from the fact that the sheaf α^{\bullet}_X has no torsion.

The second mistake (which is a consequence of the previous one) is that, in Definition 5.1.5 of [3], it is necessary to ask that the p-dimensional irreducible analytic subset Y is not contained in the singular set of X in order to define the integral on Y of a form of the type $\rho.\alpha \wedge \overline{\beta}$, where α, β are sections of the sheaf α_X^p in X.

To be clear we give here the correct statements for Definition 5.1.5, Lemma 5.1.6 and for Theorem 5.1.7. The statement of such a result makes sense only assuming that the pull-back for the sheaf α^{\bullet} is defined. This is consequence of the hypothesis that Y is not contained in S(X) which allows one to apply Theorem 1.0.1 above.

Definition 1.0.2. Let X be a reduced complex space and let $Y \subset X$ be a closed irreducible p-dimensional analytic subset in X; assume that Y is not contained in the singular set S(X) of X. We shall note $j: Y \to X$ the inclusion map. Let ρ be a continuous function with compact support in X and let α, β be sections on X of the sheaf α_X^p . We define the number $\int_Y \rho.\alpha \wedge \overline{\beta}$ as the integral

$$\int_{Y} j^{*}(\rho) \cdot \hat{j}^{*}(\alpha) \wedge \overline{\hat{j}^{*}(\beta)}$$

which is well-defined by Theorem 1.0.1 above.

This definition extends by additivity to any p-cycle Y in X such that its support has no irreducible component contained in S(X).

REMARK. The definition above makes sense, more generally, still assuming that Y is not contained in S(X), when α and β are sections of the sheaf L_X^p of meromorphic forms which become holomorphic on any desingularisation of X because we see that the improper integral on $Y \setminus S(X)$ converges by looking at the strict transform of Y by the desingularisation map.

Lemma 1.0.3. Let $f: X \to Y$ be a holomorphic map between reduced complex spaces such that $f^{-1}(S(Y))$ has empty interior in X. Let Z be a closed p-dimensional irreducible analytic subset in X such that Z is not contained in the singular set S(X) of X, the restriction of f to Z is proper and f(Z) is not contained in the singular set of Y. Let α, β be sections on Y of the sheaf α_Y^p and let ρ be a continuous function with compact support in Y. Then we have the equality

$$\int_{Z} f^{*}(\rho) \cdot \hat{f}^{*}(\alpha) \wedge \overline{\hat{f}^{*}(\beta)} = \int_{f_{*}(Z)} \rho \cdot \hat{j}^{*}(\alpha) \wedge \overline{\hat{j}^{*}(\beta)}$$

where $f_*(Z)$ is the direct image cycle of Z by f and $j : |f_*(Z)| \to Y$ the inclusion in Y of the support of the cycle $f_*(Z)$.

Moreover if the set f(Z) is contained in S(Y) the singular set of Y and has dimension at most p-1 (so that $f_*(Z)$ is the empty p-cycle) we have

$$\int_{Z} f^{*}(\rho) \cdot \hat{f}^{*}(\alpha) \wedge \overline{\hat{f}^{*}(\beta)} = 0.$$

Of course, when $f(Z) \notin S(Y)$ and satisfies $f_*(Z) = 0$ as a p-cycle in Y, the first part of the lemma gives also the vanishing of $\int_Z f^*(\rho) \cdot \hat{f}^*(\alpha) \wedge \overline{\hat{f}^*(\beta)} = 0$.

¹Remember that σ is a meromorphic form on V with poles in $S(Y) \cap V$.

PROOF. The first assertion is an easy consequence of the same result when α, β are holomorphic forms (see [2] Ch.IV Prop. 2.3.1, or Prop. 4.2.17 in the English translation), by considering a modification of X where it is the case, using for instance, a desingularisation of X (see [5]).

When $f(Z) \subset S(Y)$ and $f_*(Z) = 0$ the restriction of f to Z has generic rank at most p - 1, so the pull-back of any holomorphic p-form on Y to Z is torsion. Then the monic polynomial giving an integral dependence relation of α (or of β) reduces to $z^k = 0$ on f(Z) and so α (and β) vanishes on Z.

We give now a correct version of Theorem 5.1.7 in [3].

Theorem 1.0.4. Let X be a reduced complex space and $(Y_t)_{t\in T}$ be a proper analytic family of compact p-cycles in X parametrized by a reduced complex space T (see [2] Section IV.3). Assume that for t in a dense open subset T' in T no component of the cycle Y_t is contained in S(X), the singular set of X. Let ρ be a continuous function with support in the compact set K in X and let α, β be two sections of the sheaf α_X^p . Define the function

$$\varphi: T' \to \mathbb{C} \quad \text{by} \quad \varphi(t) := \int_{Y_t} \rho.\hat{j}_t^{*}(\alpha) \wedge \overline{\hat{j}_t^{*}(\beta)}$$

where $j_t : |Y_t| \to X$ is the inclusion in X of the support of the cycle Y_t .

Then φ is continuous on T' and locally bounded near each point in T.

