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Hodge-theoretic splitting mechanisms for projective maps

Mark Andrea A. de Cataldo

Abstract

According to the decomposition and relative hard Lefschetz theorems, given a pro-
jective map of complex quasi projective algebraic varieties and a relatively ample line
bundle, the rational intersection cohomology groups of the domain of the map split into
various direct summands. While the summands are canonical, the splitting is certainly
not, as the choice of the line bundle yields at least three different splittings by means
of three mechanisms in a triangulated category introduced by Deligne. It is known that
these three choices yield splittings of mixed Hodge structures. In this paper, we use the
relative hard Lefschetz theorem and elementary linear algebra to construct five distinct
splittings, two of which seem to be new, and to prove that they are splittings of mixed
Hodge structures.
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1 Introduction and main theorem

Let f : X → Y be a projective map of complex quasi projective varieties, let

H := ⊕d≥0IHd(X,Q)

be the total intersection cohomology rational vector space of X and let η ∈ H2(X,Q) be
the first Chern class of an f -ample line bundle on X. We refer to the survey [6] for the
background concerning perverse sheaves and the decomposition and relative hard Lefscehtz
theorems etc. that we use.
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The map f endows H with the perverse Leray filtration P . The graded objects

Hp := PpH/Pp−1H

are non-trivial only in a certain interval [−r, r], with r = r(f) ∈ Z≥0. We thus obtain the
two objects H := (H,P ) and H∗ = ⊕p(Hp, T [−p]) (T [−p] = the trivial filtration translated
to position p) in VQF , the filtered category of finite dimensional rational vector spaces.
Obviously, every filtration on a vector space by vector subspaces splits and we have a good
(= inducing the identity on the graded pieces) isomorphisms ϕ : H∗ ∼= H in VQF .

The vector space H underlies a natural mixed Hodge structure (MHS). The subspaces
PpH are mixed Hodge substructures (MHSS) so that the graded objects Hp are endowed
with a natural MHS. Let MHS be the Abelian category of rational mixed Hodge structures.
It is natural to ask whether there are good-isomorphisms ϕ : H∗ ∼= H in MHSF , the filtered
category of mixed Hodge structures. In English, do we have splittings ϕ : ⊕pHp

∼= H such
that the component Hp → H is a map of MHS so that, in particular, the image is a MHSS?

In this paper, we list five distinct such mixed-Hodge theoretic good splittings. They are
built by using the f -ample η and they depend on it (see Theorem 1.1.1):

ωI(η), ωII(η), φI(η), φII(η), φIII(η) : H∗
∼= // H in MHSF (1)

The key to our approach is the relative hard Lefschetz theorem (RHL). The cup product
with η induces an arrow η : H→ H[2](1) in MHSF . This means that η : H → H(1) (Tate
shift (1)) is such that η : PpH → Pp+2H(1) (translation of filtration [2] and Tate shift (1)).
RHL yields isomorphisms in MHS:

ηk : H−k
∼= // Hk(k), ∀ k ≥ 0. (2)

Our main technical result, which in fact is proved in an elementary way, is as follows: let A
be an Abelian category with shift functors (n) and let (V, e) be a pair where e : V→ V[2](1)
is an arrow in the filtered category A F inducing isomorphisms ek : V−k ∼= Vk(k), for every
k ≥ 0; then there is a natural isomorphism ωI(e) : V∗ ∼= V in A F .

With this result in hand, we easily verify that we can construct the remaining four split-
tings within A F . We then set A = MHS and deduce (1). Let us stress again, that we use
RHL in an essential way and that the point made in this paper is that once you have this
deep result, the splittings (1) stem from elementary linear algebra considerations.

The construction of the three splittings of type φ is borrowed from [8]. However, it seems
that [8] only yields φ-type splittings in VQF , i.e., not necessarily in its refinement MHSF .
By coupling [8] with the theory of mixed Hodge modules, one can indeed prove that the
splittings of type φ take place in MHSF . By way of contrast, as pointed out above, the
constructions of this paper are based on the elementary construction of ωI(e) in A F .

The fact that φI(η) is mixed-Hodge theoretic had been proved in [2, 4] (projective and
quasi projective case, respectively) by using the properties of the cup product, of Poincaré
duality and geometric descriptions of the perverse Leray filtration P on H associated with
the map f . The proof that φI(η) is an isomorphism in MHSF that we give here is different
since it does not use the aforementioned special features of the geometric situation.

The simple Examples 2.6.4 and 2.6.5 show that the five splittings (1) are, in general,
pairwise distinct.
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There is a natural condition, the existence of an e-good splitting, under which the five
splittings coincide; see Definition 2.4.5 and Proposition 2.6.3.

In the paper [7], we proved the following result (auxiliary to the main result of [7]): the
Hitchin fibration f : X → Y for the groups GL2(C), SL2(C) and PGL2(C) associated with
any compact Riemann surface of genus g ≥ 2 and with Higgs bundles of odd degree, presents
a natural f -ample line bundle α and, in the terminology of the present paper, the splitting
φI(α) is α-good ([7] shows that (55) holds for φI(α)). In particular, in this case, the five
splittings coincide.
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partial financial support from the N.S.F., the Frederick W. and Lois B. Gehring Visiting
Professorship fund and the David and Lucille Packard foundation.

1.1 The main theorem

A splitting H∗ ∼= H in VQF acquires significance only if we can describe H∗. This is the
content of the decomposition theorem of Beilinson, Bernstein, Deligne and Gabber (see the
survey [6]) which implies the highly non-trivial fact that, up to a simple renumbering of
cohomological degrees, we have that Hp = H(Y, pHp(Rf∗ICX)), where pHp(Rf∗ICX) is the
p-th perverse cohomology sheaf of the push-forward Rf∗ICX of the intersection cohomology
complex ICX of X (= QX [dimCX], if X is nonsingular).

Let us briefly discuss how the cohomology groups of these perverse sheaves split accord-
ing to the decomposition by supports and to the primitive Lefschetz decomposition coming
from RHL. Let us start with the one by supports, i.e., the Z’s appearing in what follows:
each perverse sheaf Hp := pHp(Rf∗ICX) is a semi-simple perverse sheaf and decomposes
canonically by taking supports: Hp = ⊕ZHpZ , where the sum is finite and the summands are
the intersection cohomology complexes with suitable semisimple local coefficients of suitable
closed integral subvarieties Z of Y .

