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THE MULTIPLICITY POLAR THEOREM, COLLECTIONS OF 1-FORMS

AND CHERN NUMBERS

TERENCE GAFFNEY AND NIVALDO G. GRULHA JR.

Abstract. In this work, we show how the Multiplicity Polar Theorem can be used to calculate

Chern numbers for collections of 1-forms.

1. Introduction

Given a space with singularities, and a geometric invariant defined for smooth spaces, it is
interesting to see whether or not the invariant is well-defined for the singular space, and, if it is,
what are the contributions to the invariant from the singularities.

In a series of papers, Ebeling and Gusein-Zade have discussed the meaning of such invariants
as the index of a differential form [10], various notions of the index of a vector field [7], and the
Chern numbers, and have described the contributions from the singularities in some cases. In
[10], they calculated the radial index of a 1-form on a complete intersection singularity. In [17], it
is shown that, in the case of a differential 1-form with an isolated singularity on X ⊂ Cn, where
X is a complex analytic space, that the radial index can be computed using the multiplicity of a
pair of modules. The computation of [17] amounts to computing the intersection multiplicity of
the graph of the one form ω, which is a subset of the (unprojectivised) conormal bundle of Cn
and the cotangent space of X. In contrast to [10], the calculation is valid for any equidimensional
space.

It is clear that this springs from earlier work for vector fields and characteristic classes on
singular spaces by Schwartz and Brasselet, ([4, 25]), MacPherson ([24]) Seade and others (see
for example [2, 27]). The case of a 1-form is analogous to the case of vector fields, and the
indices involved concern the Euler characteristic of the singular variety. This can be regarded as
a particular Chern number, and the work of Ebeling and Gusein-Zade for collections of 1-forms
extends these notions for other Chern numbers.

In [8], Ebeling and Gusein-Zade developed the notion of the Chern number of a singular space
using collections of differential 1-forms. Their numbers are well-defined for any equidimensional
reduced complex analytic germ, but they only compute the number for ICIS singularities. Their
Chern number is again an intersection number. As in the earlier work, the intersection takes
place at the level of conormal spaces; they call the points in X which are the projection of the
points of intersection, special points.

In the case that we have just one 1-form, the Chern number is the Euler obstruction of the
differential form ([7], p. 17). This is related to the Euler obstruction of a set and the Euler
obstruction of a function as defined by Brasselet, Massey, Parameswaran and Seade in [3]. In
[11], the definition of the Euler obstruction of a function was adapted to the case of 1-form,
the Euler obstruction of a function was studied by several authors, in this direction we have for
example the papers [21],[27],[6],[17]. In [1], the authors determine relations between the local
Euler obstruction of an analytic map f defined in [22] and the Chern number of a convenient
collection of 1-forms associated to f .

In this work, we use the multiplicity polar theorem to calculate Chern numbers for any
equidimensional reduced complex analytic germ. This extends the earlier work of [17]. For
the Chern number problem, one must work with a set of collections of differential 1-forms, and
calculate the order of the point where all of the collections are linearly dependent. Since we
want to calculate the number of points at which the forms are linearly dependent after a generic
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perturbation, this is again a problem involving modules. Because we have a collection of forms
we have a collection of modules, so the problem is like a problem in intersection theory, except
the spaces are defined by modules not by ideals.

The computation of the Chern numbers is an example of a problem where the underlying
vector bundle, which is the tangent bundle in the Chern case, is not defined at every point of
X. The set X must be modified; so we pass to the Nash modification of X where the tangent
bundle of X is defined in order to understand the problem fully. This process of modifying a
space to fill in points where a bundle ξ fails to be defined works in general, and our process of
calculating intersection numbers also extends. We outline this in the last section. This suggests
the easier problem of calculating Chern numbers when the tangent bundle is well-defined at all
points, and more generally, intersection numbers of modules. We take this up in section two.
The main themes of section four appear in this material.

Also in Section 2, we recall some basic ideas about the theory of integral closure of modules
and the statement of the multiplicity polar theorem.

In Section 3, we recall how Ebeling and Gusein-Zade develop the notion of Chern number in
their paper.

In Section 4, we introduce the notion of a special point for a collection. Roughly speaking,

a point p ∈ X is called a special point of the collection {ω(i)
j } of 1-forms on the variety X if

there exists a point in the fiber of the Nash modification over p such that the restriction of

the 1-forms ω
(i)
1 , · · · , ω(i)

d−ki+1 to the point are linearly dependent for each i = 1, · · · , s. We
next see how special points can be viewed as intersections, and, hence, have an associated
intersection number, if isolated. We then begin to solve the “module intersection theoretic
problem” for the computation of the Chern numbers described above. We prove a “Gysin”
type theorem, (Proposition 4.7) that is, under suitable genericity hypotheses, we can do our
calculations on a single space which represents the intersection of all but the last spaces defined
by our collection and use the last module associated with the collection restricted to this space
for our computations. We also prove a genericity result (Proposition 4.10) which shows that
by deforming just the last collection of differential forms, we can ensure the set of collections is
generic in an appropriate sense.

We begin Section 5 by recalling a result of Ebeling and Gusein-Zade (Proposition 5.1) relating
Chern numbers and special points. In Proposition 5.4 we describe in integral closure terms what
it means for x ∈ X not to be a special point for a collection of forms. After gearing up to apply
the multiplicity polar theorem.

In Section 6 we show, in Theorem 6.1, that deforming our last collection allows us to split the
contribution of the Chern number from an isolated special point into the multiplicity of a pair
of modules and the intersection number of the new collection. Using this as the inductive step,
we can write the contribution to the Chern number as a sum of multiplicities of pairs (Corollary
6.2).

We next show that if X is an ICIS, then our formula agrees with that of Ebeling and Gusein-
Zade (Corollary 6.3 and the discussion afterwards.)

We close by indicating how our results can be generalized to the case of a bundle Ek defined
on a Zariski open, everywhere-dense subset U of an analytic space X, Ek a sub-bundle with
k-dimensional fiber of a bundle, F l, where F l is defined everywhere.

The authors thank Steven Kleiman for helpful conversations on the connection between their
work and the intersection multiplicity of Serre.
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2. Integral closure of modules

Let (X,x) be a germ of a complex analytic space, X a small representative of the germ, and
let OX denote the structure sheaf on a complex analytic space X. The study of what it means
for a collection of 1-forms to have a special point on a singular space depends on the behavior
of limiting tangent hyperplanes. The key tool for studying these limits is the theory of integral
closure of modules, which we now introduce.

Definition 2.1. Suppose (X,x) is the germ of a complex analytic space, M a submodule ofOpX,x.

Then h ∈ OpX,x is in the integral closure of M , denoted M , if for all analytic φ : (C, 0)→ (X,x),

h ◦ φ ∈ (φ∗M)O1. If M is a submodule of N and M = N , we say that M is a reduction of N .

To check the definition, it suffices to check along a finite number of curves whose generic point
is in the Zariski open subset of X along which M has maximal rank. (Cf. [14])

If a module M has finite colength in OpX,x, it is possible to attach a number to the module, its

Buchsbaum-Rim multiplicity, e(M,OpX,x). We can also define the multiplicity e(M,N) of a pair
of modules M ⊂ N , M of finite colength in N , as well, even if N does not have finite colength
in OpX .

We recall how to construct the multiplicity of a pair of modules using the approach of Kleiman
and Thorup [23]. Given a submodule M of a free OXd module F of rank p, we can associate
a subalgebra R(M) of the symmetric OXd algebra on p generators. This is known as the Rees
algebra of M . If (m1, · · · ,mp) is an element of M , then

∑
miTi is the corresponding element

of R(M). Then Projan(R(M)), the projective analytic spectrum of R(M), is the closure of
the projectivised row spaces of M at points where the rank of a matrix of generators of M is
maximal. Denote the projection to Xd by c. If M is a submodule of N or h is a section of
N , then h and M generate ideals on ProjanR(N); denote them by ρ(h) and ρ(M). If we can
express h in terms of a set of generators {ni} of N as

∑
gini, then in the chart in which T1 6= 0,

we can express a generator of ρ(h) by
∑
giTi/T1. Having defined the ideal sheaf ρ(M), we blow

it up.
On the blow up Bρ(M)(ProjanR(N)), we have two tautological bundles. One is the pullback

of the bundle on ProjanR(N). The other comes from ProjanR(M). Denote the corresponding
Chern classes by cM and cN , and denote the exceptional divisor by DM,N . Suppose the generic
rank of N (and hence of M) is g.

Then the multiplicity of a pair of modules M,N is:

e(M,N) =

d+g−2∑
j=0

∫
DM,N · cd+g−2−j

M · cjN .

Kleiman and Thorup show that this multiplicity is well-defined at x ∈ X as long as M = N
on a deleted neighborhood of x. This condition implies that DM,N lies in the fiber over x, hence
is compact. Notice that when N = F and M has finite colength in F then e(M,N) is the
Buchsbaum-Rim multiplicity e(M,OpX,x). There is a fundamental result due to Kleiman and

Thorup, the principle of additivity [23], which states that given a sequence of OX,x-modules
M ⊂ N ⊂ P such that the multiplicity of the pairs is well-defined, then

e(M,P ) = e(M,N) + e(N,P ).

Also if M = N then e(M,N) = 0 and the converse also holds if X is equidimensional. Combining
these two results we get that if M = N then e(M,N) = e(N,P ). These results will be used in
Section 5.