For any continuous hermitian metric h on X, there exists a constant C > 0 (depending on K, α, β, h but not of the choice of ρ with support in K) such that for each $t \in T'$ we have:

(2)
$$|\varphi(t)| \le C. \int_{Y_t} |\rho| h^{\wedge p} \le C. ||\rho||_{\infty}. \int_{Y_t \cap K} h^{\wedge p}.$$

PROOF. Let $\tau : \tilde{X} \to X$ be a desingularisation of X; so $\hat{\tau}^*(\alpha)$ and $\hat{\tau}^*(\beta)$ are holomorphic p-forms on \tilde{X} . Using Corollary IV 9.1.3 in [2] we may lift the analytic family $(Y_t)_{t\in T}$ to an analytic family $(\tilde{Y})_{\tilde{t}\in \tilde{T}}$ where $\theta: \tilde{T} \to T$ is a (proper) modification such that for each $\tilde{t} \in \theta^{-1}(T')$ we have the equality of cycles in X

(S)
$$\tau_*(Y_{\tilde{t}}) = Y_{\theta(\tilde{t})}.$$

Then Proposition IV 2.3.1 in [2] gives the continuity of the function $\tilde{\varphi}: \tilde{T} \to \mathbb{C}$ defined by

$$\tilde{\varphi}(\tilde{t}) = \int_{\tilde{Y}_{\tilde{t}}} \tau^*(\rho) . \hat{\tau}^*(\alpha) \wedge \overline{\hat{\tau}^*(\beta)}$$

The point is now to show that for $\tilde{t} \in \theta^{-1}(T')$ we have $\tilde{\varphi}(\tilde{t}) = \varphi(\theta(\tilde{t}))$. Thanks to Corollary IV 2.5.5 in [2] this is clear using the formula (S) if we can prove that for $\theta(\tilde{t}) \in T'$ the contribution to the integral $\tilde{\varphi}(\tilde{t})$ of an irreducible component Z of $\tilde{Y}_{\tilde{t}}$ satisfying $\tau_*(Z) = 0$ as a p-cycle in X vanishes, because this implies the equality $\varphi(\theta(\tilde{t})) = \tilde{\varphi}(\tilde{t})$. But this is precisely the content of the second part of Lemma 1.0.3. This gives the continuity of φ on T'.

As $\tilde{\varphi}$ is continuous on \tilde{T} , the function φ is locally bounded near each point in T.

The estimate (2) is a direct consequence of Corollary 5.1.2 in [3].

Remarks.

(1) Assuming only that α and β are sections of the sheaf L_X^p , it is not clear that φ is continuous on T' because in order to lift the family of cycles $(Y_t)_{t\in T}$ in a continuous family of cycles on a desingularisation of X it may be necessary to add exceptional components to the strict transform of Y_t for some values of $t \in T'$ and the argument used above to show that these components do not contribute to the integral upstairs

DANIEL BARLET

does not works for sections in L_X^p . Moreover, the estimate (2) is not true in general for sections in L_X^p (see Remark 2 following Corollary 5.1.2 in [3]).

- (2) For any analytic family of compact cycles $(Y_t)_{t\in T}$ in X, the subset of points $t \in T$ where the cycle Y_t has at least one irreducible component contained in S(X) is a closed analytic subset in T by a general result on analytic families of compact cycles (see the exercise following Theorem IV 3.3.1 in [2]). So, assuming that T is irreducible, if there exists a point t such that Y_t has no irreducible component contained in S(X), there exists a Zariski open and dense subset T' of T which satisfies the hypothesis in the previous theorem.
- (3) The previous theorem is in fact a local result on X and T, but we consider here only the case of a proper analytic family of compact cycles in X to have a simple argument to lift the analytic family of cycles in X to an analytic family of cycles in \tilde{X} such that (S) is satisfied.

The last mistake is Lemma 6.2.2 which is wrong for $k \ge 4$. The correct computation of $\alpha_{S_k}^2$ is given in Paragraph 2.3 in [4].

References

- Barlet, Daniel, Le faisceau ω^{*}_X sur un espace complexe réduit, Séminaire F. Norguet III, Lecture Notes, vol. 670, Springer Verlag (1978), pp.187-204. DOI: 10.1007/bfb0064400
- Barlet, Daniel et Magnusson, Jon, Cycles analytiques complexes I : théorèmes de préparation des cycles, Cours Spécialisés 22, SMF, 2014. English translation : Grundlehren ... 356 Springer 2020.
- 3. Barlet, Daniel, The sheaf α_X^{\bullet} , J. Sing. 18 (2018) pp.50-83. DOI: 10.5427/jsing.2018.18e
- 4. Barlet, Daniel, New singularity invariants: the sheaf β_X^{\bullet} , J. Sing. 23 (2021) pp. 19-32. DOI: 10.5427/jsing.2021.23c
- 5. Hironaka, Heisuke Resolution of Singularities ... I and II , Annals of Math. (2) 79, (1964) pp.109-203 and pp.205-326.

Daniel Barlet, Institut Elie Cartan, Géomètrie, Université de Lorraine, CNRS UMR 7502 and Institut Universitaire de France