The RHL induces the primitive Lefschetz decompositions (PLD) of Hp: recall that p ∈
[−r, r]; let i ≥ 0; set Pη−i,Z = Ker {ηi+1 : H−iZ → H

i+2
Z } and, for 0 ≤ j ≤ i, set Pηij,Z :=

Im {ηj : Pη−i,Z → H−i+2j}; then the PLD reads as Hp = ⊕−i+2j=p ⊕Z Pηij,Z (sum subject

to 0 ≤ j ≤ i). Set P η−i(−j)Z := H(Y,Pηij,Z); it is a MHSS of H−i+2j . Note that η induces

isomorphisms ηj : (P η−i(0)Z)(−j) ∼= P η−i(−j)Z of MHS. By combining the decomposition by
supports with the primitive one, we obtain the splitting ⊕i,j,ZP η−i(−j)Z ∼= H∗ which, in view
of [1, 2, 4, 5], is a splitting of MHS. We set Pηp := (⊕−i+2j=p,ZP

η
−i(−j)Z , T [−p]) (sum subject

to 0 ≤ j ≤ i; trivial filtration translated to position p) which is an object in MHSF .
By taking into account these refined splittings, we have the corresponding refinements

of (1). We note that everything holds just as well, with the same proofs, for intersection
cohomology with compact supports.

The main result of this paper is the following
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Theorem 1.1.1 Let f : X → Y , η and H be as above. There are five distinguished good
splittings (1) in MHSF :

⊕
0≤j≤i, Z Pη−i(−j)Z

∼= // H∗. (3)

Similarly, for intersection cohomology with compact supports.

Proof. We first work in the abstract setting outlined in §2.1 of the filtered category A F
of an Abelian category A endowed with a shift functor. In this context, we work with an
object V and an arrow e : V→ V[2](1) subject to the HL condition (32).

The splitting ωII(e) is obtained by the “dual” procedure as follows. Let A o be the category
opposite to A ; it is Abelian and can be endowed with a shift functor coming from the given
one in A . We then have that eo : Vo → Vo[2]o(1)o in A oF satisifes the corresponding HL
condition (32). We thus obtain ωI(e

o) : Vo∗ ∼= Vo. We set ωII := ((ωI(e
o))o)−1.

The splitting φI(e) is constructed in §2.4. The proof is parallel to [8], §2 with the following
two changes: (i) instead of using the existence of a splitting arising from [8], §1, which is
proved using some basic features of t-categories, features that A F does not present, we use
the existence of either of the splittings ω(e) established above; (ii) we adapt the proof of [8],
Lemma 2.1, which again takes place in the context of a t-category, to the context of A F .

The splitting φII(e) is obtained in §2.5 by following the procedure “dual” to the one
followed to produce φI(e).

Finally, φIII(e), which necessitates that we work with a Q-category (= the Hom-sets are
rational vector spaces), is constructed in §2.6 by adapting the corresponding construction in
[8], §3. This construction is self-dual.

We now specialize to A := MHS, with shift functor given by the Tate shift and to
(V, e) := (H, η) and conclude, due to the fact that the HL condition (32) is met by the RHL
(2).

2 The five splittings

2.1 Filtered category associated with an Abelian category

Let A be an Abelian category whose elements we denote V,W , etc. For ease of exposition
only, in this paper we make heavy use of the language of sets and elements.

A filtration F on V is a finite increasing filtration, i.e., an increasing sequence of subobjects

. . . ⊆ FpV ⊆ Fp+1V ⊆ . . . ⊆

of V such that FpV = 0 for p� 0 and FpV = V for p� 0. We set GrFpV := FpV/Fi−1V . We
denote by T the trivial filtration on V : T−1V = 0 ⊆ T0V = V . Given n ∈ Z, we denote by
F [n] the n-th translate of F : F [n]pV := Fn+pV , so GrF [n]

p V = GrFn+pV ; for example T [−p]
is the trivial filtration in position p.

Given a pair V := (V, F ) and a subquotient U of V , the filtration F on V induces a
filtration on U , which we still denote by F ; for example (GrFp V, F ) = (GrFp V, T [−p]). In
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particular, for every p ≤ q ∈ Z, we have the following pairs associated with V:

V≤p := (FpV, F ), V≥p := (V/Fp−1V, F ),

Vp := (GrFp V, F ), V[p,q] := (FqV/Fp−1V, F ).

(4)

We say that V has type [a, b], with a ≤ b, if GrFp V = 0 for every p /∈ [a, b].
Given (V, F ) and (W,F ), an arrow l : V → W in A is said to be a filtered arrow if it

respects the given filtrations, i.e., l maps FpV to FpW , for every p.
The filtered category A F associated with A is the category with objects the pairs

V = (V, F ) and arrows the filtered arrows. In particular, an arrow l : V → W induces
arrows on the objects listed in (4), e.g., li : Vi →Wi. An arrow l in A F is an isomorphism
if and only if li is an isomorphism for every i ∈ Z.

We have functors [n] : A F → A F , (V, F ) = V 7→ V[n] := (V, F [n]), etc.
We have the following graded-type objects, in A , A F and A F , respectively:

V∗ := ⊕pVp, V∗ :=
⊕
p

Vp, Ṽ∗ :=
⊕
p

(Vp, T [−p]) . (5)

We say that V splits in A F it there is an isomorphism in A F :

ϕ : V∗
∼= // V. (6)

We say that a splitting ϕ is good if, for every p, the induced map ϕp : Vp ∼= Vp is the identity.

Remark 2.1.1 If V splits, then there is a good splitting: let ϕp : Vp ∼= Vp be the induced
isomorphisms and replace ϕ with ϕ ◦ (

∑
p ϕ
−1
p ).

The category A F is pre-Abelian (additive with kernels and cokernels), hence pseudo-
Abelian (every idempotent has a kernel). In particular, given an idempotent π : V → V,
π2 = π, we have canonical splittings in A F :

V = Ker (id− π)⊕Kerπ = Imπ ⊕Kerπ. (7)

The arrow ι : (V, T ) → (V, T )[1) induced by the identity is such that the induced arrow
Coim ι→ Im ι is not an isomorphism so that A F is not Abelian.

Example 2.1.2 The example we have in mind is the one where A is the Abelian category
MHS of integral (or rational) mixed Hodge structures (MHS) where the arrows are the maps
that respect the weight and Hodge filtrations. The Tate shift functor, denoted by (1) is such
that if Z is the pure Hodge structure with weight zero and type (0, 0), then Z(1) is the pure
Hodge structure with weight −2 and type (−1,−1). Note that, for example, the cup product
with the first Chern class L of a line bundle on a complex algebraic variety X induces, for
every k ≥ 0, a map L : IHk(X,Z) → IHk+2(X,Z)(1). An element M = (M,F ) of MHSF
is a MHS M (with its weight and Hodge filtrations) equipped with an additional filtration F
for which FpM is a mixed Hodge substructure (MHSS) of M for every p.
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Let (1) : A → A , V 7→ V (1), l 7→ l(1), be an additive and exact autoequivalence and, for
m ∈ Z, denote by (m) its m-th iterate, called the m-shift functor.

