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SEMI-COHERENCE FOR SEMIANALYTIC SETS AND STRATIFICATIONS

AND SINGULARITY THEORY OF MAPPINGS ON STRATIFICATIONS
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To David Trotman on his Sixtieth Birthday
With wishes of many more Happy and Successful Years in Mathematics

Abstract. We consider the conditions on a local stratification V which ensure that the local
singularity theory in the sense of Thom-Mather, such as finite determinacy, versal unfolding,

and classification theorems and their topological versions apply either to mappings on the

stratified set V or for an equivalence of mappings which preserve V in source or target for any
of the categories: complex analytic, real analytic, or smooth. For such a stratification V, it is

sufficient that the equivalence group be a “geometric subgroup of A or K”, and this reduces

to the structure of the module Derlog(V) of germs of vector fields on the ambient space which
are tangent to V. In the holomorphic or real analytic categories, with holomorphic, resp. real

analytic stratifications, we show the necessary conditions are satisfied.

However, in the smooth category the general question is open for smooth stratifications. We
introduce a restricted class of “semi-coherent”semianalytic stratifications (V, 0) and semian-

alytic set germs (V, 0) (and their diffeomorphic images). This notion generalizes Malgrange’s

notion of “real coherence”for real analytic sets. It is defined in terms of both Derlog(V)
and I(V ) (the ideal of smooth function germs vanishing on (V, 0)) being finitely generated

modulo infinitely flat vector fields, resp. functions. This class includes the special semiana-
lytic stratifications and sets in [DGH], and semianalytic sets such as Maxwell sets, “medial

axes/central sets”, and the discriminants of C∞-stable germs in the nice dimensions. We

further show that the equivalence groups in the smooth category for these stratifications are
then geometric subgroups of A or K.

Introduction

For a stratification V of a germ (V, 0), we consider singularity theory in the Thom-Mather
sense for mappings f : kn, 0 → kp, 0 either on V or by an equivalence preserving V. in any of
the categories: holomorphic (with k = C), real analytic, or smooth (for k = R). Traditionally,
the main interests in stratifications V has involved their properties and the consequences for
equisingularity of varieties and mappings as a result of the work of many people beginning with
Whitney[Wh], Thom [Th], Hironaka [H1, H2] Lojasiewicz [Lo], Mather [M1] and further built
upon by David Trotman with his many coworkers and students, e.g. [Tr1, Tr2, BTr, NTr, OTr,
MPT, TrW], along with the important contributions by Verdier [Ve], Mostowski [Ms], Hardt [Ht],
and many others. By contrast, singularity theory on a given stratified variety V has concentrated
on the topological properties of V , either computed via stratified Morse functions on V , using
Stratified Morse Theory of Goresky-MacPherson [GM] or generic projections of Lê and Teissier
[LeT].
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For mappings on varieties (V, 0) or equivalences preserving varieties, singularity-theoretic
results have concerned: infinitesimal stability implies stability for a holomorphic germs on holo-
morphic (V, 0), Galligo [Ga]; finite determinacy modulo an ideal (= I(V)), DuPlessis-Gaffney
[DPG]; and the classification of function germs under R-equivalence preserving a hypersurfaces
(V, 0) in several specific cases, Arnold [A] and Lyashko [Ly]. Also, a classification of low dimen-
sional smooth germs has been carried out with (V, 0) denoting either a smooth curve on a surface
(or surface with boundary) Bruce-Giblin [BG] and Goryunov [Go], or “creases and corners” Tari
[Ta1, Ta2].

These latter results fit into the general framework where for any of the three categories, a group
of germs of diffeomorphisms of (kn, 0), denoted by Dn is replaced by a group DV which preserves
a subspace V, 0 ⊂ kn, 0. In the holomorphic or real analytic categories, (V, 0) can be the germ of
any holomorphic, resp. real analytic set germ. However, in the smooth category, the results have
been limited to (V, 0) which are smooth diffeomorphic images of real coherent analytic germs in
the sense of Malgrange [Mg]. Then, for example, for any of the standard equivalences in the
Thom-Mather sense, G = R, K, or A, we may replace the group of diffeomorphisms in the source
or target by the appropriate DV , and obtain the corresponding group GV preserving V, 0 in the
target, or V G preserving V, 0 in the source. Second, we may further enlarge the equivalence
group to yield equivalences G(V ) capturing equivalence of germs on V, 0, and even allow both
the variety V, 0 to vary along with the mappings.

The basic theorems of singularity theory are valid for these equivalences, because each of
the groups GV , V G, or GV are “geometric subgroup of A or K”(with an adequately ordered
system of algebras) in the sense of Damon [D2]. All of the four conditions to be such a group
are naturally satisfied except for the tangent space condition which requires that the tangent
space TGe be finitely generated as a module over the system of algebras (and in the smooth
case this can be relaxed to hold modulo infinitely flat vector fields, see [D1] and [D3, §8]).
In the holomorphic or real analytic categories, the tangent space Derlog(V ) = TDV,e (see §1)
is finitely generated over the appropriate ring of germs, and in the smooth category for real
coherent analytic germs (V, 0), this is true (modulo infinitely flat vector fields, by [D1, Lemma
1.1]). As a consequence, the basic theorems of singularity theory are valid for these equivalences
including: the finite determinacy theorem, versal unfolding theorem, and infinitesimal stability
implies stability under deformations, and classification theorems.

Here we address two questions. First, in a number of situations of interest we wish to replace
(V, 0) by a stratification (V, 0) of a set germ (V, 0) in the appropriate category; and furthermore,
in the smooth category we would additionally like to allow the stratification (V, 0) and the set
germ (V, 0) to be semianalytic. Several examples where these conditions play a role involve:
discriminants of stable germs, which in general are only (diffeomorphic to) semialgebraic sets;
the Blum medial axis (or central set) for generic smooth regions in Rn are locally diffeomorphic
to semialgebraic sets, and in computer vision, the stratifications which are needed to describe
the geometric features of natural objects, and the refinements of these stratifications resulting
from shade and shadows requires the consideration of semianalytic stratifications.