In studying the geometry of singular spaces, it is natural to study pairs of modules. In dealing
with non-isolated singularities, the modules that describe the geometry have non-finite colength,
so their multiplicity is not defined. Instead, it is possible to define a decreasing sequence of mod-
ules, each with finite colength inside its predecessor, when restricted to a suitable complementary
plane. Each pair controls the geometry in a particular codimension.
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We also need the notion of the polar varieties of M . The polar variety of codimension k of
M in X, denoted Γk(M), is constructed by intersecting ProjanR(M) with X ×Hg+k−1 where
Hg+k−1 is a general plane of codimension g + k − 1, then projecting to X.

Setup: We suppose we have families of modules M ⊂ N , M and N submodules of a free
module F of rank p on an equidimensional family of spaces with equidimensional fibers X d+k,
X a family over a smooth base Y k. We assume that the generic rank of M , N is g ≤ p. Let
P (M) denote ProjanR(M), πM the projection to X .

We will be interested in computing, as we move from the special point 0 to a generic point,
the change in the multiplicity of the pair (M,N), denoted ∆(e(M,N)). We will assume that the
integral closures of M and N agree off a set C of dimension k which is finite over Y , and assume
we are working on a sufficiently small neighborhood of the origin, so that every component of
C contains the origin in its closure. Then e(M,N, y) is the sum of the multiplicities of the pair
at all points in the fiber of C over y, and ∆(e(M,N)) is the change in this number from 0 to a
generic value of y. If we have a set S which is finite over Y , then we can project S to Y , and the
degree of the branched cover at 0 is multyS. (Of course, this is just the number of points in the
fiber of S over our generic y.)

Let C(M) denote the locus of points where M is not free, i.e., the points where the rank of
M is less than g, C(ProjanR(M)) its inverse image under πM .

We can now state the Multiplicity Polar Theorem. The proof in the ideal case appears in
[15]; the general proof appears in [16].

Theorem 2.2. (Multiplicity Polar Theorem) Suppose in the above setup we have that M = N
off a set C of dimension k which is finite over Y . Suppose further that

C(ProjanR(M))(0) = C(ProjanR(M(0))),

except possibly at the points which project to 0 ∈ X (0). Then, for y a generic point of Y ,

∆(e(M,N)) = multyΓd(M)−multyΓd(N),

where X (0) is the fiber over 0 of the family X d+k, M(0) is the restriction of the module M to
X (0), and C(ProjanR(M))(0) is the fiber of C(ProjanR(M)) over 0.

Now, we show how this machinery can be applied to a module intersection problem. Suppose
we are given modules M1 ⊂ F1 and M2 ⊂ F2, Fi free OXd,x modules of rank pi, Mi generated
by ni generators. Suppose C(Mi) is equidimensional, the codimension of C(Mi) is ni − pi + 1,
and the sum of the codimensions is d, C(Mi) equidimensional. If we deform the generators of
Mi, how many points do we expect to see where both modules have less than maximal rank?

We can take this number as the intersection number of the two modules.
As further justification, we relate this number to an intersection number at x. Let M(p, q),

p ≤ q, be the space of p × q matrices with complex entries and let Dp,q be the subspace of
M(p, q) consisting of matrices of rank less than p. The subset Dp,q is an irreducible subvariety
of M(p, q) of codimension q − p+ 1.

Fix a matrix of generators [Mi] of Mi.
Then each matrix [Mi] defines a section ΓMi

of Cn ×M(pi, ni) in the obvious way; the pair
defines a section ΓM1,M2 of Cn ×M(p1, n1)×M(p2, n2). We will assume that

X ×Dp1,n1 ×Dp2,n2 ∩ Im(ΓM1,M2)

is isolated and lies over x. The intersection number of X ×Dp1,n1 ×Dp2,n2 and Im(ΓM1,M2) at
(x,ΓM1,M2(x)) is the number we want to calculate. In this paper we will abbreviate “Zariski
open set” by “Z-open set”.

Theorem 2.3. Suppose each of the sections ΓMi is transverse to Xd × Dpi,qi on a Z-open
set Ui such that Ui ∩ C(Mi) is Z-open and dense in C(Mi). Then the intersection number of
X ×Dp1,n1

×Dp2,n2
and Im(ΓM1,M2

) at (x,ΓM1,M2
(x)) is e(M1,OC(M2),x) = e(M2,OC(M1),x).



COLLECTIONS OF 1-FORMS AND CHERN NUMBERS 43

Proof. X may be singular, so we assume X is stratified with the canonical Whitney stratification
[29]. Then the transversality of ΓMi

means transversality to each Sj×Dpi,qi , Sj a stratum. This
ensures that the generic point of each component of C(Mi) is a smooth point of X. It also
ensures that the codimension of OC(Mi),x is ni−pi+ 1. Since X×Dp1,n1

×Dp2,n2
∩ Im(ΓM1,M2

)
is isolated and lies over x, the sum of the codimensions of the C(Mi) is d.

Let us show that, at (x,ΓM1,M2
(x)), the intersection number of X × Dp1,n1

× Dp2,n2
and

Im(ΓM1,M2
) is e(M1,OC(M2),x). The proof of the other half of the inequality is parallel.

Note that the number of generators of M1 as a OC(M2),x module is

n1 = (n1 − p1 + 1) + p1 − 1 = d− (n2 − p2 + 1) + p1 − 1 = dimC(M2) + p1 − 1.

Then, by Theorem 1.2 of [18], we can find a perturbation of [M1] by a matrix of generic

constants such that the section induced by the new matrix, [M̃1], of C(M2) × M(p1, n1) is

transverse to C(M2)×Dp,q, and the finite number of points at which [M̃1] has less than maximal
rank occur at smooth points of C(M2) and there are e(M1,OC(M2),x) of them. In particular, x
is no longer a point where both sections have less than maximal rank. (It is not hard to see from
the proof of Theorem 2.2 that in fact these lie in the Z-open dense subset of C(M2) on which the
section ΓM2

is transverse to X ×Dp2,n2
.) The transversality conditions on ΓM2

and Γ
M̃1

imply

that the section Γ
M̃1,M2

is transverse to X×Dp1,n1
×Dp2,n2

at all points of intersection. The total

number of such points counted with multiplicity is the intersection number of X×Dp1,n1
×Dp2,n2

and Im(ΓM1,M2) at (x,ΓM1,M2(x)); the transversality statement implies each point occurs with
multiplicity 1.

�

Corollary 2.4. Suppose OX,x is Cohen-Macaulay, then the intersection number of X×Dp1,n1
×

Dp2,n2
and Im(ΓM1,M2

) at (x,ΓM1,M2
(x)) is the colength of the ideal generated by the maximal

minors of [Mi], i = 1, 2.

Proof. Since OX,x is Cohen-Macaulay and the structure on OC(M2),x given by the minors of [M2]
is generically reduced, it is reduced and OC(M2),x is Cohen-Macaulay. Then e(M1,OC(M2),x) is
the colength of the ideal of minors of [M1] in OC(M2),x which gives the result. �

Looking at the proof of the above theorem, in applying the technique of the proof to geometric
problems, we see that we need a description of the desired quantity as an intersection number,
and a theorem about the transversality of a deformation of [M1] by a matrix of generic constants.

If ξ1 and ξ2 are vector bundles, we may wish to calculate geometric invariants related to
sections of the bundles. If the desired invariant is supported at a point, then locally the sets of
sections of our vector bundles are free modules, and we can look at the submodules generated
by the given sets of sections. Then the last theorem can be used to calculate the contribution
to the invariant at a point where the sections fail to be generic.

In the next couple of sections we will look at a more difficult case, one in which the vector
bundle may only be defined on a Z-open subset of X. This will involve modifying X to produce a
new space on which the bundle is defined, then taking into account the fiber of the modification
over x.

Before developing these ideas, we mention the connection between the ideas of this section
and the intersection multiplicity defined by Serre ([28]). Given modules M1 ⊂ F1 and M2 ⊂ F2,
Fi free OXd,x modules of rank pi as above, Serre’s intersection number is the alternating sum of

the lengths of the Tori(F p1/M1, F
p2/M2).

Corollary 2.5. Under the hypotheses of Theorem 2.3, Serre’s intersection number is the same
as e(M1,OC(M2),x) = e(M2,OC(M1),x).

Proof. This holds because under small deformations of the Mi the intersection number does not
change; but then, by a small deformation, we can reduce to the ideal case (i.e., the modules
have rank one less than maximum at common points where they have less than maximal rank).
Then, by Theorem 2.3, the intersection number counts the same points as e(M1,OC(M2),x). �



44 TERENCE GAFFNEY AND NIVALDO G. GRULHA JR.

For the case where OX,x is Cohen-Macaulay more can be said. The following result extends
some theorems of Buchsbaum and Rim ([5] 2.4 p.207, 4.3 and 4.5 p.223).

Corollary 2.6. Suppose OX,x is Cohen-Macaulay, then the colength of the ideal generated by
the maximal minors of [Mi], i = 1, 2, is the length of F p1/M1 ⊗ F p2/M2.

Proof. We claim that the complex used to compute the Tori is exact, so Serre’s intersection
number is just the length of F p1/M1⊗F p2/M2. To see this, consider the complex for On

p1/M1.
At points where M1 has maximal rank, this complex is exact. Further all the maps have maximal
rank. These assertions follow because On

p1/M1 = 0, and the free resolution of 0 is a trivial
complex (lemma 20.1 p491 [13]). Now tensor with On

p2/M2, and consider the resulting complex.
At points where M2 has maximal rank we are tensoring with 0, so the complex is exact. At
points, different from the origin, where M2 has less than maximal rank, the complex remains
exact, as it is a trivial resolution and the torsion terms are zero as they are independent of the
resolution. So the origin is the only point where the complex is not exact; but by the acyclicity
lemma, (cf [13] p498) the complex must be exact there as well. The Corollary now follows from
the pervious one, because since X is Cohen-Macaulay, and C(M2) has the right dimension, its
ring is Cohen-Macaulay as well, so

e(M1,OC(M2),x)

is just the colength of the ideal generated by the maximal minors of [Mi], i = 1, 2. �

3. Collections of 1-forms

W. Ebeling and S. M. Gusein-Zade studied indices for collections of 1-forms [7, 8], in this
section we will recall some ideas and notation from their papers about these concepts.