By exactness, the shift functors lift to functors (also called shift functors):

(m) : A F −→ A F , V = (V, F ) 7−→ (V (m), F ) =: V(m), l 7−→ l(m), (8)

and we have
(V(m))p = Vp(m), GrFp (l(m)) = (GrFp l)(m). (9)

The shift functors commute with the tanslation functors, so that we can write V[n](m)
unambiguously. We have (V[n](m))p = Vn+p(m), etc.

For every p ∈ Z, an arrow l : V→W[n](m) induces arrows in A :

lp : Vp // Wn+p(m), (10)

where it is understood that:

Wn+p(m) = GrFn+p(m) = GrF [n]
p W (m). (11)

If V has type [a, b], then we have canonical arrows:

Va
ia // V

pb // Vb, (12)

first inclusion and last quotient, with compositum δabId.
An arrow l[n](m) obtained from an arrow l : V→W by shift/translation is simply denoted

by l : V[n](m)→W[n](m) (e.g., the arrow l−1a in (21) is really l−1a (−m)).
Let V and W be in A F , let m,n ∈ Z, let l : V∗ → W∗[n](m) be an arrow in A F

and let lpq : Vp → Wq[n](m) be the (p, q)-th component of l. We define the degree d ∈ Z
homogeneous part l{d} of l by setting:

l{d} :=
∑
q−p=d

lpq,

(
l =

∑
d

l{d}

)
. (13)

Since Vp = (Vp, T [−p]) and Wq[n](m) = (Wq(m), T [−q + n]), we must have

l{d} = 0, ∀d ≥ n+ 1. (14)

Let A o denote the Abelian category opposite to A .

Remark 2.1.3 Let A = VQ be the category of finite dimensional rational vector spaces
and linear maps. The natural contravariant functor VQ → V o

Q can be identified with taking
dual vector spaces and transposition of linear maps. Similarly, if we take A = MHS. This
observation may make what follows more down-to-earth and the computations of explicit
examples easier.

We have the exact anti-equivalence (−)o : A → A o, (V
f→ W ) 7−→ (V o

fo← W o) whose
second iterate is the identity functor. We endow A o with the additive and exact shift functors
(m)o: V o 7→ V o(mo) := (V (−m))o.
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A filtered object V = (V, F ) in A F gives rise to a filtered object Vo = (V o, F o) in A oF
by setting:

F oi V
o = (V o)≤i := (V≥−i)

o. (15)

Contemplation of the following diagram may be useful:

V≤i−1
mono //

##

V≤i

��

(V≤i−1)o (V≤i)
oepioo

V

��

(V )o

OOff

V≥i+1 V≥i
epioo (V≥i+1)o

OO

mono // (V≥i)o.

(16)

Clearly, (V o)i = (V−i)
o and we set F o[n] := (F [−n])o.

We obtain an anti-equivalence (−)o : A F → A oF whose second iterate is the identity
functor. The anti-equivalence (−)o is anti-compatible with translations, shifts and taking
graded pieces, etc., for example:

Vo[n]o(m)o = (V[−n](−m))o. (17)

An arrow l : V → W[n](m) in A F yields the arrow lo : Wo → Vo[n]o(m)o in A oF . This
arrow is really lo[n]o(m)o, but we omit those decorations for arrows.

We record the following fact for use in the next section.

Lemma 2.1.4 Let B be an additive category and let ρ : B → B′ be an arrow in B. Assume
that the kernel ιρ : Ker ρ → B of ρ exists and that there is a splitting r : B′ → B of ρ, i.e.,
ρ ◦ r = idB′ . Then the natural arrow

B′ ⊕Ker ρ
r+ιρ // B (18)

is an isomorphism in B.

Proof. Note that ρ ◦ (1− r ρ) = 0, so that there is an unique arrow s : B → Ker ρ such that
1− r ◦ ρ = ιρ ◦ s. It is easy to verify that the arrow:

B
(ρ,s) // B′ ⊕Ker ρ (19)

yields the desired inverse to r + ιρ.

Remark 2.1.5 Assume, in addition, that B is pseudo-Abelian, e.g., B = A F , and consider
the idempotent arrow π := r ◦ ρ. Then we have a canonical isomorphism B = Imπ ⊕Kerπ.
This isomorphism can be canonically identified with the one in (19), for Kerπ = Ker ρ, and
r identifies B′ with Imπ.
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2.2 A splitting mechanism in A F

Let V = (V, F ) in A F be of type [a, b], let m ∈ Z and let:

l : V // V[b− a](m) (20)

be an arrow such that the resulting arrow (10) is an isomorphism in A :

la : Va
∼= // Vb(m). (21)

There is the commutative diagram in A F (see (12)):

Va ⊕ Vb
r

ia+lial
−1
a

//

1Va⊕Vb

((

V
ρ′

(l−1
a pbl,pb)

//

ρ

$$

Va ⊕ Vb

u

(
1Va −l−1a pbl

2ial
−1
a

0 1Vb

)

��
Va ⊕ Vb

(22)

so that:

ρ : V
(l−1
a pbl− l−1

a pbl
2ial

−1
a pb , pb) // Va ⊕ Vb. (23)

The kernel Ker ρ of ρ in A F is the kernel Ker ρ of the underlying map in A with the
filtration induced by (V, F ). The natural inclusion induces a map in A F :

ιρ : Ker ρ // V. (24)

Remark 2.2.1 Since the arrows u and la in (22) are isomorphisms, we have that:

Ker ρ = Ker ρ′ = Ker (pb ◦ l) ∩Ker pb, (25)

and similarly, if we take into account the induced filtrations.

Lemma 2.2.2 The following arrow is an isomorphism in A F :

w : Va ⊕Ker ρ⊕ Vb
ia+ιρ+lial

−1
a

∼=
// V. (26)

Proof. Apply Lemma 2.1.4.

Remark 2.2.3 The map w (26) is uniquely determined by, and depends on, l. However, the
component ia, being the inclusion of the first subspace of the filtration, is independent of l.
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The object Ker ρ is of type [a+ 1, b− 1], the inclusion ιρ induces natural isomorphisms:

ιρp : (Ker ρ)p
∼= // Vp , ∀ p ∈ [a+ 1, b− 1] (27)

and, by taking subquotients, a natural isomorphism:

ιρ[a+1,b−1] : Ker ρ
∼= // V[a+1,b−1]. (28)

By combining (26) with (28), we obtain an isomorphism:

w[a,b] : Va ⊕ V[a+1,b−1] ⊕ Vb
∼= // V, (29)

as well as its component:

w[a+1,b−1] : V[a+1,b−1] // V. (30)

Both isomorphisms induce the identity on the p-th graded pieces, for every p in (29), for
p ∈ [a+ 1, b− 1] in (30).

