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A nuestro maestro Xavier Gómez-Mont, con gratitud

Abstract. Let (F2, . . . , Fn) : Cn → Cn−1 be a non-singular polynomial map. We introduce
a non-singular polynomial vector field X tangent to the foliation F having as leaves the fibers

of the map (F2, . . . , Fn). Suppose that the fibers of the map are irreducible in codimension

≥ 2, that the one forms of time associated to the vector field X are exact along the leaves, and
that there is a finite set at the hyperplane at infinity containing all the points necessary to

compactify the affine curves appearing as fibers of the map. Then, there is a polynomial F1 (a

Jacobian mate) such that the completed map (F1, F2, . . . , Fn) is a local biholomorphism. Our
proof extends the integration method beyond the known case of planar curves (introduced by

Ilyashenko [Ily69]).

1. Introduction and Statement of Results

The topological or analytical classification of non-singular polynomial foliations in Cn is a
very hard problem, even in the lowest dimensional case n = 2. See [ACL98], [BT06], [Fer05],
[NN02], [Tib07] and references therein.

We study the (holomorphic) polynomial foliations by curves F in Cn which can be obtained
from the fibers of complex polynomials F2, . . . , Fn ∈ C[z1, . . . , zn], chosen in such a way that

(1)

 (F2, . . . , Fn) : Cn −→ Cn−1 and

dF2 ∧ · · · ∧ dFn does not vanish at any z ∈ Cn.

The fibers of the map in (1) are nonsingular, but possibly reducible, affine curves that we denote
by {Ac}. The leaves of F are the connected components (a unique one generically) of those
affine curves. We say that F is a non-singular polynomial foliation having n− 1 first integrals.

As a first step toward a general classification a natural problem is to study topologically or
analytically this family of foliations.

An interesting subfamily is as follows. The map (F2, . . . , Fn) has a Jacobian mate when there
exists a polynomial F1 ∈ C[z1, . . . , zn] such that

(2)

 F = (F1, F2, . . . , Fn) : Cn −→ Cn and

dF1 ∧ dF2 ∧ · · · ∧ dFn = dz1 ∧ · · · ∧ dzn.
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Recall that the Jacobian Conjecture in Cn asserts the existence of the inverse map F−1 (which
has to be also polynomial).

Given F , where are the obstructions to the existence of F1?
Note that the singularities of the extended foliation to projective space, still denoted by F , are

in the hyperplane at infinity of Cn. In the classification problem one can study the singularities
at infinity. Instead, our approach focus on the affine behavior and possible “jumps” in the
geometry of the fibres {Ac}. By a classical result of S. A. Broughton, see [Bro83], there exists
an open Zariski set U ⊂ Cn−1 such that the affine foliation F is a locally trivial fibration in
(F2, . . . , Fn)−1(U).

Hence we must consider a priori the existence of atypical fibers (i.e. fibers outside U) of (1)
and try to describe the behavior of F . In particular, we point out that an example of (1) having
atypical fibers and admitting a F1, will provide a counterexample for the Jacobian Conjecture.

Another related problems with the existence of a Jacobian mate are the following. First, in
the holomorphic category, on Stein manifolds the problem of the existence of F1 is posed in
[For03a] p. 146 and [For03b] p. 96, and it remains open (we thank Filippo Bracci for pointing
this out to us). Second, the symmetric problem, i.e. given F1 how to recognize the existence of
(F2, . . . , Fn) such that (2) is currently under study for n ≥ 3, see [FR05] p. 3 or [Kal02].

The main tool that we introduce is a polynomial vector field X depending in an essential way
of F . Consider the Jacobian matrix of the map (1)(

∂Fj
∂zi

)
2≤j≤n, 1≤i≤n

,

and let Ai(z1, . . . , zn) be the determinant of the submatrix obtained after removing the i–th
column, then

(3) X :=

n∑
i=1

(−1)i+1Ai(z1, . . . , zn)
∂

∂zi
,

obviously X is nowhere zero. If there exists a Jacobian mate F1, then

(4) (F1, . . . , Fn)∗
∂

∂w1
= X.

X restricted to any fiber Ac, c ∈ Cn−1, of the map (1), gives a tangent vector field on Ac,
that we will denote by Xc. It determines a unique holomorphic one form ωc on Ac, when we
require ωc(Xc) = 1. Thus, each map (F2, . . . , Fn) produces a collection of pairs

(5) {(Ac, Xc) | c ∈ Cn−1}, equivalently {(Ac, ωc)}.

In Section 2, we briefly develop this ideas to make the argument more transparent.

Remark 1. 1. The vector field X defines a singular holomorphic foliation F by curves in CPn,
such that its singular locus is contained in the hyperplane at infinity CPn−1

∞ .
2. The polynomial vector field X has n − 1 polynomial first integrals on Cn, and the leaves of
the foliation defined by X in Cn are given by the curves {Ac | c ∈ Cn−1}.
3. The hyperplane CPn−1

∞ is saturated by leaves of F .

In addition

Remark 2. Up to multiplication by a non-zero constant, X is the unique non vanishing polyno-
mial vector field giving a trivialization for the tangent line bundle of the non-singular holomorphic
foliation F on Cn.
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Indeed, if a second polynomial vector field Y (providing a trivialization of the tangent line
bundle to the foliation) exists, then X = λY , for λ an entire function on Cn, nowhere zero. But
λ is clearly polynomial, hence it is necessarily a non-zero constant. Moreover, X is independent
on the choice of any polynomial F1 satisfying (2): it only depends on (F2, . . . , Fn). Hence, we
can use X to explore the existence of F1.

The main result about affirmative conditions for the existence of F1, is the following

Theorem 1. Let (F2, . . . , Fn) : Cn −→ Cn−1 be a polynomial map such that dF2 ∧ · · · ∧ dFn
does not vanish at any point of Cn. Consider X as in (3), and suppose furthermore that:
(i) The reducible fibers {Ac} ⊂ Cn determine an algebraic subset of codimension at least 2.
(ii) For every c ∈ Cn−1, the pairs (Ac, ωc) satisfy that∫

γ

ωc = 0, for every [γ] ∈ H1(Ac,Z).

