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ABELIAN SINGULARITIES OF HOLOMORPHIC LIE-FOLIATIONS

ALBETÃ MAFRA AND BRUNO SCÁRDUA

Abstract. We study holomorphic foliations with generic singularities and Lie group trans-

verse structure outside of some invariant codimension one analytic subset. We introduce the

concept of abelian singularity and prove that, for this type of singularities, the foliation is log-
arithmic. The Lie transverse structure is then used to extend the local (logarithmic) normal

form from a neighborhood of the singularity, to the whole manifold.

1. Introduction

Foliations with Lie transverse structure are among the simplest constructive examples of
foliations. They are however a natural object when one considers the possible applications of the
theory of foliations in the classification of manifolds and dynamical systems. By a foliation with a
Lie group transverse structure we mean a foliation that is given by an atlas of submersions taking
values on a given Lie group G and with transition maps given by restrictions of left-translations
on the group G. Such a foliation will be called a G-foliation. The theory of G-foliations is a
well-developed subject and follows the original work of Blumenthal [2].

In the present work we study the possible Lie transverse structures associated to holomorphic
foliations with singularities. This study initiated in [6] where we prove that a one-dimensional
holomorphic foliation with generic singularities in dimension 3 and having a Lie transverse
structure, outside of some analytic invariant subset of codimension one, is logarithmic.

As a consequence of our results, we conclude that, in dimension two, the presence of generic
singularities forces the transverse structure to be abelian. The exact sense of the term generic is
given below. We stress that our results are first steps in the comprehension of the possible Lie
group for holomorphic foliations with singularities.

Abelian singularities. Let F be a germ of a one-dimensional foliation at the origin 0 ∈ Cm.
We recall that F is linearizable without resonances if it is given in some neighborhood U of
0 ∈ Cm by a holomorphic vector field X which is linearizable as

X =

m∑
j=1

λjzj
∂

∂zj
, (1)

with eigenvalues λ1, · · · , λm satisfying the following non-resonance hypothesis:
If n1, · · · , nm ∈ Z are such that

m∑
j=1

njλj = 0,

then n1 = n2 = · · · = nm = 0.
Now we consider a (m − r)-dimensional holomorphic foliation with singularities F in a con-

nected open subset V ⊂ Cm. Denote by sing(F) ⊂ V the singular set of F . The following
definition is motivated by the two dimensional case (cf. Proposition 1):
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Definition 1 (abelian singularity). A (m − r)-dimensional singularity p ∈ sing(F) ⊂ Cm is
said to be abelian if F is given by a system of commuting vector fields X1, · · · , Xm−r defined
in a neighborhood U of p such that X1, · · · , Xm−r vanish at p and are linearly independent off
sing(F)∩U. The singularity p ∈ sing(F) is generic if we can choose the system above such that:

(i) Each vector field is of the form Xk =
m∑
j=1

λkj zj
∂
∂zj

+ h. o. t..

(ii) The m×(m−r) matrix A = (λkj ), where j = 1, ...,m and k = 1, ...,m− r, is nonresonant
in the following sense: the set of its (m − r) × (m − r) minor determinants is linearly
independent over the integer numbers.

(iii) Some vector field Xj is nonresonant and analytically linearizable at the origin.

Remark 1. Regarding the notions above we have:
(1) A germ of a singular holomorphic vector field X at the origin 0 ∈ Cm is in the Poincaré

domain if the convex hull of its eigenvalues does not the origin 0 ∈ C. Otherwise it is
in the Siegel domain. The so called Poincaré-Dulac theorem states that a Poincaré type
singularity is analytically linearizable in the nonresonant case ([1]). In the generic case,
a nonresonant Siegel type singularity is also linearizable ([5]).

(2) If F has dimension one then the singularity is generic if and only if it is generated by a
generic vector field.

In this paper we consider the case where F has a G-transverse structure outside of some
analytic codimension one subset Λ such that each irreducible component of Λ contains the
origin 0 ∈ Cm. In this case, thanks to the linearization hypothesis, it is natural to assume that
the germ of such a subset Λ at the origin is the germ of a union of coordinate hyperplanes.

A codimension r holomorphic foliation with singularities in a complex manifold V is logarith-
mic if it is given by a system of closed meromorphic one-forms with simple poles {ω1, ..., ωr} in
V . In this paper we prove:

Theorem 1. Let F be a holomorphic foliation defined in an open connected neighborhood V of
the origin 0 ∈ Cm, such that F has an abelian generic singularity at the origin. Assume that F
has a G-transverse structure outside of some invariant codimension one analytic subset Λ ⊂ V ,
such that each irreducible component of Λ contains the origin. Then F is a logarithmic foliation.