One may picture the content of Lemma 2.2.2 as an unwrapping of the outmost layer
Va ⊕ Vb of V via l. Note that in general, there is no natural non-trivial arrow from a
subquotient of an object to the object itself. The arrow (30) is made possible by the HL
condition.

2.3 The splittings ωI(e) and ωII(e)

Let V = (V, F ) in A F be of type [−r.r] for some r ≥ 0. Up to a translation, this condition
can always be met and leads to simplified notation in what follows.

Let
e : V // V[2](1) (31)

be an arrow in A F . In particular, for every k ≥ 0, we have the iterations ek and their
graded counterparts: (we drop the shift when denoting a shifted map and, in what follows,
we drop subscripts for the maps induced on graded objects):

ek : V // V[2k](k), ek = Vj // Vj+2k(k). (32)

Assumption 2.3.1 (Condition HL) We assume that (V, e) satisfies the hard Lefschetz-
type condition (HL), i.e., that the arrows:

ek : V−k
∼= // Vk(k), ∀k ≥ 0, (33)

are isomorphisms in A .

The following proposition ensures that if the HL condition is met by a given (V, e), then
V splits, i.e., we have an isomorphism V ∼= V (6). By keeping with the analogy of Remark
2.2.3, we may say that HL allows to completely unwrap V. Recall the notion of good splitting
(on inducing the identity on the graded pieces).
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Proposition 2.3.2 Let (V, e) satisfy the HL condition. There is a good splitting:

ωI(e) = ωI : V∗ =
⊕

p∈[−r.r] Vp
∼= // V. (34)

Proof. By applying Lemma 2.2.2 and to l := er, so that [a, b] = [−r, r] and m = r, we obtain

w : V−r ⊕Ker ρ⊕ Vr
∼= // V. (35)

The arrow l yields the arrow l̃ := ω−1I ◦ l ◦ ωI on the lhs of (35). Keeping in mind that (26)

means that the filtration F on V splits, we obtain the Ker ρ-component l′ of l̃:

l′ : Ker ρ // Ker ρ[2](1). (36)

In view of (27), we have that l′ satisfies the HL condition.
By using (28) and (29), we replace Ker ρ with V[−r+1,r−1] and we obtain the desired splitting
ωI(e) by descending induction on r.
By construction (i.e., l̃ = ω−1I ◦ l ◦ ωI, (27) and (33)), the isomorphism ωI(e) induces the
identity on the graded pieces and is thus good.

The splitting ωII(e) is obtained by the dual construction. This is explained in the proof
of Theorem 1.1.1.

Remark 2.3.3 In general, ωI(e) 6= ωII(e); see Examples 2.6.4 and 2.6.5. In particular,
neither of the two constructions ωI(e) and ωII(e) is self-dual.

The purpose of the next three sections is to show that if V splits in A F , then one can use
the HL property (33) to construct three additional natural splittings taking place in A F .
Note that these constructions are based solely on the existence of a splitting.

2.4 The first Deligne splitting φI(e)

Let (V, e) be as in (31) and assume that it satisfies the HL condition (33). In particular, in
view of (34), V splits in A F .

Let i ≥ 0 and define the primitive objects in A :

P−i := Ker
{
ei+1 : V−i −→ Vi+2(i+ 1)

}
. (37)

The subquotient P−i of V inherits the filtration induced by F on V , i.e., the trivial filtration
translated in position −i, and we denote the resulting object in A F by:

P−i = (P−i, F ) = (P−i, T [i]). (38)

We have the natural monomorphisms in A :

P−i(−j) // V−i(−j)
ej // V−i+2j (39)
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which, taken together, yield the canonical primitive Lefschetz decompositions (PLD) in A
and A F , respectively: ⊕

0≤j≤i P−i(−j)
ε
∼=

// V∗,

⊕
0≤j≤i (P−i(−j), T [i− 2j]) =

⊕
0≤j≤i P−i(−j)[−2j]

ε
∼=

// V∗.

(40)

We have the commutative diagram of epimorphisms and monomorphisms in A F :

P−i
mono //

mono

��

V−i

mono
{{

V
epi // . . .

epi // V≥−i−1
epi // V≥−i.

(41)

Note that (38) implies that if l : P−i → W is an arrow in A F , then it factors through
W≤−i, i.e., the underlying arrow l : P−i →W , factors through F−iW .

Lemma 2.4.1 Let (V, e) be as above. There is a unique arrow fi : P−i → V in A F with
the following properties:

1. it lifts the natural arrow P−i → V≥−i in (41);

2. for every s > i ≥ 0, the composition of the arrows below is zero:

P−i
es◦fi // V(s) // V≥s(s). (42)

Proof. The proof is essentially identical to the one of [8], Lemme 2.1 (see also [8], 2.3). We
include it, with the necessary changes, for the reader’s convenience. Recall that we use the
language of sets.

Let Φ : A F → B be an additive functor into an Abelian category B. We denote Φ(e)
simply by e. Let i ≥ 0 and x ∈ Φ(V≥−i) be such that 0 = ei+1(x) ∈ Φ(V≥i+2).

CLAIM 1: there is a unique lift y ∈ Φ(V≥−i−1) of x such that 0 = ei+1(y) ∈ Φ(V≥i+1).

Proof. For every a ∈ Z, we have the natural maps:

Va // V≥a+1
// V≥a+1. (43)

Since Φ is additive and, in view of Lemma 2.3.2, V splits in A F , we have the short exact
sequences in B stemming from (43):

0 −→ Φ(Va) −→ Φ(V≥a) −→ Φ(V≥a+1) −→ 0.

By naturality, we have the following commutative diagram of short exact sequences in B:

0 // Φ(V−i−1) //

ei+1∼=
��

Φ(V≥−i−1) //

ei+1

��

Φ(V≥−i) //

ei+1

��

0

0 // Φ(Vi+1(i+ 1)) // Φ(V≥i+1(i+ 1)) // Φ(V≥i(i+ 1)) // 0.

(44)

144



The claim follows from a simple diagram-chase starting at x ∈ Φ(V≥−i).

CLAIM 2: under the same hypotheses as the ones of CLAIM 1, there is a unique lift y ∈ Φ(V)
of x ∈ Φ(V≥i) such that ∀s > i, we have that 0 = es(y) ∈ Φ(V≥s).
Proof. The element y found in CLAIM 1 satisfies the hypotheses of CLAIM 1 for i+1. Since
the filtration is finite, we conclude by a repeated use of CLAIM 1.

Let us apply CLAIM 2 to the functor Φ(−) := HomA F (P−i,−) : A F → Ab (Abelian
groups): set x : P−i → V≥−i to be as in (41).
The statement of the lemma follows by applying CLAIM 2 to x: the hypotheses of CLAIM
2 are met in view of the defining property (37) of P−i, and the resulting element y is the
desired fi.