(iii) There is a finite set Y ⊂ CPn∞ such that each affine curve Ac is completed in CPn by adding
points in Y .
Then, there is a polynomial F1 such that

dF1 ∧ dF2 ∧ · · · ∧ dFn = dz1 ∧ · · · ∧ dzn.

Note that the second hypothesis is clearly necessary for ωc to be an exact one form on the
fibers Ac. Concerning the first, it is in fact necessary for the integration method that we use:
Example 1 shows a function with a reducible fiber (of codimension one), with zero periods, and
such that the function constructed by integration as a candidate for Jacobian mate has a pole
on that fiber (see Remark 6).

The third hypothesis, obviously satisfied in the case n = 2, is automatically satisfied in case
that the map F is surjective. In this case, as F has no critical points, all the fibers are one
dimensional, and according to [Ga99] p. 158, they share the same cone at infinity, i.e. all the
affine curves are completed by adding the same points at infinity (a finite set). Note that this
cone at infinity is defined by the vanishing of the polynomials in the ideal generated by the terms
of highest degree of the elements of the ideal generated by the components of the function F .
This cone at infinity is contained in, but not necessary equal to, the singular set of the foliation
F extended to projective space.

After proving our result by integration method (see below), we realized that in case F is
surjective, it is a consequence of a Theorem of Ph. Bonnet (Theorem 1.5 in [Bon03]). Never-
theless, even in that case, as his approach is algebraic, and our proof extends the integration
method beyond the case of planar curves previously known (starting with Ilyashenko [Ily69]),
we consider that it can be of interest for the people working in the field. Moreover, with this
technique as a fundamental tool, together with some considerations on the degree of the map F
and computations of the index of X restricted to the fibers of (F2, . . . , Fn) (see the end of this
Introduction), we have also obtained some new results on negative conditions for the existence of
a jacobian mate. They will be presented in a future work, including the solution in a particular
case (see Example 1) of a problem posed by L. Dũng Tráng and C. Weber in [DW94].

1.1. Method and Structure of the proof. The proof of Theorem 1 is given in several steps
below. Note that, to avoid confusion we use Cnz and Cn−1

w to denote the domain and the target
in map (1).
Step 1. We construct a polynomial one form of time ω for X on Cnz . By integration of ω along

the irreducible fibers of F , see equation (8), we get a candidate function F̃1.
Step 2. We verify that the candidate function is holomorphic on the whole Cnz , see Proposition
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1.
Step 3. We estimate the growth of F̃1. This is the hardest step. We will study the growth

of F̃1 at infinity. We recognize the growth of |F̃1(z)| in a suitable set of complex lines in Cnz .
This requires bounds for: the norm of the end points of the integration paths in (8), see Lemma
1, the norm of the ramification points in the fibers {Ac}, see Lemma 2, and the length of the

integration paths in (8), see Lemma 3. Thus, |F̃1(z)| has polynomial growth in suitable lines,
see Lemma 4.
Step 4. In order to show that F̃1(z) is a polynomial, we make an argument by contradiction,
using a property of the growth of entire non-polynomial functions, see Lemma 5 and Proposition
2. We show explicitly that F1 satisfies dF1 ∧ dF2 ∧ . . . ∧ dFn = dz1 ∧ . . . ∧ dzn.

Concerning the proof of Theorem 1, we point out that the powerful method of integration
of one forms ω along the algebraic leaves of a polynomial foliation {Ac} in C2 to find F1, was
introduced by Yu. Ilyashenko, in his foundational work on the second part of the Hilbert’s
16–th problem [Ily69]; see also Yakovenko’s article [Yak94], that inspired us when searching for
the estimates in Step 3 above. The higher dimensional method of integration of rational one
forms ω along the leaves of singular codimension–one foliations in higher dimensional affine and
projective manifolds appeared in the work [Muc95] of the third author of this article. In our
Theorem 1, the bounds for the integration of one forms along the leaves of an one–dimensional
foliation on Cn is more difficult.

2. Meromorphic maps and vector fields on Riemann surfaces

Let CP1 = Cw ∪ {∞} be the projective line, having affine coordinate w. The vector field
∂/∂w induces a holomorphic vector field in CP1 having double zero at ∞ ∈ CP1. Let L be a
compact Riemann surface.

Remark 3. Let f : L → CP1 be a non-constant meromorphic function. The non-identically
zero meromorphic vector field

∂

∂f
:= f∗

(
∂

∂w

)
is well defined on L. Moreover, f has canonically associated a meromorphic one form ω, such
that the diagram commutes

(6)

{ω}
↗

{f : L → CP1} l
↘
{X = ∂

∂f },

X and ω are non-identically zero.

In fact, given f , we define ω = df . The one to one correspondence between meromorphic
vector fields and meromorphic one forms is given by the equation ω(X) ≡ 1. This ω is called
the one form of time for X, since for p0, p ∈ L we have

f(p)− f(p0) =

∫ p

p0

ω =

{
complex time to travel from
p0 to p under the local flow of ∂

∂f .

The diagram (6) comes from the theory of quadratic differentials, see [Muc02]. The correspon-
dence from ω to f in (6) is elementary.
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Remark 4. A non-identically zero meromorphic one form ω, determines a univalued meromor-
phic function f(p) =

∫ p
ω if and only if the periods and residues of ω vanish, i.e.∫

γ

ω = 0 for each [γ] ∈ H1(L − {poles of ω},Z).

In this case, all the arrows in (6) are bijections.

3. Proof of Theorem 1

Starting from the map (F2, . . . , Fn) satisfying (1), we get the associated vector field X de-
scribed by (3) in the Introduction.

3.1. A candidate function. For the construction of a polynomial one form of time ω, we show
that the one form ωc on Ac such that ωc(Xc) = 1 can be obtained as the restriction to the fiber
Ac of a polynomial one form on Cnz .