If P is a complex analytic manifold of dimension n, then its Euler characteristic χ(P ) is the
characteristic number

〈cn(TP ), [P ]〉 = (−1)n〈cn(T ∗P ), [P ]〉,
where TP is the tangent bundle of the manifold P , T ∗P is the dual bundle, and cn is the
corresponding Chern class and [P ] the fundamental class of P .

The top Chern class of a vector bundle is the first obstruction to the existence of a non-
vanishing section. Other Chern classes are obstructions to the existence of a linearly independent
collection of sections. There, instead of 1-forms on a complex variety, we consider collections of
1-forms. Further, to calculate intersections of Chern Classes and hence Chern numbers, we will
need collections of collections of 1-forms.

Let π : E → P be a complex analytic vector bundle of rank m over a complex analytic
manifold P of dimension n. It is known that the (2(n− k)-dimensional) cycle Poincaré dual to
the characteristic classe ck(E) (k = 1, · · · ,m) is represented by the set of points of the manifold
P where m− k + 1 generic sections of the vector bundle E are linearly dependent.

We continue to use the notation of section two: Let M(p, q), p ≤ q, be the space of p × q
matrices with complex entries and let Dp,q be the subspace of M(p, q) consisting of matrices of
rank less than p. The subset Dp,q is an irreducible subvariety ofM(p, q) of codimension q−p+1.
The complement Wp,q = M(p, q) \Dp,q is the Stiefel manifold of p-frames in Cq . It is known
that the Stiefel manifold Wp,q is 2(q − p)-connected and H2(q−p)+1(Wp,q) ∼= Z.

We now develop the notation necessary to handle collections of collections of forms. For the
rest of the paper, we will refer to these objects simply as collections.

Let k = (k1, · · · , ks) be a sequence of positive integers with
∑s
i=1 ki = k. Consider the space

Mm,k =
∏s
i=1M(m− ki + 1,m) and the subvariety Dm,k =

∏s
i=1Dm−ki+1,m in it. The variety

Dm,k consists of sets {Ai} of (m − ki + 1 ×m) matrices such that rkAi < m − ki + 1 for each
i = 1, · · · , s. Since Dm,k is irreducible of codimension k, its complement Wm,k =Mm,k \Dm,k is
(2k − 2)-connected, H2k−1(Wm,k) ∼= Z, and there is a natural choice of a map from an oriented
manifold of dimension 2k − 1 to the manifold Wm,k.

Let (Xd, 0) ⊂ (Cn, 0) be the germ of a purely n-dimensional reduced complex analytic variety

at the origin. For k = {ki}, i = 1, · · · , s, j = 1, · · · , d− ki + 1, let {ω(i)
j } be a collection of germs
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of 1-forms on (Cn, 0). (Note that {ω(i)
j } for a fixed value of i, is itself a collection of d− ki + 1

1-forms.) Let ε > 0 be small enough so that there is a representative X of the germ (X, 0) and

representatives {ω(i)
j } of the germs of 1-forms inside the ball Bε(0) ⊂ Cn.

The kind of points whose multiplicity we wish to compute is described in the next section.

4. Special Points

Definition 4.1. A point p ∈ X is called a special point of the collection {ω(i)
j } of 1-forms on

the variety X if there exists a sequence pm of points from the non-singular part Xreg of the
variety X such that the sequence TpmXreg of the tangent spaces at the points pm has a limit L

(in G(d, n)) and the restriction of the 1-forms ω
(i)
1 , · · · , ω(i)

d−ki+1 to the subspace L ⊂ TpCn are

linearly dependent for each i = 1, · · · , s. The collection {ω(i)
j } of 1-forms has an isolated special

point on (X, 0) if it has no special point on X in a punctured neighborhood of the origin.

Notice that we require each element in the collection to be linearly dependent when restricted
to the same limit plane. Notice also, that if an element of the collection has less than maximal
rank at a point, then it is linearly dependent on all planes passing through the point.

The framework of this section is a variation on the setting used in [7]. In developing the
properties of special points, it is helpful to work on two levels, one of which is based on the Nash
modification. The Nash modification comes into play because the tangent bundle of X is not
defined at singular points of X. However the Nash bundle is an extension of the tangent bundle
on the modified space. We begin to describe this setting.

Let {ω(i)
j } be a collection of germs of 1-forms on (X, 0) with an isolated special point at the

origin. Let ν : X̃ → X be the Nash transformation of the variety X, and T̃ the Nash bundle.

The collection of 1-forms {ω(i)
j } gives rise to a section Γ(ω) of the bundle

T̃ =

s⊕
i=1

n−ki+1⊕
j=1

T̃ ∗i,j

where T̃ ∗i,j are copies of the dual Nash bundle T̃ ∗ over the Nash transform X̃ numbered by indices
i and j.

Let D ⊂ T̃ be the set of pairs (x, {α(i)
j }) where x ∈ X̃ and the collection {α(i)

j } is such that

α
(i)
1 , · · · , α(i)

n−ki+1 are linearly dependent for each i = 1, · · · , s.

Definition 4.2. The local Chern obstruction, ChX,0{ω(i)
j }, of the collections of germs of 1-forms

{ω(i)
j } on (X, 0), at the origin, is the obstruction to extend the section Γ(ω) of the fibre bundle

T̃ \D→ X̃ from the preimage of a neighbourhood of the sphere Sε = ∂Bε to X̃, more precisely
its value, as an element of the cohomology group H2n(ν−1(X ∩ Bε), ν−1(X ∩ Sε),Z), on the
fundamental class of the pair (ν−1(X ∩Bε), ν−1(X ∩ Sε)).

In the case of a single 1-form, if this is radial, then we are exactly in the setting envisaged
by MacPherson to define the local Euler obstruction [24], and otherwise this is essentially the
“defect” introduced in [3]. The computation of the local Chern obstruction will be revisited in
section 5.

The other setting for the study of special points is closer to X, and we describe it next. This
setting will allow us to describe the number of special points as an intersection number.

Let Xd ⊂ Cn, Lk be the set of collections of 1-forms respecting the partition of k as above
(k = k1 + k2 + · · · + ks), DkX ⊂ Cn × Lk be the closure of the set of pairs (x, {lij}) such that

x ∈ Xreg and the restriction of the linear functions li1, · · · , lin−ki+1 to TxXreg ⊂ CN are linearly
dependent for each i = 1, · · · , s.

Notice that the fiber of DkiX over a regular point x of X can be identified with the elements
of M(d − ki + 1, n) which have less than maximal rank when restricted to TxX. Since TxX is
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defined by n − d equations, the fiber of DkiX is itself a fibration over the singular matrices in

M(d − ki + 1, d), hence the restriction of DkiX to the regular points of X has a stratification by
rank of the collection restricted to TXx, x ∈ Xreg.

The collection of 1-forms {ω(i)
j } defines a section Γω of Cn×Lk; we will assume in our results

that the image of the projection πX(DkX ∩ Im(Γω)) is isolated. Note that this implies that the
intersection of Im(Γω) and DkX is isolated as well, since πX |Im(Γω) is 1−1. We will further assume

that the sets Im(Γω) and DkX have complementary dimension viewed as subsets of Cn×Lk. Thus,
their intersection number is well-defined.

We are interested in computing this intersection number.
As we will see, this amounts to computing the intersection number of a collection of sets defined

by modules. The viewpoint of this paper is to compute this intersection number by successively
restricting to the intersection of k − 1 elements of the collection. There is a technical condition
which describes the way a “good” collection of these sets meet, given in Definition 4.5, which
needs some preparation.

Definition 4.3. Given a pair (x, P ), x ∈ X, P in G(d, n), the pair is degenerate for the collection
{ωj}, 1 ≤ j ≤ d− k+ 1, at x, if {ωj}|P is linearly dependent at x. Denote the set of degenerate
pairs for {ω} by B(ω).

Proposition 4.4. Suppose the collection {ω} is linearly independent at the origin. Then B(ω)
has codimension k in X ×G(d, n).

Proof. We can cover G(d, n) with open sets as follows: pick a coordinate plane P of dimension
d and a plane of complementary dimension using the complementary coordinates, which we
denote by P̂ . Clearly, the complementary plane intersects P only at the origin. Consider all
planes which are the graphs of a linear map from P to P̂ . The equations of these graphs give a
unique set of equations describing the plane, and thus associate a matrix of size (n− d× n) to
each plane.

These planes are just the planes that intersect P̂ at the origin, and thus are a Zariski open
subset of G(d, n).

Suppose U is such an open set, then construct the map from U × Hom(n, d − k + 1) to
Hom(n, n−k+1) by combining the 2 matrices - the element of Hom(n, d−k+1) and the matrix
of equations describing points of U .

This matrix has size (n− k + 1× n) and as a map from

U ×Hom(n, d− k + 1)→ Hom(n, n− k + 1)

is transverse to the rank stratification. So the codimension of the set of pairs which give matrices
of less than maximal rank is (n)− (n− k + 1) + 1 = k.