Let ϕ : V∗ ∼= V be any splitting. In view of the primitive Lefschetz decomposition (40),
we can talk about the components ϕij : P−i(−j)[−2j] → V. Of course, there are many
splittings having components ϕii = fi.

We define the first Deligne isomorphism φI(e) associated with (V, e) by taking the com-
positum of the following two isomorphism

φI(e) = φI : V∗
ε−1

(40)
//⊕

0≤j≤i P−i(−j)[−2j]

∑
ej◦fi
∼=

// V. (45)

By using the language of elements, if we denote by pij the typical element in P−i(−j)
and we form the typical element v∗ ∈ V∗:

v∗ =
∑
p

vp = ε

∑
p

∑
−i+2j=p

pij

 ∈ V∗, (46)

then
φI(e) : v∗ 7−→

∑
0≤j≤i

ej (fi(pij)) . (47)

In particular, we have that

φI(ε(e
lpij)) = elφI(ε(pij)), ∀ 0 ≤ l ≤ i− j. (48)

Remark 2.4.2 Let us omit the shifts, translations and filtrations. Let ϕ : V∗ ∼= V be a
splitting and ϕi : P−i → V be the resulting components. By (37), we have that

ei+t ◦ ϕi : P−i → V≤i+2t−1,

for every t > 0. Lemma 2.4.1 yields fi : P−i → V with

ei+t ◦ fi : P−i → V≤i+t−1,

for every t > 0, i.e., an improvement by t units with respect to an arbitrary splitting, even a
good one. The paper [7] exploits this special property of φI(e) in the context of a study of
the geometry of the Hitchin fibration.
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Remark 2.4.3 By constuction (see (45) and Remark 2.1.1), the isomorphisms φI(e) and
ωI(e) are good (6). In general, the two differ from each other; see Examples 2.6.4 and 2.6.5.
However, they agree on V−r ⊕Vr: in fact, both induce the identity on the graded pieces, so
that they must agree on V−r = P−r; by comparing the expression (45) for φI(e) restricted
to Vr with the corresponding one for ωI(e), i.e., (35) and (26), we see that they coincide. In
particular, if Vi = 0 for every |i| 6= r, then ωI(e) = φI(e).

Let ϕ : V∗ ∼= V be a splitting. The matrix ẽ(ϕ) of e with respect to ϕ is defined by
setting:

ẽ(ϕ) = ẽ :=
(
ϕ−1 ◦ e ◦ ϕ

)
: V∗ −→ V∗[2](1), ẽ =

∑
pq

ẽpq =
∑

ẽ{d}. (49)

By virtue of (14), we have that
ẽ{d} = 0, ∀d > 2. (50)

Let us assume that ϕ is good. Then

ẽ{2} =
∑
p

e, e : Vp
e−→ Vp+2(1). (51)

Note that while ẽ{2} is independent of ϕ, we have that ẽ(ϕ){d} depends on ϕ for d ≤ 1.
We have the refinement ê(ϕ) of the matrix ẽ(ϕ) that takes into account the primitive

Lefschetz decomposition (40):

ê(ϕ) = ê :=
(
ε−1 ◦ ẽ ◦ ε

)
:
⊕

0≤j≤i

P−i(−j)[−2j] −→
⊕

0≤j≤i

P−i(−j)[−2j][2](1). (52)

By taking components, we have arrows

ê(ϕ)klij : P−i(−j)[−2j] −→ P−k(−l)[−2l][2](1). (53)

Proposition 2.7 in [8] can be easily adapted to the present context and yield the following
characterization of φI(e). For a “visual”, see [8], p.119.

Lemma 2.4.4 The splitting φI : V∗ ∼= V is characterized among the good ones by the follow-
ing two conditions:

1. for 0 ≤ j < i, we have ê(φI)
kl
ij = 0 except for ê(φI)

i,j+1
ij = Id;

2. for j = i, we have the ê(φI)
kl
ii = 0 except, possibly, for l ≤ i.

Definition 2.4.5 We say that a splitting ϕ : V∗ ∼= V is e-good if it induces the identity on
the graded pieces and ẽ(ϕ) is homogeneous of degree two:

ẽ(ϕ) = ẽ(ϕ){2}. (54)
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Clearly, ϕ is e-good if and only we have that

ê(ϕ)klij = 0 except for ê(ϕ)i,j+1
ij = Id, ∀ 0 ≤ j ≤ i− 1. (55)

We also have that ϕ is e-good if and only the composita:

P−i
⊆ // V ei+1

// V[2i+ 2](i+ 1) (56)

are zero for every i ≥ 0. In this case we say that the i-th graded primitive objects P−i are
embedded into V via ϕ as bona-fide i-th primitive classes: i.e., killed by

ei+1 : P−i → V≤i+1(i+ 1),

and not just killed by the subsequent projection to Vi+1(i+ 1).

Remark 2.4.6 Lemma 2.4.4 implies that if ϕ is e-good, then ϕ = φI(e). In particular, if
there exists an e-good splitting, then it is unique. However, e-good splittings do not exist in
general: the reader can verify this in Examples 2.6.4 and 2.6.5; in the latter example, one can
even take P1 × P1 → P1. Proposition 2.6.3 shows that the existence of an e-good splitting is
rare.

2.5 The second Deligne splitting φII(e)

Let (V, e) be as in the beginning of §2.4. In particular, V admits a splitting in A F as in
Proposition 2.3.2: in fact, we have three so far ωI(e), ωII(e) and φI(e).

The first Deligne isomorphism φI(e
o) (45) associated with (Vo, eo) in A oF yields, by

application of (−)o : A oF → A F , the isomorphism in A F :

(φI(e
o))o : V

∼= // V∗. (57)

We define the second Deligne isomorphism associated with (V, e) to be

φII(e) = φII := ((φI(e
o))o)−1 : V∗

∼= // V. (58)

In this context, the analogue of Lemma 2.4.1 reads as follows. Let

f ′ij : V // P−i(−j)[−2j] (
ε
⊆ Vi) (59)

be the components of (57) associated with (40) (ε as in (40)).

Lemma 2.5.1 For every i ≥ 0, the arrow f ′ii is the unique arrow V→ Vi such that:

1. by taking the i-th graded pieces, f ′ii induces the natural projection Vi → P−i(−i)[−i];

2. for every s > i, the composition below is zero is (see [8], §3.1):

V≤−s
⊆ // V εs // V[2s](s)

f ′ii // P−i(−i)[−2i][2s](s). (60)
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By using Lemma 2.5.1 and the explicit formula (47) for φI(e), it is easy to deduce the
following explicit expression for the arrows f ′ii:

f ′ii(φI(v∗)) = pii (v∗ =
∑

0≤j′≤i′ pi′j′). (61)

In general, φI(e) 6= φII(e) and this discrepancy is due to the fact that f ′ij(φI(v∗)) 6= pij .
We now discuss how this discrepancy is measured exactly in terms the matrix ê(φI) (53) of
e.