Indeed, as X is never vanishing, recall equation (3), by Hilbert’s Nullstellensatz we know that
1 ∈ (A1, . . . , An). Then, there are polynomials a1, . . . , an ∈ C[z1, . . . , zn] such that

1 = a1A1 + · · ·+ anAn.

These ai are the coefficients of such an ω.
Observe that if {a′i | i = 1, · · · , n} are polynomials giving another possible way of defining a

one form ω′ such that ω′|Ac
= ωc, then

(a1 − a′1)A1 + · · ·+ (an − a′n)An = 0.

Hence, for ω on Cnz (as above) and every path γ in Ac we have∫
γ

ωc =

∫
γ

ω.

The third hypothesis in the statement of theorem asserts that there is a finite set

Y = {the points at infinity of the projective curves Pc | c ∈ Cn−1
w } ⊂ CPn−1

∞ ,

so that we can choose a hyperplane H in CPn such that H ∩ Y = ∅. We can also assume that
it is not contained in the union of the projective varieties given by the closures of the affine
hypersurfaces defined by Ai = 0, i = 1, . . . , n.

We consider the open set

Rc = Cnz − {Ac | reducible }.
Every point z ∈ Rc is in exactly one affine curve of the family {Ac} which we denote as Ac(z),
where c(z) := (c2(z), . . . , cn(z)) := (F2, . . . , Fn)(z) ∈ Cn−1

w . The degree of the projective curve
Pc(z) (the projectivization of Ac(z)) is

d ≤ d2 · · · dn, where dj = (degree Fj).

We have in addition that H ∩ Pc(z) consists of d points in Cnz , counted with multiplicities, for

every c(z) ∈ Cn−1
w . Therefore, we have

H ∩ Ac(z) = {p1(z), . . . , pd(z)}.
By hypothesis Ac(z) is irreducible, having fixed some point z ∈ Cnz , we join z to the above

points p`(z) ∈ H, by using smooth paths γ`(z), ` = 1, . . . , d . inside the affine curve Ac(z). We
observe that

(7)
fc : Ac(z) −→ C

z 7→
∑d
`=1

∫
γ`(z)

ω
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is a well–defined holomorphic function, independently of the choices of paths, using the second
hypothesis in Theorem 1. Moreover, fc extends as a meromorphic function on the projective
curve Pc(z) and there is a well–defined function

(8)
F̃1 : Rc ⊂ Cnz −→ C

z 7→
∑d
`=1

∫
γ`(z)

ω.

3.2. Holomorphicity of the candidate function.

Proposition 1. F̃1(z) is holomorphic on the whole Cnz .

Proof. Clearly F̃1(z) is holomorphic along the irreducible curves Ac(z) ⊂ Rc. Now, we

prove the holomorphicity of F̃1 at z0 in the transverse directions to F . We will distinguish two
situations, depending on the number of points in the intersection of the leaf and the transversal
H.

Case 1. Assume Ac(z0) ∩ H consists exactly of d different points. Thus, the leaf Ac(z0) is
transverse to H.

We may consider without loss of generality, that Σn−1 is a tranversal to F at z0, i.e. biholo-
morphic to some (n− 1)–dimensional polydisk ∆n−1(z0, ε), centered at z0, embedded in Cnz and
transversal to F . Now, let z be a point in the transverse directions j = 2, . . . , n, i.e. z is inside
the polydisk Σn−1.

Fixed z0, we consider the leaf Ac(z0) and the smooth integration paths γ`(z0), ` ∈ {1, . . . , d},
inside the leaf Ac(z0).

Since the foliation F is non-singular on Ac(z0), a small variation of z in Σn−1, a transversal at
z0, induces a small (smooth) variation in the paths of integration in (8). In fact, the holonomy
of the foliation F produces germs of biholomorphisms

hol(γ`(z0), · ) : (Σn−1, z0)→ (Σn−1
` , p`(z0)) , ` ∈ {1, . . . , d},

where each Σn−1
` ⊂ H is a local transversal to the foliation F , given by a small (n − 1)–

dimensional polydisk in the hyperplane H centered at p`(z0), the end point of the path γ`(z0).
If z moves holomorphically in Σn−1 around z0, the respective end points of the paths γ`(z)

move holomorphically in Σn−1
` ⊂ H, since the end points are given as the values of the biholo-

morphism hol(γ`(z0), z) ∈ Σn−1
` .

Summing up, the end points of the integration paths in (8) and the one form ω vary holomor-

phically with z. Thus, F̃1 is holomorphic in all directions around z0, when Ac(z0) is transverse
to H.

Case 2. Assume Ac(z0) ∩ H consists of less than d different points. Thus, the leaf Ac(z0) is
tangent to H at some points.

The set T = {z ∈ Cnz | Ac(z) is tangent to H} is a complex algebraic variety in Cnz of codi-
mension least one (T can be empty).

Recall that in (8) the intersection points Ac(z0) ∩H are taken with multiplicities. It follows

that F̃1(z) extends continuously to T and is locally bounded at T . By the Riemann extension

Theorem (see [FG02], p. 38), F̃1(z) extends holomorphically to T , hence on Rc.
Finally, the reducible fibers {Ac} ⊂ Cnz determine an algebraic subset of codimension at least

2. By the Second Riemann extension Theorem (see [FG02], p. 151), F̃1(z) extends holomorphi-
cally over the points in reducible fibers, hence on the whole Cnz . 2

3.3. The candidate has polynomial growth. We will prove that F̃1(z) is a polynomial

function. For this we study the growth of |F̃1(z)|, when |z| goes to infinity along some lines, this
in our goal in this subsection.
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Let % = [m1 : . . . : mn] ∈ CPn−1
∞ be a non-singular point of the foliation F in the hyperplane

at infinity. We make z go to % in a simple way. Let ({t ∈ C}∪{∞}) be a projective line, consider
the parametrized line

(9) z(t) : (C ∪ {∞})→ CPn,

z(t) =

{
(m1t, . . . ,mnt) for t ∈ C,

% for t =∞.
In all what follows
1) z and |z| will go to infinity as z = z(t),
2) (F2, . . . , Fn)(z(t)) := (c2(t), . . . , cn(t)) := c(t) ∈ Cn−1

w ,
3) Ac(t) := Ac(z(t)) and H ∩ Ac(t) := {p1(t), . . . , pd(t)}.