Remark 2. Theorem 1 contains the case of dimension two foliations (cf. Proposition 1) and
of codimension one foliations (cf. [3]). We highlight the fact that the conclusion of Theorem 1
states that the foliation is logarithmic in the whole manifold V . From Lemma 1 we will see that
the germ of singularity induced by the foliation at the origin, is already a germ of a logarithmic
foliation. Thus, the main role of the Lie transverse structure is to extend this local (logarithmic)
normal form from a neighborhood of the origin, to the manifold V .

2. Generic abelian singularities

In what follows we motivate and prove some results about the notion of abelian singularity.
The next proposition motivates our approach.

Proposition 1. Let {A1, A2} be an integrable system of linear vector fields on Cm. Assume that
A1 and A2 are nonresonant. Then A1 and A2 commute. Indeed, A1 and A2 are simultaneously
diagonalizable.

Proof. Write A = A1 = (fij)
m
i,j=1. By hypothesis A2 is nonresonant and therefore diagonalizable.

Thus we may assume that A2 is in the diagonal form D with eigenvalues d1, ..., dm. Also by
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hypothesis [A,D] = c1A+ c2D, for some holomorphic functions c1, c2 defined in a neighborhood
of the origin 0 ∈ Cm.

AD =


f11d1 f12d2 . . . f1ndm
f12d1 f22d2 . . . f2ndm

...
...

. . .
...

fn1d1 fn2d2 . . . fnndm


and

DA =


f11d1 f12d1 . . . f1nd1

f21d2 f22d2 . . . f2nd2

...
...

. . .
...

fn1dm fn2dm . . . fnndm


and

AD −DA =


0 f12(d2 − d1) . . . f1n(dm − d1)

f21(d1 − d2) 0 . . . f2n(dm − d2)
...

...
. . .

...
fn1(d1 − dm) fn2(d2 − dm) . . . 0

 .

On the other hand

c1A+ c2D =


c1f11 + c2d1 c1f12 . . . c1f1n

c1f21 c1f22 + c2d2 . . . c1f2n

...
...

. . .
...

c1fn1 c1fn2 . . . c1fnn + c2dm

 .

From AD −DA = c1A+ c2D we obtain:

c1fij = fij(dj − di), c1fji = fji(di − dj)

Assume fij 6= 0 for some i, j. Then c1 = dj − di. Notice that if also fji 6= 0 then c1 = di − dj
and therefore di = dj , contradiction. Therefore, fij 6= 0 =⇒ fji = 0.

Given now an index k ∈ {1, ..., n}, as before we have fik = 0 or fki = 0. If fik 6= 0 we get
c1 = dk − di and therefore dk − di = di− dj and thus dk − 2di + dj = 0, contradiction. If fki 6= 0
then c1 = di−dk and thus di−dj = di−dk, that implies dj = dk, again a contradiction provided
that k 6= j. We conclude that fik = 0 for all k 6= i and fki = 0, ∀k 6= j. This means that, except
for the elements fii on the diagonal of A, at most one element fij is different from zero. Since
by hypothesis A1 = A is also nonresonant and diagonalizable, we conclude that A is also in the
diagonal form and therefore A and D commute. �

A germ of a codimension one holomorphic foliation singularity at the origin is given in a
neighborhood V of the origin 0 ∈ Cm by an integrable holomorphic one-form ω. We can write
ω = ων + ων+1 + · · · as a sum of homogeneous one-forms, where ων is the first nonzero jet
of ω. According to Cerveau-Mattei [3], under generic conditions on the coefficients of ων , the
foliation is given by an integrable system of n − 1 commuting vector fields, all of them with
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non-degenerate linear part at the origin. By generic we mean, for an open dense Zariski subset
of the affine space of coefficients of ων (see [3] in a more precise description).

In general, abelian singularities are linearizable, i.e., defined by simultaneously linearizable
commuting vector fields, as the following proposition shows:

Proposition 2. An abelian singularity is analytically linearizable provided that it is defined by
commuting vector fields one of which has an analytically linearizable nonresonant singularity.

Proof. It is enough to prove that given two commuting vector fieldsX and Y in a neighborhood U
of 0 ∈ Cm, and such that X has an analytically linearizable nonresonant singularity at 0 ∈ Cm
then X and Y are simultaneously linearizable in a neighborhood of the origin. In fact, in a
suitable local chart x = (x1, · · ·xm) we have

X =
m∑
j=1

λjxj
∂

∂xj
, Y =

m∑
i=1

bi(x)
∂

∂xi
, [X,Y ] =

m∑
i=1

 m∑
j=1

λjxj
∂bi(x)

∂xj
− λibi(x)

 ∂

∂xi
.