The first goal is to extend Malgrange’s notion of real coherence for real analytic germs to
a sufficently large class of semianalytic sets and stratifications. In the smooth category, A
real coherent germ (V, 0) in the sense of Malgrange has the property that the ideal I(V ) of
smooth germs vanishing on (V, 0) is finitely generated over the ring of smooth germs En by the
generators of I(V )an, the ideal of real analytic germs vanishing on (V, 0) (see [Mg, Chap. VI,
Theorem 3.10]). However, to be applicable to the equivalence groups described above, it was
also necessary to have that the module Derlog(V ) is finitely generated (modulo infinitely flat
vector fields in the smooth category). We ask if there is a generalization of Malgrange’s notion
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of being real coherent which will apply to these semianalytic sets and stratifications? Secondly,
is this generalization useful to establish that the corresponding equivalence groups are geometric
subgroups of A or K?

We shall give a positive answer to both of these questions. We introduce a notion of semi-
coherence for semianalytic sets and stratifications, which concerns the finite generation of both
the ideal I(V ) and Derlog(V ) (or the corresponding ideals and modules for a stratification V)
modulo infinitely flat vector fields. Besides having several naturality properties, this notion in-
cludes the three classes of semianalytic sets and stratifications described above, including the
class of special semianalytic sets and stratifications introduced in [DGH]; and it establishes that
the corresponding equivalence groups are geometric subgroups of A or K so that the basic theo-
rems of singularity theory are valid for smooth mappings under such an equivalence preserving
the stratification or for germs on the stratification. These results are used in [DGH] for the
classification of local features of images of objects with geometric features inlcuding shade and
shadows.

In §1 we recall Malgrange’s notion of being real coherent and give several examples due to
Malgrange and Whitney of analytic sets which do not satisfy the condition. Next, we introduce
the more general notion of semi-coherence for semianalytic sets and explain how this condition
includes the class of special semianalytic sets introduced in [DGH]. We also prove that the
class of weighted homogeneous semianalytic germs are semi-coherent. This includes examples of
analytic sets that are not real coherent and in addition the discriminants of stable germs in the
nice dimensions. In §2, we extend the notion of semi-coherence to semianalytic stratifications and
give several conditions that insure that a semianalytic stratification is semi-coherent, including
the class of special semianalytic stratifications in [DGH]. In §3, we briefly indicate how the the
resulting equivalence groups satisfy the conditions for being geometric subgroups. In §4, we give
the proofs of several of the results and indicated how the others follow by slightly modifying the
proofs in [DGH] for the special semianalytic stratifications.

1. Semi-coherent Semianalytic Sets

In this section we consider the smooth category, except we consider a semianalytic set
V, 0 ⊂ Rn, 0 with local analytic Zariski closure (Ṽ , 0). We will simultaneously consider both
the rings of smooth germs En with maximal ideal denoted by mn, and real analytic germs An.
We let θn denote the module of germs of smooth vector fields on (Rn, 0). Then, we let I(V )
denote the ideal of smooth germs f ∈ En which vanish on V in a neighborhood of 0, and Ian(V )
the corresponding ideal of analytic germs. In general, it is not known when I(V ) is a finitely
generated ideal in En. Malgrange [Mg] introduced the notion of V being real coherent, which
means that there is a set of generators {g1, g2, . . . , gk} for Ian(V ) and a neighborhood U of 0
on which they are defined so that for x ∈ U , the germs of the gi at x generate the ideal of real
analytic germs at x vanishing on (V, x). He then proves that for such a real coherent analytic
germ (V, 0), I(V ) = Ian(V ) · En, so in particular it is finite generated [Mg].

We let Derlogan(Ṽ ) denote the module of real analytic vector fields ξ satisfying

ξ(Ian(Ṽ )) ⊂ Ian(Ṽ ).

It is a finitely generated An-module. We let V denote the canonical Whitney stratification of
(V, 0). Then, we define

(1.1) Derlog(V ) = {ξ ∈ θn : ξ is tangent to the strata of V}

Remark 1.1. If ξ ∈ Derlog(V ) and g ∈ I(V ), then as g vanishes on the strata of V, ξ(g)
vanishes on the strata of V, and hence on (V, 0), so ξ(g) ∈ I(V ).
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Moreover, if ξ is analytic and g ∈ Ian(Ṽ ), then again g vanishes on the strata of V, so

ξ(g) vanishes on (V, 0) and hence on its local analytic Zariski closure Ṽ so ξ(g) ∈ Ian(Ṽ ) and

ξ ∈ Derlogan(Ṽ ).
Also, if (V, 0) is real coherent in the sense of Malgrange, then by an argument in [D1, §1], if

ξ(I(V )) ⊂ I(V ), then ξ ∈ Derlog(V ) as defined in (1.1). Thus, Derlog(V ) may be alternately be
defined by the condition ξ(I(V )) ⊂ I(V ) as in [D1, §1], except there the notation θV was used.

The notation Derlog(V ) is a variant of the notation introduced by Saito [Sa] for the module
of “logarithmic vector fields” for a complex hypersurface singularity V, 0, reflecting the relation
with logarithmic forms.

However, even for real coherent analytic germs it is generally unknown whether Derlog(V ) is
a finitely generated En module. A weaker result which is satisfactory for many applications in
singularity theory is the following ( see [D1, Lemma1.1]).

Proposition 1.2. If V, 0 ⊂ Rn, 0 is real coherent then

Derlog(V ) ≡ En{ζ1, . . . , ζr} mod m∞n θn

where {ζ1, . . . , ζr} are a set of generators of Derlogan(V ).

Here m∞n denotes the ideal of infinitely flat function germs.
By the result in [D3, §8], in the smooth category, for a real coherent analytic germ V, 0 ⊂ Rn,

we may replace Dn by DV in any standard group of equivalences G and conclude they are
geometric subgroups of A or K. However, this places an excessive restriction even for real
analytic (V, 0), and does not address the case of semianalytic V, 0. We illustrate the issue with
several examples due to Malgrange and Whitney.