In order to estimate the growth of

|F̃1(z(t))| =

∣∣∣∣∣
d∑
`=1

∫
γ`(z)

ω

∣∣∣∣∣ ,
we will first construct integration paths

γ`(z(t), s) : [0, 1]→ Ac(t)
inside the family of curves {Ac(t)} and bound their lengths in terms of |t| (see Lemma 3). Note
that we are using the notations

γ`(z) = γ`(z(t)) = γ`(z(t), s)

simultaneously, the dependence on t will be continuous, and smooth on the real variable s. We
will bound the growth of ω along the path, from a bound on |γ`(z(t), s)| for all the points in the
trace of the paths, this is attained in the proof of Lemmas 1, 2.

The construction of the integration paths require formerly, the study of the projections of
Ac(t) onto the coordinate axes.

Consider the natural projections Πi : Cnz → Ci, (z1, . . . , zn) 7→ zi, onto the i–th axis. Obvi-
ously, they induce functions for every fixed t,

Πi : Ac(t) → Ci ,

which are holomorphic branched coverings. Moreover in some special cases for F these functions
can be constant.

Fixing t, and so the fiber Ac(t), and one direction of projection i ∈ {1, . . . , n} as above, we
have two relevant sets of points and their corresponding associated disks in Ci, having radii
r(i, t), R(i, t) > 0 as follows:

The first collection of points and associated disks comes from the i–th projection of z(t) and
of the intersection points of Ac(z) with H

{Πi(z(t)),Πi(p1(t)), . . . ,Πi(pd(t))} ⊂ ∆(0, r(i, t)) ⊂ Ci.

The second collection of points is determined by the ramification points of the function Πi :
Ac(t) → Ci, {ρ1(i, t), . . . , ρβ(i, t)} ⊂ Ac(t), and its projection to the i–th coordinate:

{Πi(ρi(i, t)), . . . ,Πi(ρβ(i, t))} ⊂ ∆(0, R(i, t)) ⊂ Ci.

The number β depends on Ac(t) and Πi, but we omit this dependence in the notation. By (b)
of Corollary 1 below, β will be constant for large enough t.
So, fixed the i–th direction, our problem is “for z(t) going to fixed % ∈ CPn−1

∞ , bound the growth
of the radii r(i, t), R(i, t) for all sufficiently large |t|”.

Now, we work in order to estimate of the radious r(i, t).
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Lemma 1. Fixing i ∈ {1, . . . , n}, there exists ξ ∈ N such that r(i, t) < |t|ξ for large enough
t. Moreover, this estimate holds for z(t) going to infinity in the directions %′ in a small enough
polydisk ∆n−1(%, ε) ⊂ CPn−1

∞ avoiding singularities of F .

Proof. The intersection points in H ∩Ac(t) are described by the system of algebraic equations
in (z1, . . . , zn),

F2 − c2(t) = 0, F3 − c3(t) = 0, . . . , Fn − cn(t) = 0, H(z1, . . . zn) = 0.

For fixed t and i, we want to compute the values of zi where these intersections appear. The
elimination ideal of the above system (see [CLO07] Chapter 3, Section 2, in particular Theorem
3 p. 125), that by definition is

〈F2 − c2(t), . . . , Fn − cn(t), H〉 ∩ C[zi],

determines the required points.
The elimination procedure, described explicitly in [CLO07] p. 116–117, depends on the choice

of a Groebner basis for the ideal of our system of equations (that always exists, see [CLO07] p.
77 Corollary 6). There is a polynomial

Qi(zi, t) = ai,0(t)zdi + ai,1(t)zd−1
i + · · ·+ ai,d−1(t)zi + ai,d(t)

describing the position of {Πi(p1(t)), . . . ,Πi(pd(t))} in Ci; here {ai,α(t)} are polynomials in t,
and d is the degree of the curves Ac(t).

The natural number ξ(i) = maxα{degree(ai,α(t))} depends on the Groebner basis chosen.
We can write

zdi +
ai,1(t)

ai,0(t)
zd−1
i + · · ·+ ai,d(t)

ai,0(t)
= 0.

Recall that ai,α(t)/ai,0(t) are α–th elementary symmetric functions of the roots. The roots of

Qi(zi, t) grow at most as maxα{ai,α(t)/ai,0(t)}, that is at most like |t|ξ(i), when t goes to infinity.

So they are contained in a disk of radius |t|ξ(i).
The computation of the growth is similar for every i ∈ {1, . . . , n}. Let us define

ξ = (max
i
{ξ(i)}) + 1.

In addition, for the original point z(t), the norm of the projection |Πi(z(t))| grows linearly, hence
Πi(z(t)) ∈ ∆(0, |t|ξ), for large enough t. The exponent ξ satisfies the assertion in the Lemma.

Finally, the bound is independent on the choice of %′ varying in a small enough polydisk
∆n−1(%, ε), that is the second assertion in the Lemma. 2

Now, we get the estimates for the radious R(i, t) of the disks containing all the projections of
the ramification points of Πi restricted to Ac(t).

Lemma 2. Fixing i ∈ {1, . . . , n}, there exists κ ∈ N such that R(i, t) < |t|κ for large enough
t. Moreover, this estimate holds for z(t) going to infinity in the directions %′ in a small enough
polydisk ∆n−1(%, ε) ⊂ CPn−1

∞ avoiding singularities of F .

Proof. Observe that the ramification points of Πi : Ac(t) → Ci come from the vanishing of
the i–th coordinate of the vectors in the kernel of the differential of the map (1) at the points in
Ac(t), which give the tangent space to Ac(t).