Working globally, it is clear that the set of degenerate pairs is a fibration over the set of
elements of Hom(n, d − k + 1) of maximal rank. So fixing ω we get that the set of degenerate
planes has codimension k. (Also fixing a plane P , the set of L ∈ Hom(n, d − k + 1) for which
the plane is degenerate also has codimension k.) �

If we have a collection of forms {ω(i)
j } with

∑s
i=1 ki = k, every element of which is linearly

independent at the origin, then B(ω) denotes the planes which are degenerate for every element
of the collection. It has codimension less than or equal to k.

Definition 4.5. Given Xd, 0 ⊂ Cn, 0 with 0 ∈ S(X) and a collection {ω(i)
j }with

∑s
i=1 ki = k,

k ≤ d such that each element of the collection is linearly independent at 0, we say that the

collection is proper for Xd if dim(X̃(S(X))∩B(ω)) ≤ d−k−1 where X̃(S(X)) is the restriction of
the Nash modification of X to S(X), the singular set of X. If this condition holds for a collection
of forms linearly independent at 0, with the exception of components of the intersection over the
origin, we say the collection is proper on a deleted neighborhood of the origin.

If X is smooth at 0, then we ask dim(X̃(0) ∩ B(ω)) ≤ d− k − 1.
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Remark 4.6. The dimension X̃(S(X)) is at most d − 1; if there is a component of dimension
d− 1, the condition just asks that the component meets B(ω) properly. Since the dimension of

all components of X̃ ∩ B(ω) is at least d − k, the properness condition implies that a point of

X̃(S(X)) ∩ B(ω) is in the closure of points of the intersection lying over smooth points of X.

Note also that if k = d, and the collection is proper, then X̃(S(X)) ∩ B(ω) is empty.

For the geometric description we need of special points, it is necessary to lift our constructions
to the level of the Nash modification.

On X̃ × Lk we can consider triples (x, P, L) where P is a degenerate plane for L. Call the

space of triples Dk. It is clearly a fibration over X̃.
Thinking of Cn × G(d, n) × Lk as a trivial fibration over Cn × G(d, n), we have the section

induced by ω which we denote by Γω,G. Note that, if we restrict Γω,G to X̃, then

Γ−1
ω,G(Dk) = B(ω) ∩ X̃.

Now, the image of Γω,G has dimension n+d(n−d), while Dk has codimension (n−d)+d(n−d)+k
so the expected dimension of the intersection is d− k. Denote the projection of the intersection
to X by S(ω). We can make k a multi-index and make similar constructions; we get the expected

dimension of S(ω
(i)
j ) is d− (k1 + · · ·+ ks).

Suppose {ω(i)
j } is a collection of 1 forms such that the

∑
ki = d and 0 is an isolated special

point. Then all of the various S(ω
(i)
j ) using different subcollections must have the correct ex-

pected dimension; for if S(ω
(i)
j ) is too large for one subcollection, the excess dimension will be

passed to the others and 0 will not be isolated.
Denote Dk ∩ Im(Γω,G) by SN (ω).
We will also be interested in the notion of a restricted special point; given a collection of

1-forms ω
(i)
1 , · · · , ω(i)

d−ki+1, 1 ≤ i ≤ s, we say p is a restricted special point of the collection if

it is a special point, and the sequence of points pm are in S(ω
(i)
j ), 1 ≤ i ≤ s − 1. In the next

proposition we will prove that if the collection ω
(i)
j , 1 ≤ i ≤ s− 1, is proper, then every special

point is a restricted special point.

4.1. Setup. Here we describe our assumption about the collections.

Let Xd, 0 ⊂ Cn, 0 and {ω(i)
j }, a collection of 1-forms with 1 ≤ i ≤ s, 1 ≤ j ≤ d−ki+ 1, where∑

ki = d.
Assume the collection is arranged so that the first r collections are 1-forms which are linearly

independent at 0. We assume the 1-forms in the remaining collection are all linearly dependent
at the origin. We assume the collection has an isolated singularity at the origin, and that the

generic point of S(ω
(i)
j ), 1 ≤ i ≤ s − 1, is in Xreg. If r = s we also assume that the collection

made up of the first s− 1 elements is proper for X.

Proposition 4.7. If, in the above set-up, 0 is a isolated special point of the collection, there

exists a curve C on S(ω
(i)
j ), 1 ≤ i ≤ s−1, generically in Xreg, such that {ω} is linearly dependent

when restricted to the limiting tangent plane T at the origin, and the origin is the only point on

S(ω
(i)
j ) with this property.

Proof. There are two cases to consider.
Case 1: Assume r < s, assume a special point exists. This is also a special point for the

collection with the first s− 1 elements. Thus S(ω
(i)
j ), 1 ≤ i ≤ s− 1, has positive dimension and

its generic point is in Xreg. For C, use any curve on S(ω
(i)
j ), and let T be the limit tangent

plane, Tt the tangent plane to X at point t on curve C.

Then {ω(i)
j }, 1 ≤ i ≤ s − 1, are linearly dependent on Tt, since our point is in S(ωsj ); hence,

they are linearly dependent on T .
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Since {ω(s)
j } is linearly dependent at zero, they are linearly dependent on T also.

Clearly, any point for which such a curve exists is a special point, so the origin is the only
such point.

Case 2: r = s. Assume we have a special point then S(ω
(i)
j ), i ≤ s−1, has positive dimension

with generic point in Xreg. Denote the limit tangent plane on which all of our collections restrict
to be linearly dependent by T .

By the properness assumption, no component of SN (ω), i ≤ s − 1, can lie over S(X); for
every component of SN (ω) must have dimension d − k, k =

∑
ki, 1 ≤ i ≤ s − 1, while by the

properness assumption the points over S(X) must have dimension d− 1− k or less.
This implies that there exists a curve ϕ : C, 0→ X, 0 generically in Xreg∩S(ωij) with i ≤ s−1,

such that the limiting tangent plane to X along φ is T .

Now all the members of our collection are linearly dependent on T including {ω(s)
j }. �

The previous proposition explains why we are interested in collections which are proper. The
properness condition means that if we have a special point, then it is a restricted special point
as we can realize the limiting plane on which the collection is dependent as a limit of tangents to

X along a curve in some S(ω
(i)
j ). This is the key to our ability to study the intersection number

of Im(Γω) and DkX by restricting to S(ω
(i)
j ).

There is a converse to the proposition which requires a stronger genericity condition.

Proposition 4.8. Suppose in the setup of this section, the collection made up of the first s− 1
elements is proper for X, if the elements of the collection are linearly independent at the origin. If
they are not linearly independent, assume they are proper for X on a deleted neighborhood of the

origin. Suppose the origin is the only point where there exists a curve C on S(ω
(i)
j ), 1 ≤ i ≤ s−1,

generically in Xreg, such that {ω} is linearly dependent when restricted to the limiting tangent
plane T at the origin. Then the origin is an isolated special point of the collection.

Proof. Clearly the origin is a special point. If it were non-isolated, then we could apply the
previous proposition to find curves detecting the nearby special points as well. �

These two propositions show that when studying the behavior of special points, with the right

genericity requirements, we can restrict from X to S(ω
(i)
j ), 1 ≤ i ≤ s − 1, and having done so

consider only the last element of the collection.
The next proposition serves as a “moving lemma”.
This proposition and its corollary, together with the multiplicity polar theorem, will show

that the invariant of the next section computes the intersection number of Im(Γω) and DkX . The
argument we give is adapted from that appearing in [18], Theorem 1.2, p. 187.

To prove our proposition we want to consider the map:

Θ : DksX |S(ω(i))i≤s−1
×M(d− ks + 1, n)→M(d− ks + 1, n)

given by

Θ((x, L),M) = L− (ω(x) +M).

If we resolve the singularities of the set DksX |S(ω), then the composition Θ◦πDks
X

is a submersion

because of the contribution from the M term.
In resolving these singularities there may be multiple components. For example, for X2 a

surface in C3 with an isolated singularity at the origin, then if s = 2 and ω consists of two forms
then Dk2X |S(ω) has (0,M(2, 3)) as a component. This follows because the polar curve of X2 is
non-empty, which implies that the generic element of M(2, 3) has less than maximal rank on a

curve on X2, hence lies in Dk2X along that curve. However, there will be a unique component
for each component of S(ω) which surjects onto that component. Denote the components of

DksX |S(ω) which surject onto S(ω) by DksS(ω). The fiber of these components over the origin are

those collections of forms which are the limits of forms degenerate along a curve in S(ω).
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Let C denote Θ−1(0) ∩ (DksS(ω) ×M(d − ks + 1, n)) and consider the projection p from C to

M(d− ks + 1, n).
Now

dimC = dimS(ω(i))i≤s−1 + dim(generic fiber of Dks) = ks + [(d− ks + 1)(n)− ks].

By hypothesis, we have an isolated singularity at 0, so the dimension of S(ω(i))i≤s must be

0. This implies the dimension of S(ω(i))i≤s−1 is ks, the minimum possible, because otherwise,

adding another form to the collection will not lower the dimension of S(ω(i))i≤s to 0.
The expression in [ ] above holds because the codimension of Dks in M(, ) is just

−[(d− ks + 1) + (n− d)] + n+ 1 = ks,

so the map C → M(d − ks + 1, n) is a map between equidimensional spaces. Assuming that
0 ∈ X is an isolated special point of the collection, the fiber over 0 of p is a single point ω(0).

Earlier in this section, we began to look at the intersection number of Im(Γω) and DkX .

Restricting to S(ω(i))i≤s−1, we can also look at the intersection number of Im(Γω(s)) and DksS(ω).

Our moving lemma will be used to calculate this piece of the intersection number of Im(Γω) and
DkX .

Definition 4.9. A special point of a collection {ω(i)
j } of germs of 1-forms on X is non-degenerate,

if the section Γ
ω

(i)
j
, 1 ≤ i ≤ s, meets DkX transversally at the point.