Example 1.3 (Malgrange Umbrellas). The following examples are generalizations of that given
by Malgrange in [Mg, Example after Def. 3.9, Chap. VI]. We consider V, 0 ⊂ Rn+1, 0 defined by

xn+1 ·

(
n∑

i=1

x2i

)
= f(x1, . . . , xn) ,

where f is homogeneous of degree k ≥ 3. Then, the xn+1-axis lies in V and is an isolated line,
for if we consider any line xi = tbi for i = 1, . . . n, with some bi 6= 0, then

xn+1 = tk2 ·
(
f(b1, . . . , bn)∑n

i=1 b
2
i

)
Also, (V, 0) is not real coherent as at a point x′ = (0, . . . , 0, x0,n+1) with x0,n+1 6= 0, (V, x′) is
locally defined by x1 = · · · = xn = 0, and is not generated by the single generator

G = xn+1 ·

(
n∑

i=1

x2i

)
− f(x1, . . . , xn).

If f(x1, . . . , xn) > 0 when some xi 6= 0, then we can remove the handle on the negative
xn+1-axis by adding the condition xn+1 ≥ 0 and obtaining a germ of a semianalytic set whose
Zariski closure is (V, 0).

Example 1.4 (Generalized Whitney Umbrellas). The standard Whitney umbrella is the image
V = D(F ) of the stable map germ F : R2, 0→ R3, 0, where

(y1, y2, y3) = F (x1, x2) = (x1, x1x2, x
2
2).

It is semialgebraic with analytic Zariski closure Ṽ , 0 defined by y22 = y3y
2
1 . It has a handle

consisting of the y3 axis with y3 > 0. As for the Malgrange umbrellas, (Ṽ , 0) is not real coherent.
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More generally we can define “generalized Whitney umbrellas”as images of maps

F : Rn+1, 0→ Rn+2, 0

given by

(y1, . . . , yn+2) = F (x1, . . . , xn+1) = (x1, . . . , xn, xn+1 · f(x1, . . . , xn, x
2
n+1), x2n+1)

where both f and f(x1, . . . , xn, 0) have isolated singularities. Such F are finitely A-determined

(see Mond [Mo] for the case n = 1); and such images are semialgebraic with Zariski closure Ṽ
defined by G = y2n+1 − yn+2f(y1, . . . , yn, yn+1) = 0.

If f(x1, . . . , xn, x
2
n+1) is weighted homogeneous of weight c for positive weights wt (xi) = bi > 0,

then both F and G are weighted homogeneous (with wt (yi) = bi for i ≤ n, wt (yn+1) = bn+1 + c
and wt (yn+2) = bn+2 satisfying bn+2 = 2bn+1+c. In the case that f(x1, . . . , xn, 0) > 0 whenever

some xi 6= 0, then Ṽ has a handle consisting of the negative yn+2-axis. Again, it is not real
coherent.

Next, we consider more generally V, 0 ⊂ Rn, 0 a closed semianalytic set in the smooth category.
We introduce a notion of (V, 0) being semi-coherent which extends that of real coherence of
Malgrange to closed semianalytic sets in a form which makes it sufficient for many applications
in singularity theory. For V, 0 ⊂ Rn, 0 which is closed and semianalytic, we let (Ṽ , 0) denote
its local analytic Zariski closure. We also define Derlog(V ) for a semianalytic set (V, 0) with
canonical Whitney stratification V, by (1.1). Then, we define

Definition 1.5. A closed semianalytic set germ V, 0 ⊂ Rn, 0 will be said to be semi-coherent in
the smooth category if the following two conditions are satisfied.

i) I(V ) ≡ En{g1, . . . gs} mod m∞n ,

where {g1, . . . gs} generate Ian(Ṽ ); and

ii) Derlog(V ) ≡ En{ζ1, . . . , ζr} mod m∞n θn
where {ζ1, . . . , ζr} are a set of germs in Derlogan(Ṽ ) which are tangent to the strata

of V.

Here m∞n denotes the ideal of infinitely flat smooth germs.
More generally a germ V, 0 ⊂ Rn, 0 is semi-coherent if there is a germ of a smooth diffeomor-

phism ϕ : Rn, 0→ Rn, 0 and a semi-coherent semianalytic set V ′, 0 ⊂ Rn, 0 such that ϕ(V ′) = V .
We shall refer to the semi-coherent semianalytic set (V ′, 0) as the semianalytic model for (V, 0).

It follows by the same argument in [D3, §8], that V, 0 ⊂ Rn, 0 being semi-coherent is sufficient
to be able to conclude the unfolding and determinacy theorems and their consequences are valid
for the equivalence groups in the smooth category preserve (V, 0) or for equivalences of smooth
germs on (V, 0) (see also §3).

By the result of Malgrange and Proposition 1.2, real coherent analytic germs (V, 0) are semi-
coherent. A recent result Damon-Giblin-Haslinger [DGH] identifies a class of special semianalytic
germs which are semi-coherent. A semianalytic set germ V, 0 ⊂ Rn, 0 is a special semianalytic
germ if its Zariski analytic closure Ṽ , 0 is real coherent and it satisfies conditions i) and ii) in
definition 1.5. This allowed several important classes of semianalytic set germs which are semi-
coherent to be identified using a special semianalytic criteria to be described in §2. However, for
example, the discriminants of stable map germs and the classes of Malgrange and Whitney and
umbrellas cannot satisfy the criterion for being special semianalytic set germs as their Zariski
closures are not in general real coherent. This leads to the question.

Basic Question: When are semianalytic sets semi-coherent?
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We give two distinct types of criteria for a semianalytic set to be semicoherent. The first
simple criterion is given by the following.

Proposition 1.6. Let V, 0 ⊂ Rn, 0 be semianalytic with local analytic Zariski closure Ṽ , 0 in
Rn, 0. Suppose that Ṽ , 0 is weighted homogeneous (for positive weights) and that V is invariant
under the corresponding R+-action. Then, V, 0 is semi-coherent.

A consequence of Proposition 1.6 is that both the weighted homogeneous analytic and semi-
analytic Malgrange and Whitney umbrellas are semi-coherent, even though the analytic versions
are not in general real coherent. Thus, the notion of semi-coherence is a more general notion than
real coherence for analytic set germs (V, 0). There follows a basic consequence for discriminants
of C∞ stable germs.

Theorem 1.7. Let f : Rn, 0 → Rp, 0 be a simple C∞ stable germ, which includes those in the
nice range of dimensions. Then the discriminant (D(f), 0) is semi-coherent.