The condition above is given by the vanishing of the determinant of the matrix obtained by
adding (0, . . . , 1, . . . , 0), where the 1 is placed in the i–th column, as the last row to(

∂Fj
∂zi

)
2≤j≤n, 1≤i≤n

.
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This determinant is exactly Ai(z1, . . . , zn) in the definition of the vector field X, (3). Hence the
tangencies of Ac(t) with the hyperplanes {zi = const.} in Cnz are given by the following system
of algebraic equations in (z1, . . . , zn)

F2 − c2(t) = 0, F3 − c3(t) = 0, . . . , Fn − cn(t) = 0, Ai = 0.

For fixed t, we want to compute the i–th projection of the points where these tangencies appear.
The elimination ideal of the above system

〈F2 − c2(t), . . . , Fn − cn(t), Ai〉 ∩ C[zi],

determines the smallest algebraic variety containing the i–th projection of the ramification points
of {Πi(ρ1(i, t)), . . . ,Πi(ρβ(i, t))}.

Using the elimination procedure and the existence of Groebner basis for the ideal as in the
proof of Lemma 1, we know that there exists a polynomial

Pi(zi, t) = bi,0(t)zβi + · · ·+ bi,β−1(t)zi + bi,β(t)

whose roots give the projection of the ramification points above. The degree β is the number of
ramification points of Πi on Ac(z), and it is generically independent of i and t, for large enough
t.

We can estimate the growth of the roots of Pi(zi, t) when t goes to infinity, as we did in the
previous Lemma, so that we get a natural number κ(i) (depending on the choice of the Grobner
basis) such that they are contained in a disk of radius growing like |t|κ(i). Let us define

κ = (max
i
{κ(i)}) + 1;

this exponent provides the estimate in the Lemma. Finally, the bound is independent on the
choice of %′ varying in a small enough polydisk ∆n−1(%, ε), that is the second assertion in the
Lemma. 2

Summing up Lemmas 1 and 2, for the family of fibers Ac(t), we define the exponent ς :=
max{ξ, κ}. The n–dimensional polydisk ∆n(0, |t|ς) ⊂ Cnz , satisfies the following. The intersection

Ac(t) ∩∆n(0, |t|ς),
for large enough t, contains: the original point z(t); the points p`(t), ` = 1, . . . , d in Ac(t) ∩H;
and the ramification points ρj(i, t), j = 1, . . . , β(i, t) of the functions Πi : Ac(t) → Ci, for all
i ∈ {1, . . . , n}.

Corollary 1. There exists some t0 such that for all |t| > |t0| the following facts hold.
a) The intersection Ac(t) ∩∆n(0, |t|ς) is a path connected Riemann surface.
b) The family of Riemann surfaces

{Ac(t) ∩∆n(0, |t|ς) | |t| > |t0|}
is topologically trivial respect to t.

Proof. For a), note that there is always a direction such that the projection

Πi : (Ac(t) −∆n(0, |t|ς))→ Ci
is a non-constant, unramified holomorphic covering. Without loss of generality, we can suppose
i = 1. We remove from Ac(t) the preimages of the punctured closed disk {|z1| ≥ |t|ς} ⊂ C1.
These preimages are disjoint punctured disks in Ac(t) (i.e. biholomorphic to ∆(0, 1) − {0}).
Then, Ac(t) ∩∆n(0, |t|ς) is path connected.

For b), the atypical fibers of each Fj , j ∈ {2, . . . , n}, determine a finite number of hypersur-
faces, see [Bro83]. The projective closure of each of them intersects the hyperplane at infinity
in a hypersurface. If we choose the point at infinity %, in (9) outside of these hypersurfaces in
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CPn−1
∞ , then the family {Ac(t)} is locally trivial for suitable values of t. The assertion follows.

2

Lemma 3. There exists a point % ∈ CPn−1
∞ , such that for z(t) going to % as in (9), we have a

continuous family of smooth paths{
γ`(z(t), ·) : [0, 1]→ Ac(t) ∩∆n(0, |t|ς) , ` = 1, . . . , d

}
t∈U ,

where U = C−∆(0,M), satisfying that for every `, γ`(z(t), 0) = z(t) and γ`(z(t), 1) = p`(t), as
required for the paths in (8), with

(length of γ`(z(t), s)) < |t|K ,
for certain K ∈ N.

Moreover, the above assertions are valid for z(t) going to infinity in the directions %′ in a
small enough polydisk ∆n−1(%, ε) ⊂ CPn−1

∞ avoiding singularities of F .

Proof. Let us consider the polynomials Ai in the definition of the the vector field X, (3).
Recall that A1, . . . , An do not vanish simultaneously. For a generic choice of % ∈ CPn−1

∞ and for
large enough t, we have

Ai(z(t)) 6= 0, i ∈ {1, . . . , n}.
It follows that the initial points of the paths that we are searching for γ`(z(t), s) are not ramifi-
cation points of Π1, for large enough t. Observe that the projections Πi|Ac(t)

are then ramified
coverings over Ci.

We also observe that for a generic choice of % ∈ CPn−1
∞ the paths γ`(z(t), s) will have no

ramification points of Π1 as end points {p`(t)} for large enough t. To see this, recall that the
affine hyperplane determined by H is not contained in the hypersurface Ai = 0, for any i. Take
a point p ∈ H such that Ai(p) 6= 0, for every i. Clearly, the choice of p can be done in such a
way that all the points in F−1(F (p)) ∩H satisfy the preceding condition.

Take the line through the origin in Cn determined by p, and let % ∈ CPn−1
∞ be the cor-

responding direction. For z(t) going to infinity along this line, we define the algebraic affine
surface

S2 = {Ac(t) | t ∈ C}
given by the union of the fibersAc(t) intersecting the line {z(t) | t ∈ C}. In fact, (F2, . . . , Fn)(z(t)) :

C→ Cn−1
w is a polynomial entire curve C and its closure C is a rational projective curve in CPn−1.