We can now state our proposition.

Proposition 4.10. Given a collection as in the set up of this section, assume that the section
Γ
ω

(i)
j

, 1 ≤ i ≤ s− 1, meets DkX transversely on a Z-open subset of S(ω(i))i≤s−1. Then for generic

M , the collection {ω(s) + tM} meets DksS(ω) transversely at all points close to the origin for t

sufficiently small, t 6= 0. The number of such points is just the degree of the projection from C to
M(d−ks+1, n) over the origin in M(d−ks+1, n). Further, each such point is a non-degenerate

point of the collection {ω(i)
j }, 1 ≤ i ≤ s.

Proof. Pick M in the complement of the ∆(p), the discriminant of the projection from C to
M(d− ks + 1, n), such that the line between 0 and M does not intersect these sets close to 0.

Over the points of this line close to 0, the number of points is the degree of p and p is a
submersion at each point. This implies that the map obtained by fixing the M term in Θ is a
submersion also. Note that the dimension of the source and target of this map are the same,
hence the map is in fact a diffeomorphism.

We are interested in exploring the consequences of this fact.
Let us first consider the case where at the points on the fiber of p over tM , t small, x is in

the regular part of S(ω(i))i≤s−1, and the element in Dks has rank one less than maximal when
restricted to TXx. Then the resolution of Dks |S(ω) is an equivalence at such points because

Dks |S(ω) is smooth there, so we can work on the tangent space of Dks |S(ω). At each point this

splits into a direct sum–the part along S(ω(i))i≤s−1, and the part along the fiber. There is a
similar decomposition of the tangent space of the target–the part which can be identified with
the fiber in the source, and the normal space to this. The differential is the identity on the
tangent space to the fiber, so since the differential is surjective, the restriction of the differential
to the tangent space to S(ω(i))i≤s−1 must surject onto the normal space to the fiber. In turn
this implies that the section induced from ω + tM meets Dk transversely. In fact, since for
transversality we just need the tangent vectors to S(ω(i))i≤s−1, and the other elements of the

collection intersect DkX transversely, the collection {(ω(i))i≤s−1, ω
s+tM} meets DkX transversely.

In the general case, note that the assumptions we made above coincide with the resolution
being an equivalence. If the resolution is not an equivalence, then some tangent vectors on the
resolution will be in the kernel of the differential of the projection, hence the differential will not
be surjective, contradicting our choice of M . So we only need to consider the above special case.
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�

Remark 4.11. If {ω(i)}, 1 ≤ i ≤ r, is the maximal subset of our collections which meet properly
at the origin, then we can choose M so that {ω(i), ωs + tM}, 1 ≤ i ≤ r, also meet properly at
the origin for t 6= 0. This will be implicit in our application of our moving lemma.

Denote the collection obtained by moving our last element by ω̃. From the last propostion
we have:

Corollary 4.12. In the set-up of last proposition we have

Im(Γω) · DkX = Γ(ωs) · Dks |S(ω(i))i≤s−1
+ Im(Γω̃) · DkX .

Proof. The effect of moving {ω(s)} is to split off points from the intersection Im(Γω) · DkX . The
first intersection number on the right is the degree of the projection from C to M(d− ks + 1, n),
and this is the number of points split off from the intersection number on the left hand side of
the equation. Moving {ω(s)} ensures that the intersection Γ(ωs + tM) · Dks |S(ω(i))i≤s−1

is void

at the origin, i.e., the intersection point at the origin has split into non-degenerate points. The
second term on the right is the remaining points at the origin. �

Corollary 4.13. In the set-up of last proposition, suppose in addition that the collection {ω(i)},
1 ≤ i ≤ s− 1, is proper. Then

Im(Γω) · DkX = Γ(ωs) · Dks |S(ω(i))i≤s−1
.

Proof. Since the collection {ω(i), ω̃(s)} , 1 ≤ i ≤ s − 1, is proper, the intersection of Γ{ω(i),ω̃(s)}
and DkX is empty.

�

Remark 4.14. If Xn−1 is a hypersurface and ωi a collection of forms with (n − 1) − k + 1

elements, which are linearly independent at the origin, then it is easy to check if X̃(0) ∩ B(ω)
has dimension (n− 1)− k − 1.

Suppose dim X̃(0) ∩ B(ω) ≥ (n − 1) − k. To each point in B(ω) there corresponds a unique
point in Proj(ω), the projectivized row space of ωi.

Note that points of Proj(ω) corresponding to points of X̃(0) ∩ B(ω) are limiting tangent
hyperplanes to X at the origin, so the set of points of Proj(ω) which are limiting tangent
hyperplanes has dimension ≥ (n − 1) − k = dimProj(ω) so every point is a limiting tangent
hyperplane.

This is true if and only if JM(f,
∑
αiωi) fails to be a reduction of JM(f) ⊕ OX for all αi.

This can be checked using curves.

Remark 4.15. We continue with the hypersurface isolated singularity case.
Suppose j + 1 collections {ωi} 1 ≤ i ≤ j + 1 are in general position i.e., all are linearly

independent at 0 and dim ∩ Proj({ωi}) is (n − 1) −
∑
i ki. Suppose the properness condition

holds for the first j elements but fails for the collection. A dimension count shows that a whole
component of ∩Proj{ωi} must lie in the fiber of the Nash modification over the origin. Again
this is easy to check.

5. Computing Chern Numbers

In this section,we will begin to connect the machinery of section 2 to the computation of
Chern numbers of a collection of forms, preparing for the next section which contains our main
results.

Ebeling and Gusein-Zade proved this next proposition.

Proposition 5.1. [7] Let X be a representative of the germ of a complex analytic space, then

the local Chern obstruction ChX,0{ω(i)
j } of a collection {ω(i)

j } of germs of holomorphic 1-forms
is equal to the number of special points on X of a generic deformation of the collection.
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If X is defined by F : Cn → Cp, then the Jacobian module of X denoted JM(X), is the
submodule of OpX generated by the partial derivatives of F. Given a collection of 1-forms with r
elements defined on X, form the p+ r by n matrix D(F, ω) by augmenting the Jacobian matrix
DF at the bottom with the 1-forms from the collection. Call the submodule of the free module

Op+rX , generated by the columns of

(
D(F )
ω

)
, the augmented Jacobian module and denote it

by JM(X,ω).
Note that this construction works in general. Given a submodule M of a free module F , one

can select a matrix of generators, and augment the matrix using linear forms. The points at
which the new matrix has less than maximal rank is independent of the choice of generators of
M as the row space does not change.

In the next lemma, we begin to relate the theory of integral closure and the infinitesimal
limiting geometry of our sets of forms.

Lemma 5.2. Let X be a representative of the germ of a complex analytic space, and let

L = {l1, l2, · · · , ls}
be a collection of linear forms. Consider the hyperplanes defined by the forms

∑
aili. None of

these hyperplanes is a limiting tangent hyperplane to X, 0 at the origin if and only if

JM(X)p = JM(X),

where p is a submersion whose kernel is the intersection of the kernels of l1, · · · , ls.
(Here JM(X)p is the submodule of JM(X) generated by ∂

∂vi
f where the vi span the kernel of p.)

Proof. Let us prove this result in the special case when p is a linear projection on the last s
variables.

If JM(X)p is a reduction of JM(X), then so is JM(X)h, because ker(h) ⊃ ker(p), where
h =

∑
aili. Hence, the hyperplane defined by h is not a limiting tangent hyperplane.

Let us prove now that, if JM(X)h = JM(X) for all h, then JM(X)p = JM(X).
Let K = ker(p), we will show JM(X)p ⊂ OkX is a reduction of JM(X) ⊂ OkX if every

hyperplane that contains K is not a limiting tangent hyperplane.
Suppose JM(X)p is not a reduction. This implies that there exist a map φ : (C, 0) → (X, 0)

and a non-zero l : Cn → C, such that if N is the matrix of generators of JM(X)p and M is the
matrix of generators of JM(X), then the ideal < η1(t), · · · , ηn(t) > generated by the components
of (l·N)◦ϕ(t) has larger order than the ideal < m1(t), · · · ,mn(t) > generated by the components
of l ·M ◦ ϕ. Denote the order of l ·M ◦ ϕ by k. Then

lim 1/tk < m1(t), · · · ,mn(t) >

defines a limiting tangent hyperplane. Since m1 = η1, · · · ,mp = ηp, and the order of these terms
is greater than k, it follows that T is a limiting tangent hyperplane which contains the kernel of
p.

�

Given a collection of linear forms L = {l1, l2, · · · , ls}, we let JM(X,L) denote the module
whose matrix of generators is gotten by adding as rows {l1, l2, · · · , ls} to the jacobian matrix
of a set of generators of I(X). In a similar way, let (M,L) denote the module whose matrix of
generators is gotten by adding as rows the {l1, l2, · · · , ls} to a matrix of generators of M .

Proposition 5.3. Let L = {l1, l2, · · · , ls} be a collection of linear 1-forms linearly independent
at the origin. Consider the hyperplanes defined by the forms

∑
aili. None of these hyperplanes

is a limiting tangent hyperplane to X, 0 at the origin if and only if JM(X,L) = JM(X)⊕OsX .