Proof of the Theorem. By Mather’s classfication theorems for such simple stable germs (see
[MIV], and [MVI]), f is A-equivalent to a polynomial germ g : Rn, 0→ Rp, 0 which is weighted
homogeneous of positive weights. Thus, there are germs of diffeomorphisms ψ : Rn, 0 → Rn, 0
and ϕ : Rp, 0→ Rp, 0 so that f = ϕ ◦ g ◦ ψ. Hence, ϕ(D(g)) = D(f), and it is sufficient to show
that (D(g), 0) is semi-coherent. However, as g is a polynomial mapping, it follows by the Tarski-
Seidenberg theorem that the image D(g) = g(Σ(g)) of the singular set Σ(g) is semialgebraic, so
in particular, semianalytic.

Also, as g is weighted homogeneous for positive weights, so is the Zariski closure D̃(g) (the
complexification gC has discriminant D(gC) which is weighted homogeneous for positive weights,
and D(gC)∩Rp is the Zariski closure of D(g)). Furthermore, if y0 = g(x0) ∈ D(g) with x0 ∈ Σ(g),
then by the weighted homogeneity of g, R+ ·x0 ⊂ Σ(g) and g(R+ ·x0) = R+ ·y0, so R+ ·y0 ⊂ D(g).
Thus, by Proposition 1.6, (D(g), 0), and hence (D(f), 0), are semi-coherent. �

Next, we illustrate that even for the simplest semianalytic germs that the equalities in Defi-
nition 1.5 are only true modulo infinitely flat functions and vector fields.

Example 1.8. Let V, 0 ⊂ Rn, 0 denote the model for a k-corner. It is defined by f = 0 where

f(x1, . . . , xk) =
∏k

i=1 xi and the inequalities xi ≥ 0 for i = 1, . . . , k. Its local analytic Zariski

closure Ṽ , 0 is the germ defined by f = 0. The module Derlogan(V ) of germs of analytic vector

fields tangent to V is generated by xi
∂

∂xi
, i = 1, . . . , k and

∂

∂xj
, j = k + 1, . . . , n. We exhibit

an infinitely flat smooth germ g ∈ I(V ), but not in the ideal (f) · En, and infinitely flat smooth

germs of vector fields g
∂

∂xi
∈ Derlog(V ), i = 1, . . . , k, which are not in

En{xi
∂

∂xi
, i = 1, . . . , k;

∂

∂xj
, j = k + 1, . . . , n}.

Let ρ(x) be the infinitely flat germ

ρ(x) =

{
exp(− 1

x2 ) x < 0,

0 x ≥ 0
.

Let g(x1, . . . , xn) =
∑k

i=1 ρ(xi)
2. Then, g vanishes on V . We claim it is not smoothly divisible

by xi for any i = 1, . . . , k. For example, if g were smoothly divisible by x1, then as ρ(x1) is

smoothly divisible by x1, so would be g − ρ(x1)2 =
∑k

i=2 ρ(xi)
2. However,

∑k
i=2 ρ(xi)

2 is not
smoothly divisible by x1. A similar argument works for not being smoothly divisible xi for
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i = 2, . . . , k. Thus, g /∈ (f) · En. Also, if g
∂

∂x1
∈ En{xi

∂

∂xi
, i = 1, . . . , k;

∂

∂xj
, j = k + 1, . . . , n},

then g
∂

∂x1
= h · x1

∂

∂x1
. This would imply x1 smoothly divides g, which, as we just saw, is

impossible. There is an analogous argument for i = 2, . . . , k.
We note that we could replace ρ by any infinitely flat function which vanishes for x ≥ 0 but

not identically on R. Also, an analogous argument would work for more general semianalytic
sets involving more than one inequality.

There is a second criterion, the special semianalytic criterion given in [DGH], which applies
to semianalytic sets that are not necessarily weighted homogeneous and will yield special semi-
analytic stratifications. We describe it in §2.

There are also further properties of both semicoherent semianalytic sets and the special semi-
analytic sets. However, these properties are best described for the more general notion of semi-
coherent semianalytic stratifications to be introduced next.

2. Semi-coherent Semianalytic Stratifications

Let V, 0 ⊂ Rn, 0 be a germ of a closed semianalytic set, and let Ṽ , 0 ⊂ Rn, 0 be its real local
analytic Zariski closure with Ian(V ) = Ian(Ṽ ) the ideal of real analytic germs vanishing on (V, 0)

and defining Ṽ . By a semianalytic stratification V of (V, 0) we mean a decreasing sequence of
closed semianalytic set germs V = Vk ⊃ Vk−1 ⊃ · · · ⊃ V1 ⊃ V0 = {0} with dimVj = j and
Vj\Vj−1 consisting of strata of dimension j. For the stratification V, we define for the smooth
category

(2.1) Derlog(V) = {ξ ∈ θn : ξ is tangent to the strata Si of V for all i}.

We also consider Derlogan(Ṽ ) in the real analytic category. Then, we define

Definition 2.1. The stratification V of the germ of the closed semianalytic set V, 0 ⊂ Rn, 0 is
a semi-coherent stratification if it satisfies the following two conditions:

i) if {g1, . . . , gk} generate Ian(Ṽ ), then in the smooth category

I(V ) ≡ En{g1, . . . , gk} mod m∞n ;

and
ii) there are ξj ∈ Derlogan(Ṽ ), j = 1, . . . ,m which are tangent to the strata Si of V for all

i such that

Derlog(V) ≡ En{ξ1, . . . , ξm} mod m∞n · θn.
In general we say that a stratification V of a germ V, 0 ⊂ Rn, 0 is semi-coherent if there

is a germ of a diffeomorphism ϕ : Rn, 0 → Rn, 0 and a semi-coherent stratification V ′ of a
semianalytic germ (V ′, 0) such that ϕ(V ′) = V and ϕ(V ′) = V.

If in Definition 2.1, we require the stronger condition that Ṽ is real coherent, then the strat-
ification is a special semianalytic stratification (SSA stratification) in the sense of [DGH].