Consider I(C) = 〈g1, . . . , gν〉 the affine ideal in C[w2, . . . , wn] describing C as an algebraic curve.
The ideal (F2, . . . , Fn)∗I(C) = 〈g1◦(F2, . . . , Fn), . . . , gν ◦(F2, . . . , Fn)〉 in C[z1, . . . , zn] determines
S2, showing that it is an algebraic surface.

By the conditions imposed in the choice of the direction % along which z(t) goes to infinity,
we can assure that {A1 = 0} ∩H ∩ S2 is at most a finite number of points. We get

{A1 = 0} ∩H ∩ Ac(t) = ∅
for large enough t. It follows that the end points {p`(t)} = H ∩Ac(t) are not ramification points
for large enough t, as we asserted. Observe that this is still the case for %′ in a small enough
polydisk ∆n−1(%, ε) ⊂ CPn−1

∞ .
We take the polydisk ∆n(0, |t|ς) in such a way that it contains z(t), the points p1(t), . . . , pd(t),

and all the ramification points of the projection Π1 in Ac(t) (see Lemmas 1 and 2). We will focus
on the restricted map

Π1 : Ac(t) ∩∆n(0, |t|ς)→ ∆(0, |t|ς).
Recall that Ac(t) ∩ ∆n(0, |t|ς) is path connected (Corollary 1, a). Choose a path from z(t) to
p`(t), and project it onto ∆(0, |t|ς). Now, choose a smooth path γ0(s) := z1(s), 0 ≤ s ≤ 1, in
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∆(0, |t|ς) joining z1(t) to Π1(p`(t)), homologous to this projected one, and so that it does not
pass through the image of any ramification point of Π1 on Ac(t). Lifting γ0 to Ac(t) we have a
smooth path

γ`(z(t), s) = (z1(s), z2(z1(s)), . . . , zn(z1(s))),

joining z(t) to p`(t) (we omit the dependence on ` and t, in the right term of above notation).
Using the Implicit Function Theorem, we have

Fj(z1, z2(z1), . . . , zn(z1)) = cj(t), j = 2, . . . , n

and taking derivatives we get a system of n− 1 equations

∂Fj
∂z1

+
∂Fj
∂z2

z′2 + · · · ∂Fj
∂zn

z′n = 0, j = 2, . . . n

where we write z′j =
∂zj
∂z1

. From the system above, we conclude that

(10) z′j =
Âj
A1

,

where Âj is the minor obtained after replacing the j–th column in the system by (−∂F2

∂z1
, . . . ,−∂Fn

∂z1
).

So we have that Âj = (−1)jAj , recall (3). If we now derive with respect to s the lifted path
γ`(z(t), s), we get

γ̇`(z(t), s) = (ż1, z
′
2 ż1, . . . , z

′
n ż1)(s)

and

(length of γ`(z(t), s)) =

∫ 1

0

|γ̇`(z(t), s)|ds =

(11) =

∫ 1

0

(
|ż1|
√

1 + |z′2|2 + · · ·+ |z′n|2
)
ds.

As {A1 = 0} and S2 ∩H are algebraic sets, there exists a number K0 ∈ N, such that each lifted
path is chosen such that

|A1(γ`(z(t), s)| ≥
1

|t|K0

going to infinity for all 0 ≤ s ≤ 1 and large enough t. Note that this condition can be assured
for all the directions %′ in a small enough polydisk ∆n−1(%, ε) at infinity.

We have from (10) and (11) that

(length of γ`(z(t), s)) ≤
∫ 1

0

|ż1|

√√√√1 +
|Â2|2 + · · ·+ |Ân|2

1
|t|K0

 ds.

As the determinants |Âj | are products of polynomials of known degrees(
|Â2|2 + · · ·+ |Ân|2

)
≤ |t|K1

for certain K1 ∈ N (for all 0 ≤ s ≤ 1) which gives

(length of γ`(z(t), s)) ≤ (length γ0) · |t|K0+K1 .

We finish by noting that a simple choice of the path γ0 verifying all the conditions required
above can be made inside the disk ∆(0, |t|ς), and in such a way that its length is less than twice
the diameter of the disk. This ends the proof of Lemma 3, choosing K > ς +K0 +K1. 2
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Remark 5. The estimate for the length in Lemma 3 is inspired by Yakovenko, see [Yak94], who
dealt with the case n = 2. We tried to make the construction transparent by lifting smooth paths
not passing through branching points, by means of the Implicit Function Theorem.

Lemma 4. |F̃1(z(t))| grows polynomially if |z(t)| goes linearly to infinity in the directions de-
termined by %′ ∈ ∆n−1(%, ε) ⊂ CPn−1

∞ .

Proof. We fix one parametrized complex line z = z(t) as in (9), going to a point at infinity

in the polydisk determined in Lemma 3, and bound the growth of F̃1(z(t)). Recall that we have

|F̃1(z(t))| =

∣∣∣∣∣
d∑
`=1

∫
γ`(z(t))

ω

∣∣∣∣∣ ≤
n∑
i=1

∣∣∣∣∣
d∑
`=1

∫
γ`(z(t))

ai(γ`(z(t)))dzi

∣∣∣∣∣ ;
where ai(z1, . . . , zn) are polynomials on Cnz defining ω (see the begin of Subsection 3.1), and the
notation γ`(z(t)) omit the dependence on the real parameter s.

We bound the terms in the righthand side for each aidzi and each path γ`(z(t)), where
i ∈ {1, . . . , n} and ` ∈ {1, . . . , d}. Note that∣∣∣∣∣

∫
γ`(z(t))

ai(z1, . . . , zn)dzi

∣∣∣∣∣ =

∣∣∣∣∫ 1

0

ai(γ`(z(t)))dzi(γ`(z(t)))

∣∣∣∣ .
Now we use the following bounds that were previously stated. Since |γ`(z(t))| < |t|ς and

ai(z1, . . . , zn) is a polynomial of degree δ(i) (this degree is not explicit, see Subsection 3.1), the
norm |ai(γ`(z(t)))| is bounded by |t|ς+δ(i). By Lemma 3, the lengths of the paths and their
projections dzi(γ`(z(t))) are bounded by |t|K . Finally, if δ := maxi{δ(i)}, then we can assert
that

|F̃1(z(t))| < nd|z(t)|ς+δ+K ,
for large enough t.