Proof. It suffices to show that JM(X,L) is a reduction of JM(X) ⊕ OsX if and only if JM(X)p
is a reduction of JM(X). Suppose JM(X,L) is a reduction of JM(X) ⊕ OsX , then JM(X,L)

contains JM(X)⊕ 0. Restricting to curves, this implies JM(X)p contains JM(X).
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Suppose JM(X)p is a reduction of JM(X). Then JM(X,L) contains JM(X) ⊕ 0. Let {vi}

be a collection of vectors such that li(vj) = δi,j , then JM(X,L) contains

(
D(F )(vi)
L(vi)

)
and

JM(X)⊕ 0, so it contains JM(X)⊕OsX �

The previous two propositions can be easily generalized using the same proof. Given M a
submodule of a free module F , ProjanR(M) has a canonical projection to X which is a fibration
over the Z-open subset UM of X on which M has maximal rank. The fiber of this map consists
of hyperplanes. Call the planes in the fibers over UM , M -planes. The planes in the fibers over
C(M) then, are limiting M -planes. Then the analogues of the previous two results are:

Proposition 5.4. Let X be a representative of the germ of a complex analytic space, and let
L = {l1, l2, · · · , ls} be a collection of linear forms linearly independent at the origin. Consider
the hyperplanes defined by the forms

∑
aili. Then the following statements are equivalent:

1) None of these hyperplanes is a limiting M -hyperplane to X, 0 at the origin.

2) If p is a submersion whose kernel is the intersection of the kernels of l1, · · · , ls then

Mp = M.

3) There is an equality of modules:

(M,L) = M ⊕OsX .

Let {ω(i)
j } be a collection of 1-forms on the variety X, for simplicity we will denote S(ω

(i)
j )

with 1 ≤ i ≤ s− 1 by C. (Recall C is the set of points where all of the elements of the collection

{ω(i)
j } with 1 ≤ i ≤ s−1 are singular.) In the next proposition we are interested in characterizing

those collections for which the origin is not a special point or restricted special point.

Proposition 5.5. Let (X, 0) be the germ of an equidimensional reduced analytic variety, X a

representative of the germ and {ω(i)
j } a collection of 1-forms; assume the generic point of each

component of C lies in Xreg. Assume also the last collection {ω(s)
j } is linearly independent at 0.

The origin is not a restricted special point of the collection {ω(i)
j } if and only if JM(X,ω(s))|C is

a reduction of JM(X)|C ⊕Od−ks+1
C .

If all of the collections are linearly independent at the origin, and we assume the first s − 1

elements are proper, then the origin is not a special point of the collection {ω(i)
j } if and only if

JM(X,ω(s))|C is a reduction of JM(X)|C ⊕Od−ks+1
C .

Proof. Let L = {l1, l2, · · · , ld−ks+1} be a collection of linear 1-forms such that ωsi (0) = li. As in
Lemma 3.3 of [17], using the integral form of Nakayama’s lemma we have that JM(X,ω(s))|C is a

reduction of JM(X)|C⊕Od−ks+1
C if and only if JM(X,L)|C is a reduction of JM(X)|C⊕Od−ks+1

C .
So we can work with L.

Now we apply the previous proposition, where M = JM(X) restricted to C. Then the limiting
M -hyperplanes are just the tangent hyperplanes to X as the generic point of each component
of C is in Xreg. If some combination of the ωsi (0) = li is a limiting tangent hyperplane to X,
then that combination is zero when restricted to the limiting tangent plane, and the collection
is linearly dependent.

If we assume properness, then since every special point is a restricted special point, the result
follows.

�

We will need a refinement of this result for later. The key point in the above argument, is
that JM(X,ω(s))|C is a reduction of JM(X)|C ⊕Od−ks+1

C if and only if none of the hyperplanes

defined by {ω(s)(0)} is a limiting tangent hyperplane to X, 0 at the origin along curves on C.
Given the collection {ω(s)} , we can deform it to {ω(s)(0)} by using the linear deformation. This
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fixes the one jet of the collection. Denote this family of collections by {ω(s)
L }. Denote the family

of sections defined by fixing the first s−1 collections and deforming the last one using the linear
deformation by Γ{ωs−1,L}.

Proposition 5.6. Assume JM(X,ω(s))|C is a reduction of JM(X)|C ⊕ Od−ks+1
C . Then, the

intersection Im(Γ{ωs−1,L}) · DkX is constant in the linear deformation.

Proof. Since JM(X,ω(s))|C is a reduction of JM(X)|C⊕Od−ks+1
C , the same is true for any member

of the family {ω(s)
L }. Suppose for some parameter value t0 that the intersection number changes,

i.e., a point splits off. This gives a curve of points in C, where at each point p, a member of {ω(s)
L }

is degenerate when restricted to some plane which is a point over p in the Nash modification.

This implies that {ω(s)
L }(t0) is degenerate when restricted to some plane which is a point over

0 in the Nash modification. As this plane can be reached through a curve on C, it contradicts

that JM(X,ω
(s)
L (t0))|C is a reduction of JM(X)|C ⊕Od−ks+1

C . �

Definition 5.7. Hd−1(X), by definition, consists of all elements of OpX which are in the integral
closure of JM(Xd) except at the origin. A related ideal is Hc−1(X,Cc) where C is a subset of
X of dimension c. It consists of all elements of OpC which are in the integral closure of JM(X)
restricted to C except at the origin.

In general, Hi(X) consists of all elements of OpX which are in the integral closure of JM(X)
off a set of codimension i + 1. Sometimes we write Hi(JM(X)). The meaning of Hi(X,C

c) is
similar.

Proposition 5.8. Let (X, 0) be the germ of an equidimensional reduced analytic variety, X a

representative of the germ and {ω(i)
j } a collection of 1-forms; assume the generic point of each

component of C lies in Xreg. Assume also the last collection {ω(s)
j } is linearly independent at 0.

The origin is at most an isolated restricted special point of the collection if and only if JM(X,L)|C
is a reduction of Hc−1(X, C)|C ⊕Od−ks+1

C except possibly at x.
If in addition, the first s − 1 collections are proper on a deleted neighborhood of the origin,

then the origin is at most an isolated special point.

Proof. Suppose the origin is an isolated restricted special point. Let U be a neighborhood of
0 in X such that x is the only restricted special point. Then by proposition 4.7, Γω(s) misses
T ∗(X)|C on U \ {0}.

Then JM(X,L)|C is a reduction of JM(X)|C ⊕ Od−ks+1
C at all x ∈ U , x 6= 0 by the previous

proposition.
Hence by definition it is a reduction of Hc−1(X, C)|C ⊕Od−ks+1

C except possibly at x.
On the other hand assume the reduction criterion holds at each point of U − 0. This im-

plies JM(X,L)|C is a reduction of JM(X)|C ⊕ Od−ks+1
C as this last module is a submodule of

Hc−1(X, C)|C ⊕ Od−ks+1
C . This implies that there are no restricted special points on U except

possibly the origin.
If in addition, the first s − 1 collections are proper on a deleted neighborhood of the origin,

then the lack of restricted special points on U − 0 is equivalent to a lack of special points.
�

The last proposition leaves open the question as to whether the origin is a restricted special
point if the reduction criterion holds. The next proposition settles this point.

Proposition 5.9. Suppose the origin is at most an isolated restricted special point. Then

e(JM(X,ω(s))|C , JM(X)|C ⊕Od−ks+1
C , 0)

= e(JM(X,ω(s))|C , Hc−1(X, C)⊕Od−ks+1
C , 0)

−e(JM(X,L)|C , Hc−1(X, C)⊕Od−ks+1
C , 0)

where L is a collection of linear 1-forms such that 0 is not a restricted special point for it.



54 TERENCE GAFFNEY AND NIVALDO G. GRULHA JR.

The origin is not a restricted special point if and only if

e(JM(X,ω(s))|C , Hc−1(X, C)⊕Od−ks+1
C , 0)

= e(JM(X,L)|C , Hc−1(X, C)⊕Od−ks+1
C , 0)

where L is a collection of linear 1-forms such that 0 is not a restricted special point for it.

Proof. Since the origin is at most an isolated restricted special point all three multiplicities are
well-defined. Then, the proof is based on a fundamental result due to Kleiman and Thorup,
the principle of additivity [23]. Given a sequence of OX modules A ⊂ B ⊂ C such that the
multiplicity of the pairs is well-defined, then

e(A,C) = e(A,B) + e(B,C).

The result follows by setting A = JM(X,ω(s))|C , B = JM(X)|C ⊕Od−ks+1
C , and

C = Hd−1(X, C)⊕Od−ks+1
C .

Using the fact that 0 is not a restricted special point for L we have that the multiplicity of
(JM(X,L)|C , Hd−1(X)|C ⊕Od−ks+1

C ) and (JM(X)|C ⊕Od−ks+1
C , Hd−1(X)|C ⊕Od−ks+1

C ) are the
same.

The origin is not a restricted special point by 5.5 if and only if JM(X,ω(s))|C is a reduction

of JM(X)|C ⊕Od−ks+1
C . The reduction statement holds at 0 if and only if

e(JM(X,ω(s))|C , Hc−1(X, C)⊕Od−ks+1
C , 0) = 0,

which is true if and only if

e(JM(X,ω(s))|C , Hc−1(X, C)⊕Od−ks+1
C , 0) = e(JM(X,L)|C , Hc−1(X, C)⊕Od−ks+1

C , 0),

where L is a collection of linear 1-forms such that 0 is not a restricted special point for it.
�

Our next step to apply the Multiplicity Polar Theorem is to show that the polar curve of
JM(X,ω(s) + tM)|C is empty.

Proposition 5.10. Let Xd, 0 ⊂ Cn, 0 and {ω} a collection of 1-forms {ω(i)
j }, 1 ≤ i ≤ s,

1 ≤ j ≤ d − ki + 1,
∑
ki = d. Assume further the collection has an isolated singularity at the

origin, and that the generic point of S(ω
(i)
j ), 1 ≤ i ≤ s − 1 is in Xreg. Then, the polar curve

of the module JM(X,ω(s) + tM)|C is empty for C = C × C, where M is a collection of generic
linear forms.