Since [X,Y ] = 0 we get
m∑
j=1

λjxj
∂bi(x)

∂xj
− λibi(x) = 0,

for i = 1, 2, · · · ,m.
We write bi in its Laurent series expansion in the variable x

bi =
∑

|(l1,...,lm)|6=0

bil1···lmx
l1
1 · · ·xlmm

xj
∂bi
∂xj

=
∑

|(l1,...,lm)|6=0

ljb
i
l1···lmx

l1 · · ·xlm .

By hypothesis X is nonresonant. Therefore
∑m
j=1 ljλj − λi 6= 0 and Y =

m∑
j=1

µjxj
∂

∂xj
. �

Let now X be a linearizable vector field in neighborhood U of the origin where X can be
written as in (1). We may introduce closed meromorphic one-forms ω1, · · · , ωm−1 on U , linearly
independent and holomorphic on U \ Λ, and such that ωl(X) = 0, l = 1, ...,m− 1 by

ωl =

m∑
j=1

αlj
dzj
zj

(2)

where l = 1, · · · ,m − 1 and the vectors ~αl := (αl1, ..., α
l
m) ∈ Cm are suitably chosen in the

hyperplane z1λ1 + ... + zmλm = 0 in Cm. We extend this fact by defining a nonresonant
linearizable abelian singularity as an abelian singularity which is defined by m−r simultaneously
analytically linearizable nonresonant vector fields. Using this we prove:

Lemma 1. A nonresonant linearizable abelian singularity is a germ of a logarithmic singularity.

Proof. In fact, the singularity is given by a system of vector fields Xk(y) = Aky, where
Ak ∈ GL(m,C) is a diagonal matrix for each k = 1, 2, · · · ,m− r. If

Ak =

 λk1 0 0
0 . . . 0
0 0 λkm


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we define r one-forms ω1, · · · , ωr on U \ Λ as in (2). Condition ωl(Xk) = 0 is equivalent to the
following system of equations

m∑
j=1

αljλ
k
j = 0, l = 1, · · · , r. (3)

Set ~λk =
(
λk1 , · · · , λkm

)
∈ Cm and let Pk ⊂ Cm be the hyperplane given by

Pk =

(z1, · · · , zm) ∈ Cm :

m∑
j=1

λkj zj = 0

 .

Then (3) is equivalent to ~λk ∈ Pk. Because the vector fields Xk are linearly independent off the

singular set of the foliation, which is of codimension ≥ 2, the vectors ~λ1 · · · , ~λm−r are linearly
independent in Cm and therefore the hyperplanes P1, · · · , Pm−r intersect transversely at a linear
subspace Q = P1 ∩ · · · ∩ Pr ⊂ Cm of dimension m − r. Since dim(Q) = m − r, we can choose
linearly independent vectors ~αl := (αl1, ..., α

l
m) ∈ Cm, l = 1, ..., r so that the corresponding one-

forms ω1, ..., ωr defined by ωl =
∑m
j=1 α

l
j
dzj
zj

satisfy ωl(Xk) = 0 and the system {ω1, · · · , ωr} has

maximal rank outside the set {ω1 ∧ · · · ∧ ωr = 0}. Therefore F is logarithmic. �

3. Proof of Theorem 1

In this section we prove Theorem 1. The starting point in our study is the following charac-
terization of G-foliations given by the classical theorem of Darboux-Lie ([2, 4]):

Darboux-Lie theorem. Let F be a G-foliation on V . Then there are one-forms θ1, ..., θr in
V such that: {θ1, ..., θr} is a rank r integrable system which defines F and the forms satisfy the
Maurer-Cartan equation:

dθi =
∑
j,k

cijkθj ∧ θk. (4)

The numbers {ckij} are the structure constants of a Lie algebra basis of G.
If F , V and G are complex (holomorphic) then the θj can be taken holomorphic.

The proof of Theorem 1 is also based on the following two lemmas:

Lemma 2. Let {ω1, ..., ωr} be a maximal rank system of logarithmic one-forms, say

ωl =

m∑
j=1

αlj
dzj
zj
,

defined in an open connected neighborhood U of the origin 0 ∈ Cm. Assume that the coefficients
matrix B = (αlj)j,l is nonresonant in the following sense: the set of its (m− r)× (m− r) minor
determinants is linearly independent over the integer numbers. Let f : U → C be a holomorphic
function such that df ∧ ω1 ∧ ... ∧ ωr = 0 in U . Then f is constant in U .

