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CLASSIFICATION OF FOLIATIONS ON CP2 OF DEGREE 3 WITH
DEGENERATE SINGULARITIES

CLAUDIA R. ALCÁNTARA AND RAMÓN RONZÓN-LAVIE

Abstract. The aim of this work is to classify foliations on CP2 of degree 3 with degenerate
singular points. For that we construct a stratification of the space of holomorphic foliations
by locally closed, irreducible, non-singular algebraic subvarieties which parametrize foliations
with a special degenerate singularity. We also prove that there are only two foliations with
isolated singularities with automorphism group of dimension two, the maximum possible di-
mension. Finally we obtain the unstable foliations with only one singular point, that is, a
singular point with Milnor number 13.

1. Introduction

The aim of this work is to classify holomorphic foliations on CP2 of degree 3 with certain
degenerate singular point using Geometric Invariant Theory (GIT). This theory was developed
principally by David Hilbert and David Mumford (see [6]). We obtain locally closed, irreducible,
non-singular algebraic subvarieties which parametrize foliations of degree 3 with a special degen-
erate singularity. We also get the dimension and explicit generators for each stratum. Similar
results for degree 2 are given in [2] and in [3], we have some general results for degree d.

Geometric Invariant Theory gives a method for constructing quotients for group actions on
algebraic varieties. More specifically, we have a linear action by a reductive group on a pro-
jective variety and we can construct a good quotient if we remove the closed set of unstable
points. When the projective variety parametrizes geometric objects, the unstable points are in
some sense degenerate objects. For example, the unstable plane algebraic curves with respect to
the action by projective transformations are curves with non-ordinary singularities with order
greater than 2.

In this article the projective variety F3 is the space of holomorphic foliations on CP2 of degree
3 and the action is given by change of coordinates. For this action we obtain the closed set of
unstable foliations. We will prove that a foliation is unstable if and only if it has a special
degenerate singular point (see Theorem 8). In this closed set we construct the stratification
studied by Kirwan (in [12]), Hesselink (in [9]) and Kempf (in [11]). The strata are locally closed,
non-singular, irreducible algebraic subvarieties of F3. We characterize the generic foliation on
every stratum according to the Milnor number and multiplicity of their singularities. We also
obtain the dimension of the strata (see Theorem 7).
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As a corollary we describe the irreducible components of the closed set of unstable foliations.
We find, up to change of coordinates, the only two foliations with isolated singularities with
automorphism group of dimension 2 (see Theorem 10). Finally we classify unstable foliations on
CP2 of degree 3 with only one singular point, that is with Milnor number 13 (see Theorem 11).
This result is important because the classification of foliations on CP2 with only one singular
point is known only for degree 2 (see [5] and [2]).

In sections 2 and 3 we recall the basic results about Geometric Invariant Theory and foliations
that we need in the sequel. We compute in section 4 the unstable foliations of degree 3 using
the numerical criterion of one parameter subgroups. The construction of the stratification of the
space of foliations and the characterization of the generic foliation on every stratum is included
in section 5. The last section is devoted to give some important corollaries of the construction.

2. Geometric Invariant Theory

In this section we recall basic facts about Geometric Invariant Theory. All the definitions and
results can be found in [14] and [11].

Let V be a projective variety in CPn, and consider a reductive group G acting linearly on V .

Definition 1. Let x ∈ V ⊂ CPn, and consider x ∈ Cn+1 such that x ∈ x. Denote by O(x) the
orbit of x in the affine cone of V and by O(x) the orbit of x. Then
(i) x is unstable if 0 ∈ O(x).
(ii) x is semi-stable if 0 /∈ O(x). The set of semi-stable points will be denoted by V ss.
(iii) x is stable if it is semi-stable, O(x) is closed in V ss and dimO(x) = dimG. The set of
stable points will be denoted by V s.

The main result in GIT is the following:

Theorem 1. (see page 74 in [14])
(i) There exists a projective variety Y and a morphism φ : V ss → Y , which is a good quotient.

(ii) There exists an open set Y s ⊂ Y such that φ−1(Y s) = V s and the morphism φ| : V s → Y s

is a good quotient and an orbit space.

It is very often difficult to find the unstable points for a given action, but there exists a very
useful criterion due to Hilbert and Mumford. Let us describe it.

A 1-parameter subgroup (1-PS) of the group G is an algebraic morphism λ : C∗ → G. Since
the action on V is linear, this induces a diagonal representation of C∗:

C∗ → GL(n+ 1,C)

t 7→ λ(t) : Cn+1 → Cn+1

v 7→ λ(t)v.

Therefore there exists a basis {v0, ..., vn} of Cn+1 such that λ(t)vi = trivi, where ri ∈ Z.