Proof. The polar variety of codimension k of M in X denoted Γk(M) is constructed by inter-
secting ProjanR(M) with X ×Hg+k−1 where Hg+k−1 consists of the set of hyperplanes which

contain a general plane of dimension g + k − 1, and g is the generic rank of JM(X,ω(s) + tM),
then projecting to X. Note that if M has n generators, so that ProjanR(M) is contained in
X × Pn−1, and the dimension of ProjanR(M) is greater than or equal to n + 1 then the polar
varieties of M of codimension n or more are empty, because the codimension of a point in Pn−1

is n− 1.
With this observation in mind, the next step is to compute the dimension of

ProjanR(JM(X,ω(s) + tM)|C).

This dimension is the dimension of the base plus the generic rank of

(
D(F )
ω

)
minus 1. Now

the generic rank of the jacobian matrix is n − d, while the generic rank of the jacobian matrix
augmented by the {ωsj} is (n− d) + (d− ks + 1) = n− ks + 1. This follows because the generic
point of C is a smooth point of X hence the jacobian matrix has maximal rank there. Because
0 is an isolated singularity, it follows that the augmented matrix generically has maximal rank.
Thus we have, since g = n− ks + 1,

dim ProjanR(JM(X,ω(s) + tM)|C) = ks + 1 + (n− ks + 1))− 1 = n+ 1.
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Since the dimension of ProjanR(JM(X,ω(s) + tM)|C) is greater than or equal to the number
of generators, there is no polar curve for JM(X,ω(s) + tM).

�

Proposition 5.11. Suppose X is smooth and ω is a 1-form such that ω has a Morse point at
0, then e(JM(X,ω), JM(X)⊕OX , 0) = 1.

Proof. Since X is a smooth manifold, the number of equations of X is n − d, so the matrix of
generators of JM(X,ω) has n−d+1 rows, n columns, and a matrix of generators of JM(X)⊕OX
also has n− d+ 1 rows with the same n− d first rows. We may assume the equations for X are
z1 = · · · = zn−d = 0.

Then the Rees algebra of JM(X) ⊕ OX is OX [S1, . . . , Sn−d, Sn−d+1], while the ideal corre-
sponding to the inclusion of the Rees algebra of JM(X,ω) in that of JM(X)⊕OX is (Si, zjSn−d+1)
where 1 ≤ i ≤ n− d, n− d < j ≤ n. Now in this example, we know that

1 = e(JM(X, f),On−d+1
X ) = e(JM(X, f), JM(X)⊕OX) + e(JM(X)⊕OX ,On−d+1

X ),

while e(JM(X) ⊕ OX ,On−d+1
X ) = 0 since the two modules are the same. This uses the addi-

tivity of the multiplicity, the fact that ω is Morse on X, and the fact that the multiplicity of
e(JM(X,ω),On−d+1

X ) is the colength of its ideal of maximal minors.
Now we want to show that we get the same result even if the number of equations is larger

than n− d. (This happens for example, if we are working at a smooth point of a space which is
singular at the origin.) Suppose our choice of generators for I(X) has p generators, p ≥ n − d.
By a change of coordinates we can assume the equations have the form x1 = · · · = xn−d =
gn−d+1 = · · · = gp = 0, where the matrix of generators of JM(X) must have the last d columns
0. Then the Rees algebra of JM(X) ⊕ OX is the same as before, as is the ideal induced by
JM(X,ω), so the multiplicity of the pair is the same. �

Proposition 5.12. Let {ω(i)
j } be a collection of 1-forms, with 1 ≤ i ≤ s, 1 ≤ j ≤ d − ki + 1,∑

ki = d such that, restricted to Xd, {ω(s)} has a non-degenerate special point at x, x a smooth
point of C and X. Then

e(JM(X,ω(s))|C , JM(X)|C ⊕OCn−ks+1 , x) = 1.

Proof. Let us suppose, that X is a smooth manifold and the number of equations of X is n− d
so that the matrix of generators of JM(X,ω(s)) has n − ks + 1 rows, n columns, and a matrix

of generators of JM(X)⊕Od−ks+1
C also has n− ks + 1 rows with the same n− d first rows. We

may assume the equations for X are x1 = · · · = xn−d = 0. Since we assume C is smooth at x,
and it has dimension ks, assume that the last ks coordinates on X define C. We may assume

that the collection ω(s) has form {dxn−d+i, dh} where 1 ≤ i ≤ d− ks and h =
∑ks
j=1 x

2
n−ks+j .

As in the last Proposition, in this example, we know that

1 = e(JM(X,ω(s))|C ,On−ks+1
C )

= e(JM(X,ω(s)), JM(X)|C ⊕OC) + e(JM(X)|C ⊕Od−ks+1
C ),On−ks+1

C ),

while e(JM(X)|C ⊕Od−ks+1
C ,On−ks+1

C ) = 0 since the two modules are the same. This uses the
additivity of the multiplicity, the fact that ω is non-degenerate on X, and the fact that the
multiplicity of e(JM(X,ω(s)),On−ks+1

X ) is the colength of its ideal of maximal minors, and as in
the last Proposition, the general result follows.

�

6. Main Result

Before giving our main result, it is useful to consider the difference between the case of a
vector bundle well-defined at all points, and a bundle like the tangent bundle to a singular space

which is not well-defined at S(X). In the second case, we get a special point if X̃(0) ∩ B(ω) is
non-empty. If we alter the last collection of forms, then we can make the last collection generic
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on C, but the singular locus of the modified forms may still be non-empty. In this case the
intersection number Im(Γω̃) and DkX may still be non-zero at the origin.

In the first case, the analogue of X̃(0) consists of a single point, so by altering the last
collection of forms we can ensure that the intersection number Im(Γω̃) and DkX is zero at the
origin.

This phenomena is the reason that the formula for the Chern numbers for the Nash bundle
has many terms, while that of a vector bundle on X has only one.

The next theorem is the key step in the proof of our main result. It allows us to fix each of
the collections in turn, until we are left with collections which are linearly independent at the
origin and which are proper. Of course, this last collection has no special points.

Theorem 6.1. Let (Xd, 0) ⊂ (Cn, 0) be the germ of an equidimensional reduced analytic variety,

with representative X, {ω(i)
j }, a collection of 1-forms with 1 ≤ i ≤ s, 1 ≤ j ≤ d−ki+1,

∑
ki = d.

Assume further the collection has an isolated singularity at the origin, and that the generic point

of S(ω
(i)
j ), 1 ≤ i ≤ s− 1, is in Xreg. We have that,

ChX,0{ω(i)
j } = e(JM(X,ω(s))|C , JM(X)|C ⊕Od−ks+1

C , 0) + Im(Γω̃) · DkX .

Proof. Let us consider the family of sets C × C. Let πC denote the projection from C × C to C,
and πt the projection to C. By conservation of number and taking M as in the Proposition 4.10,
Γ(ω(s)) · T ∗(X)|C is just

Γ(ω(s) + tM) · T ∗(X)|C
for t close to 0, and this is just the number of non degenerate special points of

{(ω(s))1≤i≤s−1, ω
(s) + tM}

for t 6= 0, and the intersection number Im(Γω̃) · DkX . (Recall that the collection ω̃ was defined
before Cor 4.12.) To show that the Multiplicity Polar theorem applies, we must also show that

C(Projan(R(JM(X × C, ωt)πt
|C×C)))(0) = C(Projan(R(JM(X,ω)|C))),

except possibly over (0, 0) ∈ C×0. Since N = JM(X)|C×COC×C⊕Od−ks+1
C×C as a family of modules

is independent of t, ProjanR(N) is a product, hence C(ProjanR(N))(0) = C(ProjanR(N(0))).
Now, at any point p of C × 0 close to the origin, there exists a neighborhood U of p such
that on U , JM(X × C, ωt)πt

|C×C = N . This implies that over U , ProjanR(N) is finite over
ProjanR(JM(X × C, ωt)πt |C×C) and, on U ∩ C × 0, ProjanR(N(0)) is finite over

ProjanR(JM(X,ω0)|C).

Now, since ProjanR(JM(X,ω0)|C) ⊂ ProjanR(JM(X × C, ωt)πt
|C×C)(0), the desired equality

follows, for any element of ProjanR(JM(X×C, ωt)πt
|C×C)(0) has a preimage in ProjanR(N)(0)

which is ProjanR(N(0)), and the last set maps to ProjanR((JM(X,ω0)|C)). So, the multiplicity
polar theorem applies. Note, that since ProjanR(N) is a product, N has no polar curve, and by
5.10 we know that JM(X × C, ωt)πt

|C×C) has no polar curve either. Now, by Proposition 4.10

we have, ChX,0(ω
(i)
j ) = Γ(ωs + tM) · T ∗(X)|C .

Then, using the Multiplicity Polar Theorem we have,

ChX,0(ω
(i)
j ) = e(JM(X,ω(s))|C , JM(X)|C ⊕Od−ks+1

C , 0) + Im(Γω̃) · DkX .
�

Suppose the collection is ordered so that the first r collections meet properly and r is the

largest integer for which this is true. Let Ci denote C(ω(1), . . . , ω(i), ω̃(s), . . . , ω̃(i+2)) where

i ≤ s − 1, and ω̃(j) is a collection of generic linear forms so that the collections {ω(i)}, i ≤ r,

{ω̃(j)} meet properly.
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Corollary 6.2. Suppose the collection is ordered so that the first r collections meet properly and
r is the largest integer for which this is true. In the setup of the last Theorem, we have that

ChX,0(ω) =

i=s−1∑
i=r

e(JM(X,ω(i+1))|Ci , JM(X)|Ci ⊕O
d−ki+1+1
Ci , 0)

Proof. We prove the Corollary by applying the previous theorem multiple times. First, to
{ω(s)|Cs−1

}, then to {ω(s−1)|Cs−2
}. Finally, when all but one of our collections meet properly,

applying the theorem to {ω(r+1)|Cr} produces only a single term as the intersection number term
is 0.