Remark 2.2. If (V, 0) is a semi-coherent semianalytic set, then the canonical Whitney strati-
fication V of (V, 0) is a semi-coherent semianalytic stratification in the sense of Definition 2.1.
This follows since vector fields tangent to V are tangent to the canonical Whitney stratification
of (V, 0); and conversely by Remark 1.1, any analytic vector field ξ tangent to the Whitney

stratification of (V, 0), will satisfy ξ(g) ∈ Ian(Ṽ ) for any g ∈ Ian(Ṽ ). Hence, by property ii) for
semi-coherent semianalytic sets, we have

Derlog(V) = Derlog(V ) ≡ En{ζ1, . . . , ζr} mod m∞n · θn .
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Hence, properties for semi-coherent stratifications will hold for semi-coherent semianalytic sets.

The definition of semi-coherent stratification depends upon an ambient space. We first note
that the class of semi-coherent stratifications is preserved under two standard operations, which
removes this restriction.

Proposition 2.3. Let V be a semi-coherent stratification of a semianalytic set germ V, 0 ⊂ Rn, 0.

(1) If ϕ : Rn, 0 → M,p is an analytic diffeomorphism to an analytic submanifold
M,p ⊆ Rm, p, then the stratification ϕ(V) of (ϕ(V ), p) is a semi-coherent stratification.

(2) Define a stratification V ′ of V × Rk, 0 ⊂ Rn+k, 0 which has strata S′i = Si × Rk for the
strata Si of V. Then V ′ is a semi-coherent stratification of V × Rk, 0 ⊂ Rn+k, 0.

The proof of this proposition closely follows the proof of the corresponding result for special
semianalytic stratifications [DGH, Prop. 5.4, Chap. 5]; see §4.

Second, we may refine a semi-coherent stratification by a series of semi-coherent stratifications
in the following way. Let Vi be semi-coherent stratifications of closed semianalytic germs Vi, 0,
i = 1, . . . , k, with V1, 0 ⊂ V2, 0 ⊂ . . . Vk, 0 ⊂ Rn, 0 such that each stratum of Vi is contained in a
stratum of Vi+1 for each i < k. Then, we can define a stratification V of (V, 0) = (Vk, 0) which
is a refinement Vk with strata consisting of Si\Vj for all Si in Vj+1 and all 1 ≤ j < k, together
with the strata of V1.

Proposition 2.4. In the preceding situation, the stratification V of the closed semianalytic germ
V, 0 ⊂ Rn, 0 is a semi-coherent semianalytic stratification.

To accompany these results, we next give the second criterion for establishing semi-coherence
of a stratification V of a germ of a closed semianalytic set (V, 0), with Zariski closure (Ṽ , 0).
This is given by the following criterion from [DGH, Def 5.1, Chap 5].

Special Semianalytic Criterion:

Definition 2.5. A stratification V of V, 0 is said to satisfy the special semianalytic criterion
(SSC) if Ṽ is real coherent and the stratification satisfies the following conditions:

(1) V and each of the irreducible components Vi are unions of connected components of the

canonical Whitney stratification of Ṽ .
(2) Each irreducible component Ṽi of Ṽ is smooth; and
(3) For each i, the set of tangent lines T0γ to analytic curves γ in Vi with γ(t) ∈ Vi for t ≥ 0

and γ(0) = 0 form a Zariski dense subset of PT0Ṽi.

Then, the second criterion is the following given in [DGH, Prop. 5.3, Chap 5].

Proposition 2.6. A stratification V of the closed semianalytic germ V, 0 ⊂ Rn, 0 which satisfies
the special semianalytic criterion is a special semianalytic stratification. Moreover,

(2.2) Derlog(V) ≡ Derlog(Ṽ ) mod m∞n θn

In order to apply this result we use a simple criterion for an analytic set germ (V, 0) being
real coherent. This is given by the following (see [DGH, Chap. 5, Prop. 4.1]).

Proposition 2.7. Let V, 0 ⊂ Rn, 0 be a real analytic germ with complexification VC, 0 ⊂ Cn, 0.
Suppose that there is a neighborhood U of 0 ∈ Rn such that for x ∈ U , the germ (V, x) is Zariski
dense in (VC, x) for the local analytic Zariski topology at x. Then, V is real coherent.

We illustrate using these criterion for several examples that occur for natural images where
stratifications defining generic geometric features of objects are refined by the stratification
resulting from shade/shadow curves from a light source (see [DGH, Chap. 6, 7, 8]). The generic
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geometric features of objects are modeled by semianalytic sets which are “partial hyperplane
arrangements”.

Example 2.8 (Partial Hyperplane Arrangements). Let Hi ⊂ Rn, i = 1, . . . , r denote a col-
lection hyperplanes through 0 with defining equations αi = 0. Then A = ∪iHi is a (central)
real hyperplane arrangement. It has a canonical Whitney stratification given by the strata(
∩i∈IHi\(∪j /∈IHj)

)
for each subset I ⊆ {1, . . . , r}.

For each hyperplane Hi, we let Pi denote the closure of a nonempty union of connected com-
ponents of Hi\(∪j 6=iHj). Then, V = ∪iPi will be called a partial hyperplane arrangement. Such
a partial hyperplane arrangement has Zariski closure the corresponding hyperplane arrangement,
which is real coherent by Proposition 2.7. Hence, it is a special semianalytic set by Proposition
2.6. A sample of model semianalytic sets which model geometric features in [DGH] are given in
Figure 1.

a) b) c) d)

Figure 1. Examples of partial hyperplane arrangements which occur as mod-
els for feature stratifications: a) edge of surface; b) crease; c) convex or concave
corner; and d) notch or saddle corner.

There are further examples which occur for generic structure of Blum medial axis which is
the Maxwell set for the family of distance functions to the boundary hypersurface of a region,
as in [M2] or [Y], are given in b) and c) in Figure 2.

a) b) c) d)

Figure 2. Examples of partial hyperplane arrangements which do not oc-
cur as models for feature stratifications: a) piecewise linear model of Whitney
umbrella; b) and c) generic models for Blum medial axes; and d) nongeneric
corner.