Proof. We have ω1 ∧ ... ∧ ωr =
∑

j1,...,jr

α1
j1
... αrjr

dzj1∧...∧dzjr
zj1 ...zjr

=
∑

j1<...<jr

∆(j1, ..., jr)
dzj1∧...∧dzjr
zj1 ...zjr

where ∆(j1, ..., jr) is the r × r minor determinant of the matriz A = (αlj)j,l obtained by consid-
ering the lines j1 < ... < jr.
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Write f(z1, ..., zm) =
∑

i1,...,im

fi1,...,imz
i1
1 ...z

im
m . Then

df =

m∑
`=1

∑
i1,...,im

i`fi1,...,imz
i1
1 ..z

i`−1
` ....zimm dz`.

Therefore

df ∧ ω1 ∧ ... ∧ ωr =

m∑
`=1

∑
i1,...,im

i`fi1,...,imz
i1
1 ..z

i`−1
` ....zimm dz` ∧

∑
j1<...<jr

∆(j1, ..., jr)
dzj1 ∧ ... ∧ dzjr

zj1 ...zjr

and then

df ∧ ω1 ∧ ... ∧ ωr =

m∑
`=1

∑
i1,...,im

∑
j1<...<jr

i`fi1,...,im∆(j1, ..., jr) z
i1
1 ..z

i`
` ....z

im
m

dz`
z`
∧ dzj1 ∧ ... ∧ dzjr

zj1 ...zjr

df∧ω1∧...∧ωr =
∑

i1,...,im

`=m∑
j1<...<jr, `=1

(−1)`i`∆(j1, ..., jr) fi1,...,im zi11 ..z
i`
` ....z

im
m

dzj1 ∧ ... ∧ dzjr ∧ dz`
zj1 ...zjr z`

Then df ∧ ∧ω1 ∧ ... ∧ ωr = 0 implies

fi1,...,im

( ∑
`∈{1,...,m}\{j1,...,jr}

[(−1)`i`∆(j1, ..., jr)]
)

= 0

for all j1 < ... < jr and for all i1, ..., im. Therefore, if fi1,...,im 6= 0 then we have∑
`∈{1,...,m}\{j1,...,jr}

(−1)`i`∆(j1, ..., jr) = 0.

By the nonresonance hypothesis this occurs only for (i1, ..., im) = (0, ..., 0).
�

Lemma 3. Let B = (αkj )j,k be a r ×m matrix and let A = (λkj ) a m × (m − r) matrix, such
that BA = 0. Denote by ∆(B; {k1, ..., kr}) the r × r minor determinant obtained by choosing
the columns (k1, ..., kr) in the matrix B and by ∆(A; {k1, ..., kr}c) the (m− r)× (m− r) minor
determinant obtained by deleting in A the lines k1, ..., kr. Then for any pair of choices (k1, ..., kr)

and (k̃1, .., k̃r) we have

sign(σ(k1, ..., kr))

sign(σ(k̃1, ..., k̃r))
∆(B; {k1, ..., kr}}∆(A; {k̃1, ..., k̃r}c) = ∆(B; {k̃1, ..., k̃r})∆(A; {k1, ..., kr}c)

where sign(σ(k1, ..., kr)) is the sign of the permutation (k1, ..., kr, j1, ..., jm−r), where

{j1 < ... < jr} = {1, ...,m} \ {k1, ..., kr}.

Assume that each such minor determinant is nonzero. Then we have

sign(σ(k1, ..., kr))
∆(B; {k1, ..., kr}}
∆(A; {k1, ..., kr}c)

= sign(σ(k̃1, ..., k̃r))
∆(B; {k̃1, ..., k̃r})
∆(A; {k̃1, ..., k̃r}c)

In particular, if A is nonresonant then B is also nonresonant.
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Proof. The proof is standard Linear Algebra. Indeed, we first write BA = 0 as above in the
following linear homogeneous system of equations

m∑
j=1

αljλ
k
j = 0, l ∈ {1, · · · , r}, k ∈ {1, · · · ,m− r}. (5)

From now on it is just Gaussian elimination process. We give a sketch for the case r = 2 and
m = 4. The general case is proved in the same way.

Write

A =


λ1 µ1

λ2 µ2

λ3 µ3

λ4 µ4


and

B =

(
a1 a2 a3 a4

b1 b2 b3 b4

)
.