By combining (45) with (57), we see that there is the commutative diagram (the bottom
identification is due to (40)):

V ei−j //

f ′ij
��

V[2(i− j)](i− j)

f ′ii
��

P−i(−j)[−2j]
ei−j=Id // P−i(−i)[−2i][2i− 2j](i− j).

(62)

We fix 0 ≤ j ≤ i. For every 0 ≤ s ≤ t, we use (47) and (48) together with (61) and (62) with
the goal of determining the value of

f ′ij (esft(pts)) . (63)

Recalling that (57) induces the identity on the graded pieces, we deduce that:

1. if t = i and s < j, then f ′ij (esft(pts)) = 0;

we can see this, as well as the assertions that follow, on the following diagram (we do
not write ε):

esft(pis) = φI(pis) 7−→ ei−jφI(pis) = φI(e
i−jpis)

f ′ii7−→ 0; (64)

2. if t = i and s = j then f ′ij
(
ejfi(pij)

)
= pij ;

3. if t 6= i and s+ i− j ≤ t, then f ′ij (esft(pts)) = 0;

4. if t 6= i and σ := s+ i− j − t ≥ 1, then

f ′ij (esft(pts)) = f ′ii(e
σetft(pts)) (65)

which, recalling the definition (53) of êI = ê(φI(e)), has the following form:

(êσI )iitt (qtt) (where qtt := f ′tt(e
tft(pts)) . (66)

Proposition 2.5.2 The first Deligne isomorphism φI(e) is e-good (55) if and only if

φI(e) = φII(e).
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Proof. In view of (57) and 58), we have that the two Deligne isomorphisms coincide if and
only if, using the notation in (61), we have that f ′ij(v∗) = pij , for every 0 ≤ j ≤ i. According
to the four points above, the only obstruction to having this latter condition stems from (66)
not being zero for some pair (i, t) with i 6= t. By reasons of degree, i.e., by (14), since i 6= t,

we have that (êI)
ii
tt is in degrees ≤ 1 . If φI is e-good, then êI is of pure homogeneous degree

2, so that eσetft(pts)) = 0 and we infer the desired equality.
Conversely, let us assume that the two Deligne isomorphisms coincide. By contradiction

let us assume that φI is not e-good. According to (55) there are integers 0 ≤ t and 0 ≤ l ≤ k
and a non zero arrow l ≤ t. Among these non zero arrows (êI)

kl
tt , chose one, (êI)

kolo
toto

, for
which the difference k − l attains the minimum value. In the language of elements, what
above ensures that there is 0 6= pto ∈ P−to such that:

eto+1fto(pto) = elofko

(
êkolototo

(
etopto

))
+
∑∗

elfk
(
êkltoto

(
etopto

))
, (67)

where the first term on the r.h.s. is non-zero and
∑∗

is the sum over the non-zero terms
with (k, l) 6= (ko, lo). Since for these latter terms, k − l ≥ ko − lo, we deduce that

f ′koko

(
eko−lo

∑∗)
= 0 ∈ P−ko(−ko). (68)

On the other hand, since obviously eko−loelo = eko , we have that:

qko := f ′koko

(
eko−loelofko

(
êkolototo

(
etopto

)))
6= 0 ∈ P−ko(−ko). (69)

In view of (62), we have that

f ′ko,lo−1
(
etofto(pto)

)
= qto 6= 0. (70)

Since we are assuming that the two Deligne isomorphisms coincide, by virtue of the first
paragraph of this proof, we must have ko = to and to = lo − 1. This contradicts lo ≤ to.

Remark 2.5.3 In general, there is no e-good splitting; see Examples 2.6.4 and 2.6.5. In
particular, neither of the two constructions φI(e) and φII(e) is self-dual.

2.6 The third Deligne splitting φIII(e)

Let (V, e) be as in §2.4. In particular, V admits a splitting (34) in A F as in Proposition
2.3.2; in fact, we have four, so far. We also assume that the Abelian category A is Q-linear,
i.e., that Hom-groups are rational vector spaces. The reason for this is that, in what follows,
one needs to exploit the sl2(Q)-action arising from the given arrow e.

The goal of this section is to construct the third Deligne isomorphism associated with
(V, e). Whereas we omit the detailed presentation of the algebra underlying this construc-
tion (see [8], Lemme 3.3 and Proposition 3.5), we review some of the key points, state its
characterization and, along the way, indicate the necessary changes.

Let V and W be in A F and set:

L
[n]
(i,j)(V,W) := HomA F (V(i),W(j)[n]). (71)
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Up to the canonical isomorphism induced by the shift functors, the above depends only on

the difference m := (j − i) and we denote the resulting bi-functor by L
[n]
(m).

Recalling the definition of the graded-type objects (5) and of degree of maps (13) (an arrow
(Vp, T ) → (Vq, T )[n](m) in A F has degree d := q − p), we have the natural decomposition
by homogeneous degrees:

L
[n]
(m)(Ṽ∗, Ṽ∗) =

2r⊕
d=−2r

L
[n],{d}
(m) (Ṽ∗, Ṽ∗). (72)

The arrow h :=
∑
p p Id(Vp,T ) induces the arrow:

h : L
[n]
(m)(Ṽ∗, Ṽ∗) −→ L

[n]
(m)(Ṽ∗, Ṽ∗), u 7−→ h ◦ u; (73)

this arrow is of homogeneous degree zero, i.e., {d} 7→ {d}, with respect to (72).
By taking together the graded pieces of the arrow e : V→ V[2](1), i.e., set e′ :=

∑
ep, with

ep : Vp → Vp+2(1), we obtain e′ ∈ L[0],{2}
(1) (Ṽ∗, Ṽ∗) which, in turn, induces the homogeneous

degree two arrow:

e : L
[n]
(m)(Ṽ∗, Ṽ∗) −→ L

[n]
(m+1)(Ṽ∗, Ṽ∗), u 7−→ e(u) := e′ ◦ u− u ◦ e′. (74)

There is a canonical arrow of homogeneous degree −2 (this is where we need denominators
([8], p.121):

f : L
[n]
(m)(Ṽ∗, Ṽ∗) −→ L

[n]
(m−1)(Ṽ∗, Ṽ∗). (75)

The arrows (h, e, f) in (73), (74) and (75) form an sl2(Q)-triple turning the rational vector
spaces

L
[n]
j :

⊕
d∈Zeven/odd

L
[n],{d}
j+d/2 (Ṽ∗, Ṽ∗) (76)

into sl2(Q)-modules; in what above, j is a fixed integer multiple of 1/2 and the sum is over
the integers d with fixed parity, even if j is integral, odd if j is an half-integer. Recalling
that the sum is finite, for |d| ≤ 2r, we have that the corresponding HL statememt reads as
follows: (ek the k-th iteration of e (74))

ek : L
[n],(−k)
(j−k/2)

∼= // L[n],(k)
(j+k/2) . (77)

Let ϕ : V∗ ∼= V be any good splitting (6) and let ẽ(ϕ) be the associated matrix of
e : V→ V[2](1) (49). The degree d homogeneous part of ẽ(ϕ) satisfies:

ẽ(ϕ){d} :=
∑
q−p=d

ẽ(ϕ)pq ∈ L
[2−d],{d}
(1) (78)

and is subject to (50) and (51): it is zero for every d > 2 and it is the obvious arrow for
d = 2.