A second example involves 1-dimensional special semianalytic sets. First,

R+, 0 = {x ∈ R : x ≥ 0} ⊂ R
with its Whitney stratification is immediately seen to satisfy SSC. Hence, by 1) of Proposition
2.3, the image of R+, 0 under an analytic diffeomorphism satisfies SSC. Hence, a half-branch of
a smooth semianalytic curve in an analytic submanifold satisfies SSC. More generally, a germ
of a 1–dimensional semianalytic set in an analytic manifold which consists of branches or half-
branches of smooth analytic curves satisfies the condition SSC (see Example 5.5 and Proposition
5.6 of [DGH, Chap. 5]). This yields the following.
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Proposition 2.9. A 1-dimensional semianalytic set V, 0 ⊂ Rn, 0 consisting of irreducible
branches of real analytic curves and half-branches of smooth analytic curves has a special semi-
analytic stratification consisting of {V \{0}, {0}}.

Example 2.10 (Stratifications Refining Geometric Features by Shade/Shadows). It follows from
Proposition 2.4, that the refinement of a partial hyperplane arrangement by a 1-dimensional
special semianalytic stratification is again a special semianalytic stratification, and hence semi-
coherent. Using this result, it is proven in [DGH] that the stratifications resulting from the
refinement of any stratification defining a generic geometric feature by the shade/shadow curves
resulting from light in a generic direction is again a special semianalytic stratification V (and
hence semi-coherent). This enabled the classification of (topologically) stable and (topologi-
cal) codimension 1 germs for VA-equivalence for each such stratification V. The list of such
stratifications and the corresponding classification of germs are given in Chapters 6, 7 and 8 of
[DGH].

3. Equivalences of Mappings on Stratifications or Preserving Stratifications

We consider the groups of equivalences GV or VG preserving a stratification V, defined by

V = Vk ⊃ Vk−1 ⊃ · · · ⊃ V0 = {0},

where in the holomorphic or real analytic category the stratification is holomorphic (the (Vi, 0)
are holomorphic germs), resp. real analytic (the (Vi, 0) are real analytic germs) and in the
smooth category it is a semi-coherent semianalytic stratification. To speak of all three of these
categories, we denote the corresponding ring of germs by Cn. We also let θn denote the module
of germs of vector fields on (kn, 0) in the appropriate category. We explain how these groups
satisfy the conditions for being geometric subgroups of A or K and hence the basic theorems
of singularity theory are valid for them. The explanation follows the same form as that for the
case for GV or V G given in [D3, §8] and [D4, §9, 10].

VA as a geometric subgroup.
We now carry out the explanation for the case of VA-equivalence, with that for the other

groups being analogous. Then, VA consists of the group of pairs of diffeomorphisms (h, h′) (in
the appropriate category) where h : kn, 0 → kn, 0 and h′ : kp, 0 → kp, 0 with h preserving
the strata of V. This group is a subgroup of A and acts on germs f0 : kn, 0 → kp, 0 in the
appropriate category by (h, h′) · f0 = h′ ◦ f0 ◦ h−1. There are corresponding unfolding groups
acting on unfoldings. VAun(q) consists of unfoldings of diffeomorphisms on q parameters (H,H ′)
acting on unfoldings F on q parameters by (H,H ′) · F = H ′ ◦ F ◦H−1.

We let Derlog(V) be given by (2.1) for any of the three categories. In the holomorphic or
real analytic categories, Derlog(V) is a finitely generate module over Cn (denoting the ring of
holomorphic, resp. real analytic germs). In the smooth category, it is finitely generated over
En modulo infinitely flat vector fields. If (ht, t) is a one-parameter group of unfoldings in the

unfolding group DV,un(1), then as ht preserves the strata of V, it follows that ζ =
∂ht
∂t |t=0

is

tangent to the strata of V, so ζ ∈ Derlog(V). If ht fixes 0, then ζ vanishes on 0, and belongs to
Derlog(V)0, the submodule of germs which vanish at 0. Conversely, the one-parameter subgroup
ht of germs of diffeomorphisms generated by some ζ ∈ Derlog(V) will preserve the strata of V.
Hence, (ht, t) is in the group of one-parameter unfoldings DV,un(1). If in addition, ht fixes 0,
then ζ vanishes at 0, and conversely. Thus, the extended tangent space TDV,e = Derlog(V),
with TDV = Derlog(V)0 (the submodule of Derlog(V) consisting of vector fields vanishing at 0).
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Thus, T VAe can be written

(3.1) T VAe = Derlog(V) ⊕ θp

Likewise, the tangent space T VA is given by

(3.2) T VA = Derlog(V)0 ⊕ mp · θp
For the smooth category, if (V, 0) is a semi-coherent semianalytic stratification of a closed semian-
alytic subset V, 0 ⊂ Rn, 0, then by the results in §2, we may replace Derlog(V) by En{ξ1, . . . , ξm}
with ξj given in Definition 2.1. Then, the infinitesimal orbit map is the restriction of that for A.

(3.3) dαf0(ξ, η) = η ◦ f0 − ξ(f0) for ξ ∈ Derlog(V) and η ∈ θp
Then, just as for the case of VA, for f0 in the appropriate category, T VAe is a finitely

generated module over the adequately ordered system of rings f∗0 : Cp → Cn (modulo infinitely
flat vector fields in the smooth category), and dαf0 would be a homomorphism of such modules.
Hence, VA would satisfy the four conditions to be a geometric subgroup of A (the other three
are easily seen to hold, using the modified version of the tangent space condition for the smooth
category).

Hence, applying the results in [D2] and [D3], we conclude

Theorem 3.1. Suppose V, 0 is a stratification of V, 0 ⊂ kn, 0 of the corresponding type for each
category of mappings: holomorphic, real analytic, or semi-coherent semianalytic stratification
for the smooth category, then VA is a geometric subgroup of A (using (3.1) and (3.2)) for
the adequately ordered system of rings {Cn, Cp}. Hence, both the finite determinacy and versal
unfolding theorems and their consequences are valid for VA.

There is an analogous result for any VG or GV for G = A,K,R.

Example 3.2. The version of Theorem 3.1 for the case of special semianalytic stratifications
is applied in [DGH] to the stratifications in R3 arising as refinements by shade/shadow curves
of the stratifications by generic geometric features. The theorem together with application of
classsification methods in [BKD], [BDW], and [Kr] and the topological methods in [D3] and [D4]
yields the classification of both the (topologically) VA-stable projections of the stratifications
and the (topological) codimension 1 transitions given by Theorem 4.1 in Chap. 6 and Theorem
5.1 in Chap. 7 of [DGH].