Moreover, all the bounds above remain true under variations of %′ in a small enough (n− 1)–
dimensional polydisk ∆n−1(%, ε) ⊂ CPn−1

∞ , as asserted in Lemmas 1, 2, and 3. 2

3.4. The candidate is polynomial. Now, in order to show that F̃1(z) is polynomial we proceed
by contradiction. The next result seems to be well known, however we could not find it explicitly
in the literature.

Lemma 5. Let Λ(z) be an entire non-polynomial function in Cnz . The locus of points [m1 : . . . :
mn] ∈ CPn−1

∞ such that |Λ(m1t, . . . ,mnt)| grows at most like |t|ρ, for large enough ρ ∈ N, is
contained in an algebraic subvariety of codimension at least 1 in CPn−1

∞ .

Proof. As usual, define the multi-index ν := (ν1, . . . , νn) ∈ (N ∪ {0})n and its associated
degree and monomial as

|ν| := ν1 + . . .+ νn, zν := zν11 · · · zνnn .

The power series expansion of our entire function is

Λ(z) =

∞∑
|ν|=0

cνz
ν .

Consider the directions m := [m1 : . . . : mn] such that |Λ(m1t, . . . ,mnt)| grows less than |t|ρ,
for all sufficiently large |t|, where ρ is fixed. For these directions the higher order terms in the
series must vanish, i.e. ∑

s≥1

 ∑
|ν|=ρ+s

cνm
ν

 tρ+s = 0.
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This equation must be true for sufficiently large |t|, in consequence it can be split in a numerable
set of equations ∑

|ν|=ρ+s

cνm
ν = 0, s ∈ N.

For fixed s, the corresponding equation is homogeneous of degree ρ+s, in the variablesm1, . . . ,mn

of CPn−1
∞ .

Λ is entire but it is not a polynomial, hence it has coefficients cν 6= 0 for arbitrarily large
|ν|. Take such a ν0 with cν0 6= 0. Then, the homogeneous equation of degree |ν0| determines a
non-trivial algebraic subvariety T|ν0| ⊂ CPn−1

∞ .

For each ν with |ν| = ρ + s, we have an algebraic subvariety T|ν| ⊂ CPn−1
∞ . The set of

directions producing growth at most like |t|ρ is the intersection⋂
|ν|≥ρ+1

T|ν| ⊂ T|ν0|,

that is the desired algebraic variety. 2

Proposition 2. F̃1(z) is polynomial.

Proof. By Lemma 4 the restriction F̃1(m1t, . . . ,mnt) grows at most like a polynomial in

|t| for an open set ∆n−1(%, ε) of points in CPn−1
∞ . Assuming that F̃1(z) is a non-polynomial

entire function, we get a contradiction, since it must grow slowly in at most a proper algebraic

subvariety of points in the hyperplane at infinity, by Lemma 5. Thus, F̃1 is a polynomial. 2

Let us check the algebraic independence of F̃1 with respect to F2, . . . , Fn. Considering the
holomorphic n–form

dF̃1 ∧ dF2 ∧ · · · ∧ dFn = φ(z1, . . . , zn)dz1 ∧ · · · ∧ dzn,

φ is a nowhere vanishing polynomial. Indeed, by contradiction, let p ∈ Cnz be a point with

φ(p) = 0. This says that dF̃1|p is linearly dependent with dF2|p, . . . , dFn|p. Then, for dF̃1|p
induces the zero one form on the tangent line TpAc at p. This is a contradiction, since dF̃1 is the
multiple d · ω (here d ≥ 1 is the degree of Ac) and ω is non-zero in every TpAc. Hence φ ∈ C∗.
We define F1 := (1/φ)F̃1. The proof of Theorem 1 is done.

3.5. Some examples. For n = 2, we show polynomials F2 satisfying the condition that dF2

is nowhere zero, having in one case all the periods of ω zero, and with non-zero periods in the
other.

Example 1. A non-singular polynomial with zero periods

F2(z1, z2) = z1 − z2
1z2.

This is the polynomial described by S. A. Broughton, studied in [Bro83], [DW94] and [Dun08],
but without considering the residues as we do here. It has irreducible typical fiber Ac =
{F2(z1, z2) = c}, c 6= 0, biholomorphic to C∗. When Ac is completed with its points at in-
finity, we have the rational curve: z2

0z1 − z2
1z2 − cz3

0 = 0. It meets the infinity line z0 = 0 at
two points, [0 : 1 : 0] and [0 : 0 : 1]. The first is a smooth point of the curve, and the second a
singular one. Note that we can parametrize our projective curve as

Υ[s : ζ] = [ζ2s : ζ3 : ζs2 − cs3] : CP1 → Ac,

the two distinguished points corresponding to s = 0 and to ζ = 0.
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In the affine neighbourhood given by z1 = 1, we have that the curve can be parametrized as
ϕ(s) = (s, s2 − cs3), and so (for s 6= 0), we have (1/s, s − cs2) in the original C2 = {z0 ≡ 1}.
Hence, its derivative (−1/s2, 1− 2cs) (that coincides with the restriction of

X = z2
1

∂

∂z1
+ (1− 2z1z2)

∂

∂z2
,

to the curve), says that we have the vector field ϕ∗X = ∂/∂s in CP1, which is regular at s = 0.
Concerning the point [0 : 0 : 1], we have that the curve has a cusp. If s 6= 0, and for ζ 6= 0,

we note that the image point is [1 : ζ : (ζ − c)/ζ2], that is the point of affine coordinates
φ(ζ) = (ζ, (ζ − c)/ζ2) in the original C2 = {z0 ≡ 1}. The tangent vector to the affine curve so
parametrized is φ′ = (1, (−ζ + 2c)/ζ3). Comparing with the restriction of the vector field X to
it, we have that

X|φ(ζ) = φ∗(ζ
2 ∂

∂ζ
),

and the one form such that ω(X) = 1, is written as dζ/ζ2 on the curve. Its period around the
pole at ζ = 0 vanishes.