�

Let Ci′ denote C(ω̃(s), . . . , ω̃(i+2)). Then, Ci′ is related to the polar varieties of X. For

C(ω̃(i+2)) is the polar variety of codimension k(i+2), so Ci′ is the intersection of the correspond-
ing polar varieties. If X is a hypersurface, then in fact this is the polar variety of codimension∑s
i+2 k(j). The hypersurface case is special because since TXx, x ∈ X0 has codimension 1, the

kernels of all of the ω̃(j) are contained in TXx if x ∈ Ci′ , hence x is in the polar variety defined
by the union of the kernels.

Corollary 6.3. In the set up of the last proposition we have

ChX,0(ω) =

i=s−1∑
i=r

e(JM(X,ω(i+1))|Ci , JM(X)|Ci ⊕O
d−ki+1+1
Ci , 0)

=

i=s−1∑
i=r

e(JM(X,ωi+1)|Ci , Hci−1(X, Ci)⊕Od−ki+1+1
Ci , 0)

−e(JM(X, ω̃i+1)|Ci , Hci−1(X, Ci)⊕Od−ki+1+1
Ci , 0).

Proof. Apply Proposition 5.9 to expand

e(JM(X,ω(i+1))|Ci , JM(X)|Ci ⊕O
d−ki+1+1
C , 0).

�

We want to specialize our results to the case where Xd, 0 ⊂ Cn is an ICIS to compare with
those of [7]. Given a collection of holomorphic forms ω with an isolated singular point at 0,
Ebeling and Gusein-Zade define another notion of index in [7]. In the case X, 0 is an ICIS, the
index amounts to smoothing X as well as making the forms general, then counting the number
of singular points of the new collection on the smoothing. This index is an extension of the
GSV-index [20, 28].

This index can be calculated as follows: suppose ω
(i)
j , 1 ≤ i ≤ s, 1 ≤ j ≤ nki + 1,

∑
ki = d,

augment the jacobian matrix of X for each i with ω
(i)
j , producing s matrices. Form an ideal

in On, using as generators, the generators of I(X), and the maximal minors of the augmented
matrices. Denote the resulting ideal by I

X,ω
(i)
j

. Then the index, denoted indX,0({ω}) is just the

colength of I
X,ω

(i)
j

in On. ([7], Theorem 20.) Using this index they show that

ChX,0(ω
(i)
j ) = indX,0({ω})− indX,0({l})

where l = {l(i)j } is a generic collection of forms. ([7] Cor. 4.)
We will see that this formula can be recovered from the last corollary. If X is an ICIS, and

the Ci have the minimal dimension then the Ci are Cohen-Macaulay, with ideal the ideal of X
and the maximal minors of the augmented matrices. Further, the matrix of generators of JM(X)
has maximal rank except at the origin when restricted to Ci. This implies that Hci−1(X, Ci)|Ci
is free, so e(JM(X,ω(i+1))|Ci , Hci−1(X, Ci) ⊕ Od−ki+1+1

Ci , 0) = e(JM(X,ω(i+1))|Ci). Since OC i is
Cohen-Macaulay, the last multiplicity is just the colength of the ideal formed by the maximal
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minors of the augmented matrices formed from JM(X), the collection of forms used to define Ci
and ω(i+1). It follows that

e(JM(X,ω(i+1))|Ci) = ind({ω(1), . . . , ω(i), ωi+1, ω̃(s), . . . , ω̃(i+2)}).

Now the sum on the right hand side of the last corollary telescopes to

ChX,0(ω
(i)
j ) = indX,0({ω})− ind({ω(1), . . . , ω(r), ω̃(s), . . . , ω̃(r+1)}).

Since the last collection on the right hand side is proper, an argument similar to that of Prop.
5.5 shows that the last term is indX,0({l}).

In the case of surfaces it is not hard to compute with our formula, and we give some examples.
As preparation we give two versions of our formula for the case of surfaces which are not ICIS.

The general case of our theorem becomes:

Corollary 6.4. Let (X, 0) ⊂ (Cn, 0) be the germ of a purely 2 dimensional reduced analytic
variety, with representative X, {ω}, a collection of sets of 1-forms {ω(i)} 1 ≤ i ≤ 2, each with
two elements. Assume further the collection has an isolated singularity at the origin, and that

the generic point of S(ω
(1)
j ) is in Xreg. We have that,

ChX,0{ω(i)
j } = e(JM(X,ω(2))|C , JM(X)|C ⊕Od−ks+1

C , 0) + Im(Γω̃) · DkX .
Further,

ChX,0{ω(i)
j } = e(JM(X,ω(2))|C1 , H0(X, C1)⊕On−dC1 , 0)

−e(JM(X, ω̃(2))|C1 , H0(X, C1)⊕On−dC1 , 0) + e(JM(X,ω(1))|C0 , H0(X, C0)⊕On−dC0 , 0)

−e(JM(X, ω̃(1))|C0 , H0(X, C0)⊕On−dC0 , 0).

Proof. This is Theorem 5.13 and Corollary 5.15 for the surface case. �

Further simplification is possible, if X is a complete intersection.

Corollary 6.5. Suppose in addition X is a complete intersection. Then

ChX,0{ω(i)
j } = e(JM(X,ω(2))|C1 , 0)− e(JM(X, ω̃(2))|C1 , 0)

+e(JM(X,ω(1))|C0 , 0)− e(JM(X, ω̃(1))|C0 , 0)

= Γ1(ω(1)) · Γ1(ω(2))− Γ1(ω̃(1)) · Γ1(ω̃(2))

Proof. The first equality holds because X is a complete intersection, and the generic point of
Ci lies in the regular part of X, the Jacobian module of X has maximal rank off the origin, so
H0(X, C1)⊕On−dC1 is just OnC1 so the multiplicity of this pair is just the ordinary Buchsbaum-Rim
multiplicity. Since our curves are reduced their rings are Cohen Macaulay, so the multiplicity of
JM(X,ω(2))|C1 at 0 is just the colength of the ideal generated by the determinant of the matrix
of generators of JM(X,ω(2))|C1 . This determinant on X defines the union of S(X) and Γ1(ω(2))
since it does so generically. Thus, this colength is just the intersection of Γ1(ω(1)) with Γ1(ω(2))
and S(X). Applying this insight to each of the terms of the first equality and canceling terms
results in the next equality. �

We give an example using this result.

Example 6.6. Let (X, 0) ⊂ C3 be the germ of a singular surface defined by the function
f : C3, 0→ C, 0, where f(x, y, z) = y2 − x3. Take the collection of 1-forms ω = {ω1, ω2}, where
ω1 = {(0, x3, z2), (z3, 0, x2)}, and ω2 = {(y2, z3, 0), (0, y3, z2)}. Then the local Chern obstruction
of this collection is 47.
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We will show this using the second equality in the last Corollary. The matrix of generators
of JM(X,ω1) and JM(X,ω2) are respectively,−3x2 2y 0

0 x3 z2

z3 0 x2

 ,

−3x2 2y 0
y2 z3 0
0 y3 z2


Calculating the determinants of the matrix of generators of JM(X,ω2) and JM(X,ω1), we

get z2(2y3 + 3x2z3) and −3x7 + 2z5y. Since we are only interested in the polar curves of ωi, we
use the defining equation to get the equivalent forms z2x2(2xy + 3z3) and y(−3xy3 + 2z5). So
the equations of the polar curves of our collection are z2(2xy + 3z3) = 0 and −3xy3 + 2z5 = 0.
To calculate the intersection multiplicity, pull back to the normalization using the map

n(t, z) = (t2, t3, z).

So we want the intersection multiplicity of z2(2t5 + 3z3) = 0 and −3t11 + 2z5 = 0, which is
(2)(11)+25=47. Since our underlying space is Whitney equisingular, the polar curves of X are
empty, so the term we have computed is the only term in the corollary, so the local Chern
obstruction of this collection is 47. (Notice that in this example, one component of the polar of
JM(X,ω2) is not reduced. Nonetheless, a careful reading of the proof of our main result shows
that in this simple case the main result continues to hold.)

We describe briefly how the work of this section can be generalized. Start with an analytic
space X, and a bundle Ek defined on a Zariski open, everywhere-dense subset U of X, Ek a
sub-bundle with k-dimensional fiber of a bundle, F l, where F l is defined everywhere. Form the
relative Nash transformation N(X,E, F ) of X as follows: form the bundle over X of k planes
in the fiber of F , consider the image of the section of this bundle formed from the fibers of Ek,
and take its closure. The relative Nash transformation has a canonical bundle ξ on it which is
a sub-bundle of the pullback of F l to N(X,E, F ), ξ and the pullback of E to N(X,E, F ) agree
restricted to U . By construction and restriction, sections of F ∗ give sections of E∗|U , and ξ∗.
If a collection of sections of E∗|U arise in this way from a collection of sections of F ∗, and the
collection has an isolated special point at x ∈ X, then we can compute the contribution to the
Chern number of the dual from our set of sections (hence to ξ) as we did in this section to the
dual of the Nash bundle. As in the Nash bundle case, the contribution will be a sum depending
on the polar varieties of E relative to F and their intersections. These polar varieties provide
some measure of the geometry of E at its singular points on X.
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