A(V) as a geometric subgroup.
Let V be a stratification of a germ (V, 0). Instead of A-equivalence preserving a stratification

V, we may consider instead A-equivalence for germs on V, which we denote by the group A(V).
For just the germ of a variety (V, 0), the tangent space for the case of A(V ) was determined in
[D2, §8] and [D3, §9, 10]. To consider instead the germs on the stratification V, the equivalence is
defined via the group consisting of diffeomorphisms H : kn+p, 0→ kn+p, 0, h : kn, 0→ kn, 0, and
h′ : kp, 0→ kp, 0, such that: i) h ◦πn = πp ◦H; ii) H preserves V ×kp; iii) H|(V ×kp) = h×h′;
and iv) h preserves the strata of V. Then, H ◦ (h × h′)−1 ≡ id on V × kp. A calculation then
shows that

(3.4) T A(V)e = Derlog(V) ⊕ θp ⊕ I(V ) · Cn+p{
∂

∂y1
, . . . ,

∂

∂yp
} .

Likewise, the tangent space T A(V) is given by

(3.5) T A(V) = Derlog(V)0 ⊕mp · θp ⊕ I(V ) · Cn+p{
∂

∂y1
, . . . ,

∂

∂yp
} .
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Now the infinitesimal orbit map is defined by

(3.6) dαf0(ξ, η, ζ) = ζ ◦ f̃0 + η ◦ f0 − ξ(f0)

where as above, ξ ∈ Derlog(V) and η ∈ θp; in addition ζ ∈ I(V ) · Cn+p{
∂

∂y1
, . . . ,

∂

∂yp
}, and

f̃0(x) = (x, f0(x)).
Then, an analogous argument as above yields the following.

Theorem 3.3. Suppose V, 0 is a stratification of V, 0 ⊂ kn, 0 of the corresponding type for each
category of mappings: holomorphic, real analytic, or semi-coherent semianalytic stratification for
the smooth category, then A(V) is a geometric subgroup of A (using (3.4), (3.5)), and (3.5)) for
the adequately ordered system of rings {Cn, Cp}. Hence, both the finite determinacy and versal
unfolding theorems and their consequences are valid for A(V).

Again there is an analogous result for K(V), and R(V).

Equivalences Allowing the Stratification to Deform.
Lastly, suppose that (V, 0) is defined as g−1(V ′), for a stratification V ′ of a germ V ′, 0 ⊂ kr, 0,

with the germ g : kn, 0 → kr, 0 being finitely determined for KV′ -equivalence. Then, the
equivalence of a germ f : kn, 0→ kp, 0 on (V, 0), allowing both V and f to deform, is obtained
by considering the action on the pair (g, f) : kn, 0 → kr+p, 0 by KV -equivalence on g and A-
equivalence on f , using a common diffeomorphism on (kn, 0). Again, if the stratification V ′ is
of the appropriate type for each category, then the equivalence group is a geometric subgroup of
A or K, and so the basic results of singularity theory apply for this equivalence.

Remark 3.4. We have concentrated on how the groups G = A,K,R can be modified to allow
an equivalence preserving a variety (V, 0) or stratification (V, 0) for each of the three categories.
In fact, for any geometric subgroup G which has a factor group Dr, we can replace it by a
subgroup DV or DV , for V, 0 ⊂ kr, 0 of V a stratification in (kr, 0). Provided (V, 0) or (V, 0)
are appropriate for the category, the resulting group of equivalences will again be a geometric
subgroup.

Concluding Remarks.
The local singularity-theoretic methods we have described apply to finite codimension germs

for the appropriate equivalence group. The abundance of such germs will follow when the
stratification (V, 0) or germ (V, 0) is “holonomic”in the sense introduced by Saito [Sa]. By this
we mean there is a neighborhood U of 0 such that for each x ∈ U , the generators {ξ1, . . . , ξr} of
Derlog(V), resp. Derlog(V ), span the tangent space TxSi of the statum of V, resp. the canonical
Whitney stratification of (V, 0), which contains x.

The special semianalytic stratifications which occur in [DGH] for the refinemments of the
stratifications of geometric features by shade shadow curves are all holonomic. However, the
classification shows that finite VA-codimension germs of low codimension already are frequently
multi-modal singularities; so that topological methods of [D3] and [D4] are needed to carry out
the classification.

4. Proofs of the Results

It remains to prove the results concerning semi-coherence.

Proof of Proposition 1.6. First, for i), we let f ∈ I(V ). There exists a neighborhood 0 ∈ U ⊂ Rn

such that f is defined on U and vanishes on V ∩U . Also, we denote the weights of the coordinates
on Rn by wt (xi) = ai > 0 for i = 1, . . . , n. We expand the Taylor expansion of f in terms of

weights f̂(x) =
∑∞

j=1 fj(x), where wt (fj) = j.
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We claim that each fj ∈ I(V ). If not, choose the smallest k for which this is not true.
Suppose x0 ∈ V ∩U is such that fk(x0) 6= 0. Let x0 = (x0 1, . . . , x0n) and define γ : R→ Rn by
γ(t) = (x0 1t

a1 , . . . , x0nt
an). By the weighted homogeneity of fk, it follows fk ◦ γ(t) = tkfk(x0).

Then, the Taylor expansion of f ◦ γ(t) is given by ̂f ◦ γ(t) =
∑∞

j=1 t
jfj(x0). On the one hand

as f ◦ γ(t) = 0 for 0 ≤ t < ε, the Taylor expansion of f ◦ γ(t) is zero. However, by assumption
the coefficient of tk is fk(x0) 6= 0, so it is the lowest nonzero term of the Taylor expansion, a
contradiction. Thus, all fj ∈ I(V ). As each fj is analytic and = 0 on V , which has local analytic

Zariski closure Ṽ , we conclude fj ∈ Ian(Ṽ ). Hence, we may write as a weighted homogeneous

sum fj =
∑s

i=1 hi,jgi, where gi are a set of weighted homogeneous generators of Ian(Ṽ ) with
weights wt (gi) = bi > 0. Hence, we may write as a formal sum

f̂ =

s∑
i=1

(

∞∑
j=1

hi,j)gi .