Moreover, if we ignore for a moment the fact that the atypical fiberA0 = {z1 = 0}∪{1−z1z2 =

0} has two irreducible components, and we try to construct F̃1 on C2
z − {F2 = 0}, we get the

next result.

Remark 6. For F2(z1, z2) = z1−z2
1z2, the candidate function F̃1 has a pole in the atypical fiber

A0 = {z1z2 = 1} of F2.

Indeed, a global one form of time is

ω = 4z2
2dz1 + (1 + 2z1z2)dz2,

in fact ω(X) ≡ 1. Consider the line H = {z1 − z2 = 0} transversal to the foliation defined by
the fibers of F2. For each point z = (z1, z2), define c = z1 − z2

1z2 and consider the points

H ∩ Ac = {p1(c), p2(c), p3(c)} = {φ(ζ1), φ(ζ2), φ(ζ3)}.
For c 6= 0, they are determined in the domain of φ(ζ) : C∗ → Ac by the three roots of the
polynomial ζ3 − ζ + c = 0. Note that φ(ζ) depends on c, but we omit this fact in our notation.
In particular since c = z1 − z2

1z2 we have that φ(z1) = (z1, z2) holds. Following (8), there is a
holomorphic function

F̃1 : C2
z −A0 −→ C

(z1, z2) 7→
∑3
`=1

∫
γ`(z1,z2)

ω =
∑3
`=1

∫ ζ`
z1

dζ
ζ2 .

We want to study the behavior of F̃1(z1, z2) near the atypical fiber A0 := {1 − z1z2 = 0}. For
example for a 6= 0, we fix z1 = a and compute

lim
(a,z2)→A0

|F̃1(a, z2)| = lim
z2→ 1

a

|F̃1(a, z2)|.

Note that for c = 0,

H ∩ A0 = {(1, 1), (0, 0), (−1,−1)} = {φ(1), φ(0), φ(−1)}.
By using the continuity of the roots of ζ3− ζ + c = 0 as functions of the parameter c = a− a2z2

near 0 (equivalently, for z2 near 1/a), we obtain that the values {ζ1(z2), ζ2(z2), ζ3(z2)} describing
H ∩ Ac remain near {1, 0,−1} respectively. We get

lim
z2→ 1

a

∣∣∣∣∣
3∑
`=1

∫ ζ`(z2)

z1

dζ

ζ2

∣∣∣∣∣ =

∣∣∣∣∫ 1

a

dζ

ζ2
+

∫ 0

a

dζ

ζ2
+

∫ −1

a

dζ

ζ2

∣∣∣∣ =∞.
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In fact, in the righthand side the first and third integrals remain bounded when z goes to 1/a.

Hence, |F̃1(a, z2)| goes to infinity, when z2 goes to 1/a. F̃1(z1, z2) is a rational function having
a pole at the atypical fiber {1− z1z2 = 0}. 2

Example 2. A non-singular polynomial with non zero periods

F2(z1, z2) = z1 − z4
1z

4
2 .

This is also in the classification of polynomials with one critical value and no critical points in
[Bod02]. The fiber over 0 is reducible, with a component which is topologically C, and another
one which is the Riemann sphere minus several points.

The level curve {F2 = c} corresponds to an octic in CP2 of equation:

z7
0z1 − z4

1z
4
2 − cz8

0 = 0.

The curve meets the line at infinity z0 = 0 at the two points [0 : 1 : 0] and [0 : 0 : 1]. It is
singular at the two and if we look at the affine C2 = {z1 ≡ 1} of the first, we have the affine
curve z7

0(1 − cz0) − z4
2 = 0, that is singular (it has a cusp) at (0, 0), with tangent line z2 = 0.

Furthermore, the contact of this tangent with the curve is dimC
OC20

(z2,z70(1−cz0)−z42)
= 8.

On the other hand, if we look at the affine neighbourhood {z2 ≡ 1} of the second point, we
see that the affine curve is given by z7

0z1 − z4
1 − cz8

0 = 0. It is singular at (0, 0) and the tangent

is z1 = 0. The contact of the curve and the tangent is dimC
OC20

(z1,z70z1−z41−cz80=0)
= 7.

Hence, in order to parametrize we can consider the conics that pass through (0 : 1 : 0),
(0 : 0 : 1) and have as tangents at them the lines z2 = 0 and z1 = 0, respectively. The conics
fulfilling the conditions are those written as

sz1z2 + ζz2
0 , [s : ζ] ∈ CP1.

They meet the octic at 16 points, 15 prescribed by the base conditions, and the remaining one
giving the parametrization for the curve. Thus, we have

Υ[s : ζ] = [cs8 + s4ζ4 : (cs4 + ζ4)2 : s7ζ] : CP1 → Ac.
Note that Υ[0 : 1] = [0 : 1 : 0], while we have for points in CP1 (the roots of cs4 + ζ4 = 0) whose
image is [0 : 0 : 1], there are four branches of the projective curve through that point.

Proceeding as before, we study the periods of the form ω such that ω(X) = 1 on the level
curve {F2 = c}. Note that, topologically, this is CP1 with five points removed. As the affine
parametrization is ϕ(ζ) = (ζ4 + c, ζ/(ζ4 + c)), we have that

Xc := X|{F2=c} = ϕ∗

(
(ζ4 + c)

∂

∂ζ

)
, hence ωc(ζ) =

dζ

ζ4 + c
.

It is now easy to see that its periods around the finite poles are not zero.
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