Definition 2. Let x ∈ X and let λ : C∗ → G be a 1-PS of G. If x̄ ∈ x and x̄ =
∑n
i=0 aivi, then

λ(t)x̄ =
∑n
i=0 t

riaivi. We define the following function

µ(x, λ) := min{ri : ai 6= 0}.

The numerical criterion can now be stated.
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Theorem 2. (see Theorem 4.9 of [14])
(i) x is stable if and only if µ(x, λ) < 0 for every 1-PS, λ, of G.
(ii) x is unstable if and only if there exists a 1-PS, λ, of G such that µ(x, λ) > 0.

Definition 3. If µ(x, λ) > 0 we will say that x is λ-unstable.

The following is a useful tool for applying the criterion of 1-PS when G = SL(n,C). We
formulate the result for the case n = 3.

Lemma 1. (see [14]) Every 1-parameter subgroup of SL(3,C) has the form

λ(t) = g

 tk1 0 0
0 tk2 0
0 0 tk3

g−1,
for some g ∈ SL(3,C) and some integers k1, k2, k3 such that k1 ≥ k2 ≥ k3 and k1 +k2 +k3 = 0.

3. Foliations on CP2 of degree d

This section provides the definitions and results that we need to know about holomorphic
foliations on CP2 for the development of the paper.

Definition 4. A holomorphic foliation X of CP2 of degree d is a non-trivial morphism of vector
bundles:

X : O(1− d)→ T CP2,

modulo multiplication by a nonzero scalar. The space of foliations of degree d is

Fd := PH0(CP2, T CP2(d− 1)),

where d ≥ 0.

Take homogeneous coordinates (x : y : z) on CP2. Up to multiplication by a nonzero scalar
there are two equivalent ways to describe a foliation of degree d (see [8]):

(1) By a homogeneous vector field:

X = P (x, y, z)
∂

∂x
+Q(x, y, z)

∂

∂y
+R(x, y, z)

∂

∂z
=

 P (x, y, z)
Q(x, y, z)
R(x, y, z)


where P,Q,R ∈ C[x, y, z] are homogeneous of degree d. And if we consider the radial
foliation

E = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
,

then X and X + F (x, y, z)E represent the same foliation for all F ∈ C[x, y, z] homoge-
neous of degree d− 1.

(2) By a homogeneous 1-form: Ω = L(x, y, z)dx + M(x, y, z)dy + N(x, y, z)dz, such that
L,M,N ∈ C[x, y, z] are homogeneous of degree d + 1 and these satisfy the Euler’s
condition xL+ yM + zN = 0.

With this we can see that the space of foliations on CP2 of degree d is a projective space of
dimension d2 + 4d+ 2. We will use the description 1 for the rest of the paper.

We now define the notion of singular point for a foliation and two important invariants for
this.
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Definition 5. A point p = (a : b : c) ∈ CP2 is singular for the above foliation X if

(P (a, b, c), Q(a, b, c), R(a, b, c)) = (ka, kb, kc)

for some k ∈ C. The set of singular points of X will be denoted by Sing(X).

Definition 6. Let (
f(y, z)
g(y, z)

)
be a local generator of X in p = (1 : b : c). Then

the Milnor number of p is µp(X) := dimC
OC2,p
<f,g> ,

the multiplicity of p is mp(X) := min{ordp(f), ordp(g)}.

Proposition 1. (see [4]) Let X be a foliation of degree d with isolated singularities then

d2 + d+ 1 =
∑
p∈CP2

µp(X).

From Lemma 1.2 in [7] we can deduce that

{X ∈ Fd : there exists p ∈ CP2 such that µp(X) ≥ 2}
is a divisor in Fd, therefore we have the following:

Theorem 3. The set {X ∈ Fd : every singular point for X has Milnor number 1} is open and
non-empty in Fd.

Finally we give the definition of algebraic leaf for a foliation.

Definition 7. A plane curve defined by a polynomial F (x, y, z) is an algebraic leaf for X or
invariant by X if and only if there exists a polynomial H(x, y, z) such that:

P (x, y, z)
∂F (x, y, z)

∂x
+Q(x, y, z)

∂F (x, y, z)

∂y
+R(x, y, z)

∂F (x, y, z)

∂z
= FH.

Theorem 4. (see Theorem 1.1, p.158 in [10] and [13]) The set

{X ∈ Fd : X has no algebraic leaves}

is open and non-empty in Fd.

Generically a foliation on CP2 of degree d does not have degenerate singularities and does not
have algebraic leaves. So it is important to classify foliations in the complement of these sets.
In this article we say something about that for degree 3.

The group PGL(3,C) of automorphisms of CP2 is a reductive group that acts linearly on Fd
by change of coordinates:

PGL(3,C)×Fd → Fd
(g,X) 7→ gX = DgX ◦ (g−1).