The the third Deligne isomorphism associated with (V, e):

φIII(e) : = φIII : V∗
∼= // V, (79)
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is the unique good splitting subject to the following conditions: (e1−d is the (1− d)-iteration
of (74)):

e1−d
(
ẽ(ϕ){d}

)
= 0, ∀d ≤ 1. (80)

Let us illustrate how, any good splitting ϕ : V∗ ∼= V can be modified recursively, via HL
(77), to obtain a new good splitting subject to (80).

Let d = 1. The condition (80) reads ẽ{1} = 0. Set ϕ1 := ϕ(id + ψ{−1}), where

ψ{−1} ∈ L[1],{−1}
(0) is a variable arrow. We conjugate e and obtain:(

id + ψ{−1}
)−1
◦ e ◦

(
id + ψ{−1}

)
≡ ẽ(ϕ){2} + e

(
ψ{−1}

)
modulo degree ≤ 0. (81)

Note that the last term on the left is in L
[1],{1}
(1) . We take the degree 1 part of the r.h.s of

(81) and set it equal to zero

e
(
ψ{−1}

)
= −ẽ(ϕ){1}

(
equality in L

[1],{1}
(1)

)
. (82)

The HL (77) ensures that such a ψ{−1} exists and is unique. This determines ϕ1.
Let d = 0. The condition (80) reads e(ẽ{0}) = 0. Set ϕ0 := ϕ1(id + ψ{−2}), where

ψ{−2} ∈ L[1],{−2}
(0) is a variable arrow. We conjugate e and obtain(

id + ψ{−2}
)−1

e
(

id + ψ{−2}
)
≡ ẽ(ϕ1){2} + e

(
ψ{−2}

)
modulo degree ≤ −1. (83)

Note that the last term on the left is in L
[1],{0}
(1) . We take the degree 0 part of the r.h.s of

(83) and set it equal to zero after application of e:

e2
(
ψ{−2}

)
= −e

(
ẽ(ϕ1){0}

) (
equality in L

[1],{2}
(2)

)
. (84)

The HL (77) ensures that such a ψ{−2} exists and is unique. This determines ϕ0.
We repeat this procedure for all decreasing values of d and, recalling that V has type

[−r, r], the procedure ends no later than d = −2r.
The unicity of the resulting arrow is verified easily as follows. Let a, b be two good

splittings subject to (80). Set

c := b−1a = Id +
∑
l≥1 c

{−l} : V∗
∼= // V. (85)

We apply the procedure carried out above to b, modifying it to b1 := b(Id + c{−1}). We
have that b1 ≡ a modulo degree ≤ −2, so that, in view of the fact that a also satisfies (80),
we must have that c{−1} = 0. It follows that b ≡ a, modulo degree ≤ −1. We repeat this
procedure and kill all the c{−l}.

In general, φI 6= φIII, however, by [8], Proposition 3.6 (easily adapted to the present
context), we have that: (see Lemma (2.4.1) for the definition of fi)

φIII(e)|P−i = φI(e)|P−i = fi : Pi −→ V. (86)
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Remark 2.6.1 Unlike the four previous splittings ωI,II(e) and φI,II(e), the construction lead-
ing to φIII(e) is self-dual in the sense that we have:

((φIII (eo))
o
)
−1

= φIII(e). (87)

This is because an isomorphism ϕ satisfies condition (80) if and only if ϕo satisfies the
analogous “opposite” conditions.

Remark 2.6.2 In genereal, the five good splittings

ωI(e), ωII(e), φI(e), φII(e), φIII(e) (88)

are pairwise distinct; see Examples 2.6.4 and 2.6.5.

Proposition 2.6.3 If an e-good splitting (2.4.5) exists, then it is unique and it coincides
with the third Deligne isomorphism. In this case we have:

ωI(e) = ωII(e) = φI(e) = φII(e) = φIII(e). (89)

Proof. Let ϕ be e-good. Then ẽ(ϕ){d} = 0 for every d ≤ 1. It follows that condition (80) is
met by ϕ, so that ϕ = φIII(e) and we have proved uniqueness (see also Remark 2.4.6).
Assume that there is an e-good splitting, which, by the above, must coincide with φIII(e).
By Remark 2.4.6, we have that φIII(e) = φI(e). Proposition 2.5.2 implies that φI(e) = φII(e)
(this equality can be also seen by using a duality argument similar to the one in (92)).
Let us compare φI(e) with ωI(e). By Remark (2.4.3), the two agree on V−r ⊕ Vr.
By comparing the general description (25) of Ker ρ with the formula (47) for the embedding
φI, we see, with the aid of (56), that

Ker ρ =

v ∈ V | v =
∑

(i,j)∈Ir

ejfi(pij)

 , (90)

where Ir is the set of the indices subject to 0 ≤ j ≤ i and to (i, j) 6= (r, 0), (r, r). It follows
that Ker ρ coincides with φI(

∑
Ir
P−i(−j)). By projecting onto

∑
|p|6=r Vp, we deduce that

φI(e), restricted to
∑
|p|6=r Vp factors through Ker ρ→ V . Now we repeat for Ker ρ, what we

have done above for V and deduce, by descending induction on r, that

φI(e) = ωI(e). (91)

We conclude by using a duality argument:

ωII(e) = ((ωI(e
o))o)−1 = ((φI(e

o))o)−1 = φII(e) = ωI(e), (92)

where: the first equality is by definition; the second equality follows by the fact that there
is an e-good splitting for (V, e) if and only there is an eo-good splitting for (Vo, eo) and we
have proved that ωI = φI; the third equality is by definition; the final equality is (91). This
concludes the proof.
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Example 2.6.4 V ∼= Q3 with basis (v−2, v0, v2), e : (v−2, v0, v2) 7−→ (v0, v2, v2),

V≤−2 = V≤−1 = 〈v−2〉, V≤0 = V≤1 = 〈v−2, v0〉, V≤2 = V, (93)

V−2 = 〈[v−2]〉, V0 = 〈[v0]〉, V2 = 〈[v2]〉. (94)

The five splittings associated with e discussed in this paper are:

• φI(e) : ([v−2], [v0], [v2]) 7−→ (v−2, v0, v2);

• φII(e) : ([v−2], [v0], [v2]) 7−→ (v−2,−v−2 + v0,−v0 + v2);

• φIII(e) : ([v−2], [v0], [v2]) 7−→ (v−2,− 1
3v−2 + v0,− 2

3v0 + v2);

• ωI(e) : ([v−2], [v0], [v2]) 7−→ (v−2,−v−2 + v0, v2);

• ωI(e) : ([v−2], [v0], [v2]) 7−→ (v−2,−v−2 + v0,−v−2 + v2).