As wt (hi,j) = j − bi the formal sum
∑∞

j=1 hi,j defines an element ĥi ∈ R[[xn]], where

xn = (x1, . . . , xn).

Lastly, by Borel’s Lemma, there is a germ hi ∈ En with Taylor expansion ĥi. Thus, if we let

f ′ =
∑s

i=1 higi, we have f̂ = f̂ ′, or equivalently f ≡ f ′mod m∞n . As this holds for all f ∈ I(V ),
the result i) follows.

For ii) we follow an analogous line of reasoning and use the same notation as for i). Let
ξ ∈ Derlog(V ). There is a neighborhood 0 ∈ U ⊂ Rn so that both ξ and the generators gj of

Ian(Ĩ) are defined on U and so that ( by Remark 1.1) ξ(gj) vanishes on V ∩ U for j = 1, . . . , s.

We again consider a weighted expansion of the Taylor series of ξ, ξ̂ =
∑∞

j=n0
ξj , where ξj is

weighted homogeneous of weighted degree j. Here, as usual, we assign weights wt (
∂

∂xi
) = −ai

and then we let n0 = −maxi{ai}.
We claim that each ξj ∈ Derlogan(Ṽ ). If not let the lowest j for which this fails be denoted

by k and for this k there is an g` so that ξk(g`) does not vanish on V in a neighborhood of 0,

otherwise as it is analyic, it also vanishes on Ṽ , so ξk(g`) ∈ Ian(Ṽ ). If this held for each i, then

ξk ∈ Derlogan(Ṽ ). Hence, there is an x0 ∈ V ∩ U so that ξk(g`)(x0) 6= 0. We consider the curve
γ(t) as above. Then ξ(g`) vanishes on V ∩ U , and hence on the curve γ(t) for 0 ≤ t < ε. Thus,
the Taylor expansion of ξ(g`) ◦ γ(t) is 0.

Then ξj(g`) is a weighted homogeneous polynomial of weighted degree j + b` > 0 (if it is a
nonzero polynomial). As we assume it is nonzero, we also have ξj(g`) ◦ γ(t) = ξj(g`)(x0)tj+b` .
We then compute the Taylor expansion of ξ(g`) ◦ γ(t) by

̂ξ(g`) ◦ γ(t) =

∞∑
j=n0

ξj(g`)(x0) tj+b`

Again, this Taylor series has a lowest nonzero term tk+b` , contradicting that it is zero. Thus,
each ξj ∈ Derlogan(Ṽ ).

If by [Lo], V = Vk ⊃ Vk−1 ⊃ · · · ⊃ V1 ⊃ V0 = {0} defines the canonical Whitney stratification
V, consisting of semianalytic sets (also invariant under R+), then we may apply the preceding

argument to each Vi to conclude ξj ∈ Derlogan(Ṽi). As ξj is tangent to the regular strata of

each Vi, ξj ∈ Derlogan(V), the submodule of Derlogan(Ṽ ) consisting of germs of analytic vector
fields tangent to the strata of V.
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As An is Noetherian, Derlogan(V) is a finitely generated An-module. As Ṽ , V , and V
are invariant under the R+-action, Derlogan(V) has a set of weighted homogeneous genera-
tors {ζ1, . . . , ζr} of weights wt (ζj) = cj . We may write ξj =

∑r
i=1 hi,jζi, where hi,j is weighted

homogeneous of weighted degree j − ci (and hi,j = 0 if j − ci < 0). Thus, we may define

ĥi =
∑∞

i=n0
hi,j ∈ R[[xn]] and obtain

ξ̂ =

r∑
i=1

ĥiζi

Again, using Borel’s lemma, there are smooth germs hi whose Taylor expansions are ĥi, and we
let ξ′ =

∑r
i=1 hiζi. We conclude ξ ≡ ξ′mod m∞θn. As this holds for every ξ ∈ Derlog(V ), we

obtain ii). �

Propositions 2.7 and 2.6 were proven in [DGH, Chap. 5]. Also, Propositions 2.3 and 2.4 were
proven for the case of special semianalytic stratifications in [DGH, Chap. 5, §6]; however, the
conditions i) and ii) in Definition 2.1 directly follow from the arguments given in the proofs for
the special semianalytic case.

We do remark that to deal with the lack of weighted homogeneity which was used heavily
in the proof of Proposition 1.6, the arguments proceed by first reducing to the formal category,
and using the Artin approximation theorem and the Artin-Rees Lemma to obtain the desired
generators there. Then, Borel’s Lemma gives the desired result. These ideas are used repeatedly
in the proofs in [DGH].
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Mathmatiques, 125, (2001) 253–278.

[MPT] C. Murolo, A. du Plessis, and D. Trotman, Stratified transversality via isotopy, Trans. Amer. Math. Soc.
355 no. 12 (2003) 4881–4900.

[NTr] V. Navarro Aznar and D. Trotman, Whitney Regularity and Generic Wings, Ann. Inst. Fourier 31 (1981)

87–111.
[OTr] P. Orro and D. Trotman, On Regular Stratifications and Conormal Structure of Subanalytic Sets, Bull.

London Math. Soc. 18 (1986) 185–191

[Sa] Saito, K. Theory of logarithmic differential forms and logarithmic vector fields J. Fac. Sci. Univ. Tokyo
Sect. Math. 27 (1980), 265–291.

[Ta1] Tari, F., Projections of piecewise-smooth surfaces, Jour. London Math. Soc. (2) 44 (1991) 152–172.

[Ta2] Some Applications of Singularity Theory to the Geometry of Curves and Surfaces, Ph. D. Thesis,
University of Liverpool, 1990

[Th] R. Thom, Ensembles et Morphisms Stratifiés, Bull. Amer. Math. Soc. 75 (1969), 240–284
[Tr1] D. Trotman, Comparing Regularity Conditions on Stratifications, Proc. Sym. Pure Math. 40 Part II

(1983) 575–586

[Tr2] , Geometric Versions of Whitney Regularity for Smooth Stratifications, Ann. Sci. Ecole Norm.
Sup. (4) 12 (1979) 453–463

[TrW] D. Trotman and L. Wilson, Stratifications and finite determinacy, Proc. London Math. Soc., (3) 78

1999) 334–368.
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