From BA = 0 we get

a1λ1 + a2λ2 + a3λ3 + a4λ4 = 0 (6)

a1µ1 + a2µ2 + a3µ3 + a4µ4 = 0 (7)

b1λ1 + b2λ2 + b3λ3 + b4λ4 = 0 (8)

b1µ1 + b2µ2 + b3µ3 + b4µ4 = 0 (9)

Multiplying equation (5) by b2 and equation (7) by −a2 and then summing up these resulting
equations we eliminate λ2 in the first and the third equations obtaining:

(b2a1 − a2b1)λ1 + (b2a3 − a2b3)λ3 + (b2a4 − a2b4)λ4 = 0

Eliminating in a similar way µ2 in the second and fourth equations we obtain

(b2a1 − a2b1)µ1 + (b2a3 − a2b3)µ3 + (b2a4 − a2b4)µ4 = 0

Using these two equations and eliminating the term b2a3 − a2b3 we obtain∣∣∣∣ λ1 µ1

λ3 µ3

∣∣∣∣ ∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ = −
∣∣∣∣ λ3 λ4

µ3 µ4

∣∣∣∣ ∣∣∣∣ a2 a4

b2 b4

∣∣∣∣
Notice that, during the Gaussian elimination process, no division is performed. Thus, we do not
need to make considerations regarding whether the coefficients are zero or not. �

Proof of Theorem 1. By Proposition 2 and Lemma 1, in a small neighborhood U ⊂ V of the

origin the foliation is defined by a system of logarithmic one-forms ω1, ..., ωr where ωl =
m∑
j=1

αlj
dzj
zj

and simultaneously by linear vector fields X1, ..., Xm−r of the form

Xk(z1, .., zm) =

m∑
i=1

λki zi
∂

∂zi
.

Since ωl(Xk) = 0 we have

m∑
j=1

αljλ
k
j = 0, l ∈ {1, · · · , r}, k ∈ {1, · · · ,m− r}. (10)
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Let B = (αlj)j,l be the matrix of coefficients of the forms ωl and A = (λkj ) the matrix of
coefficients of the vector fields Xk. From equation (10) we have BA = 0. Since A is nonresonant,
by Lemma 3, B is also nonresonant.

On the other hand, by hypothesis the foliation is a Lie-foliation in V \ Λ. Let therefore
{θ1, · · · , θr} be a system of holomorphic one-forms in V \Λ defining F and satisfying the Maurer-
Cartan equation as stated in Darboux-Lie theorem. Since {ωl}l=1,...,r and {θl}l=1,...,r define the
same foliation outside a codimension 1 analytical subset, given by the union of Λ with the
singular locus of F (which has codimension ≥ 2), it is clear that there is a holomorphic map
F : U \ Λ→ GL(r,C) given by F (z) = (fij)

r
i,j=1 such that

θi =

r∑
l=1

filωl. (11)

Since each ωl is closed we have from the above equation

dθi =

r∑
l=1

dfil ∧ ωl. (12)

From equations (4) and (11) we have

dθi =
∑
j,k

cijkθj ∧ θk =
∑
l<t

(∑
j,k

cijk (fjlfkt − fjtfkl)
)
ωl ∧ ωt. (13)

Claim 1. We have dfi1 ∧ ω1 ∧ · · · ∧ ωm−1 = 0.

Proof. Indeed, from equation (13) above we have

dθi ∧ ω2 ∧ · · · ∧ ωr = 0.

From this last equation and equation (12) we obtain

dfi1 ∧ ω1 ∧ · · · ∧ ωm−1 = 0.

�

Similarly we prove that

dfij ∧ ω1 ∧ · · · ∧ ωm−1 = 0, ∀i, j. (14)

Since the matrix B of the coefficients of the forms ωl is nonresonant, by Lemma 2 each
fij is constant in a neighborhood of the origin in U . On the other hand, each one-form θj is
defined in V \Λ, and each irreducible component of Λ contains the origin. Therefore, by classical
Levi-Hartogs’ extension theorem (applied to each irreducible component of Λ) each one-form θi
extends to Λ as a meromorphic one-form Θi in V . We claim:

Claim 2. Each extension Θi is a closed meromorphic one-form with simple poles in V . Moreover
the polar set (Θi)∞ is contained in Λ.

Proof. First we observe that the extension Θi is closed by the Identity Principle (also note that
since Λ is a thin set, V \Λ is connected). In order to see that the poles of Θi are contained in Λ
it is enough to observe that Θi ans θi coincide in V \Λ, where θi is holomorphic. Finally, to see
that each irreducible component of Λ is also contained in the polar set of each Θi it is enough to
use the fact that this is true in a neighborhood of the origin and, by hypothesis, each irreducible
component of Λ contains the origin. �

Since each Θi is a simple poles closed meromorphic one-form in V , the foliation F is logarith-
mic in V . This ends the proof of Theorem 1. �
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