A direct calculation, or Proposition 2.6.3, shows that there is no e-good splitting.

Example 2.6.5 Here is a class of examples from geometry where, unlike the previous ex-
ample, e is nilpotent.

Let Y ×Z be the product of nonsingular complex projective varieties and let r := dimC Z.
Let V := H(Y × Z,Q) = H(Y,Q) ⊗H(Z,Q) = ⊕r,sHr(Y,Q) ⊗Hs(Z,Q). Let F ′sV be the
subspace spanned by the elements of the form yrzσ with σ ≤ s. Set F := F ′[r]; this way
(V, F ) has type [−r, r]. Let η ∈ H2(Y × Z,Q) be the first Chern class of a line bundle on
Y × Z which is ample when restricted to the fibers of the projection onto Y . Denote by
e : (V, F )→ (V, F [2]) the map v 7→ η ∪ v.

By using the hard Lefschetz theorem on Z, one sees directly that the HL condition (33)
holds for ((V, F ), e). In addition to the five splittings considered in this paper, we also have
the Künneth splitting κ. In general, the six splittings are pairwise distinct. The reader can
verify this fact directly by taking Y = Z to be an elliptic curve and the line bundle to be of
the form E × ζ + ζ × E + P, where ζ ∈ E is a point and P is a Poincaré bundle (this is to
ensure that ẽ(κ){1} 6= 0, so that, according to (80), we must have κ 6= φIII(e)).

If we take Y = P1 × P2, we are lead to examples where κ = φIII(e), but otherwise the
isomorphisms of type φ and ω are pairwise distinct, and distinct from φIII(e). If we take
Y = Z = P1, then we have κ = φIII(e), φI(e) = ωI(e) and φII(e) = ωII(e), but we have no
further relation. In this case, if we take η to be the class of the fiber of the projection onto
Z, then we have an e-good splitting. In all the examples, for general η, there is no e-good
splitting. A highly non-trivial example, where there is a good splitting is mentioned at the
end of the introduction.

3 Appendix: a letter from P. Deligne

P. Deligne has sent the author a letter commenting on an earlier draft of this paper. The
author is happy to include, with P. Deligne’s kind permission, this letter in this appendix
as it outlines the simple modifications necessary to obtain the splittings of this note in a
Tannakian (tensor product) context.
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March 16, 2012

Dear de Cataldo,

Thank you!

Let A be an Abelian category with a shift functor A→ A(1) as in your text. Let B be
the category of objects of A given with a finite increasing filtration F and e : A → A[2](1)
verifying HL.

Corollary. B is an abelian category.

Proof. (a) for objects (A,F, e) of B of type [−r, r], with r > 0, the “peeling off” 2.2

A = Fr ⊕Ker
(
Fr−1 ⊆ A

er−→ A −→ A/Fr−1

)
⊕ er (Fr)

is functorial. By induction on r, it follows that

(b) the splitting ωI is functorial.

If f : (A,F, e) −→ (A′, F ′, e′) is a morphism, (b) implies that GrFKer (f)
∼=−→ Ker GrF (f),

and dually for coKer. That (Ker (f), F, e) is in B follows. It is a kernel. Dually for cokernels.

Morphisms are strictly compatible with filtrations, hence CoIm(f)
∼=−→ Im (f).

Remark. In your 2.2. you should assume a < b.

From now on, all categories are assumed to be Q-linear.

Let A ′,A ′′ and A be as above and let ⊗ : A ′ × A ′′ −→ A be an exact biadditive
functor, compatible with shifts: functorial isomorphisms

A′(1)⊗A′′
∼=−→ (A′ ⊗A′′)(1),

and
A′ ⊗A′′(1)

∼=−→ (A′ ⊗A′′)(1)

are given, and the two resulting functorial isomorphisms

A′(1)⊗A′′(1) −→ (A′ ⊗A′′)(2)

coincide. Let B′,B′′ and B be the corresponding categories of triples (A,F, e) as above.
Given (A′, F ′, e′) and (A′′, F ′′, e′′), one defines the filtration F (resp. morphism e) for A′⊗A′′
by

Fp =
∑

p′+p′′=p

F ′p ⊗ F ′′p

(so that GrF
′
(A′)⊗GrF

′′
(A′′)

∼=−→ GrF (A)), and

e = e′ ⊗ 1 + 1⊗ e′

(so that the same formula holds for the graded e, e′, e′′).

Proposition. This ⊗ sends B′,B′′ to B.
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One has to check that for graded objects and morphisms of degree 2, ⊗ preserves HL. In
the graded case, HL for (A∗, e) is equivalent to the existence of f∗ : A∗ −→ A∗(−1) of degree
−2 such that [e, f ] id multiplicaiton by n in degree n. Stability of this property is proved in
the same way that tensor product of representations of Lie algebras are defined.

Suppose now that A is a Tannakian category and that the twist is the tensor product
with an object Q(1) of rank one. The compatibility between ⊗ and shift we required amounts
tothe symmetry automorphism of Q(1)⊗Q(1) being the identity.

Corollary. If A is Tannakian, so is B.

Proof. If ω is a fiber functor on A , then (A,F, e) 7→ ω(A) is a fiber functor on B.

In terms of actions on SL(2), rather in terms of grading and of e and f above, I prefer
to state the characteristic property of the (good) splitting φIII as follows: it is the filtered
isomorphism, with graded the identity:

u : GrF (A) −→ A

such that, with e : GrF (A) −→ GrF (A)(1), and f as above, if X is defiend by

u−1eu = e+X,

one has [f,X] = 0. This characterization makes it clear that this splitting is compatible with
tensor products (in the sense of the proposition). It gives an equivalence of the category B
of triples (A,F, e) with the category of graded objects A∗, 0 outside of finitely many degrees,
given with

e : A∗ −→ A∗(1) and f : A∗ −→ A(−1)

of degree 2, resp. −2, with [e, f ] = n in degree n, and given with X : (⊕An) −→ (⊕An)(1)
such that [f,X] = 0.

In the Tannakian case, this equivalence is compatible with ⊗ [for X’s, ⊗ is defined by
X = X ′ ⊗ 1 + 1⊗X ′′].

Best,

P. Deligne.
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