In the computations we will use SL(3,C) instead of PGL(3,C), we will get the same results.
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4. Unstable Foliations on CP2 of degree 3

As we saw before the space of foliations F3 is a projective space of dimension 23. In this
section we apply the numerical criterion of one parameter subgroups to obtain the closed set of
unstable foliations of degree 3. Remember that X ∈ Fd is unstable with respect to the action by
change of coordinates if and only if there exists λ a 1-PS of SL(3,C) such that µ(X,λ) > 0 (see
Theorem 2). For all λ a 1-PS of SL(3,C) there exists g ∈ SL(3,C) such that D(t) := gλ(t)g−1

is a diagonal 1-PS, with the form:

D : C∗ → SL(3,C), t 7→

 tk1 0 0
0 tk2 0
0 0 tk3

 ,

for some intergers k1, k2, k3 such that k1 ≥ k2 ≥ k3 and k1 + k2 + k3 = 0.
Since µ(gX,D) = µ(X, g−1Dg) = µ(X,λ) (see remark 4.10 of [14]), every unstable foliation

is in the orbit of an unstable point with respect to a diagonal 1-PS. Therefore, we will find the
unstable foliations with respect to a diagonal one parameter subgroup and then we will take the
set of orbits of these points.

Let us consider the basis for the vector space H0(CP2, T CP2(2)) given by

{M ∂

∂x
,M

∂

∂y
, x3

∂

∂z
, x2y

∂

∂z
, xy2

∂

∂z
, y3

∂

∂z
: M ∈ C[x, y, z] is a monic monomial of degree 3}.

This basis diagonalizes the action of SL(3,C). Let X = P ∂
∂x +Q ∂

∂y +R ∂
∂z be a foliation on CP2

of degree 3 where

P (x, y, z) =
∑

aα,βx
αyβz3−α−β

Q(x, y, z) =
∑

bα,βx
αyβz3−α−β

R(x, y, z) =
∑

cα,βx
αyβz3−α−β .

Then we are looking for the points X ∈ F3 such that there exist k1, k2, k3 ∈ Z with k1 ≥ k2 ≥ k3
and k1 + k2 + k3 = 0 and such that max{−EP ,−EQ,−ER} < 0, where

EP = min{−k1(α− 1)− k2β − k3γ : aα,β 6= 0}
EQ = min{−k1α− k2(β − 1)− k3γ : bα,β 6= 0}
ER = min{−k1α− k2β − k3(γ − 1) : cα,β 6= 0}.

From definition 2, µ(X,D) = −max{−EP ,−EQ,−ER}, where D is the diagonal 1-PS defined
above.

Since k1 > 0 and k3 < 0, then we can define qi := ki
k1
. Therefore q1 + q2 + q3 = 0, 1 ≥ q2 ≥ q3

and q2 ∈ [− 1
2 , 1] ∩ Q. We must find the conditions in the rational numbers qi to have non-zero

coefficients for the monomials of P,Q and R. It is easy to obtain the following conclusion.
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Coefficients aα,β
(α− 1)k1 + βk2 + γk3 < 0

α = 2, β = 0, γ = 1, q2 ∈ (0, 1]
α = 1, β = 2, γ = 0, q2 ∈ [− 1

2 , 0)
α = 1, β = 1, γ = 1, q2 ∈ [− 1

2 , 1]
α = 1, β = 0, γ = 2, q2 ∈ [− 1

2 , 1]
α = 0, β = 3, γ = 0, q2 ∈ [− 1

2 ,
1
3 )

α = 0, β = 2, γ = 1, q2 ∈ [− 1
2 , 1]

α = 0, β = 1, γ = 2, q2 ∈ [− 1
2 , 1]

α = 0, β = 0, γ = 3, q2 ∈ [− 1
2 , 1]

Coefficients bα,β
αk1 + (β − 1)k2 + γk3 < 0

α = 2, β = 0, γ = 1, q2 ∈ ( 1
2 , 1]

α = 1, β = 1, γ = 1, q2 ∈ (0, 1]
α = 1, β = 0, γ = 2, q2 ∈ (− 1

3 , 1]
α = 0, β = 3, γ = 0, q2 ∈ [− 1

2 , 0)
α = 0, β = 2, γ = 1, q2 ∈ [− 1

2 , 1]
α = 0, β = 1, γ = 2, q2 ∈ [− 1

2 , 1]
α = 0, β = 0, γ = 3, q2 ∈ [− 1

2 , 1]

Coefficients cα,β
αk1 + βk2 + (γ − 1)k3 < 0

α = 0, β = 3, γ = 0, q2 ∈ [− 1
2 ,−

1
4 )

From this, we see that a3,0, a2,1, b3,0, b2,1, b1,2, c3,0, c2,1, c1,2 = 0 and we can have a1,1, a1,0,
a0,2, a0,1, a0,0, b0,2, b0,1, b0,0 6= 0. Now we do a partition of

[
− 1

2 , 1
]
to have the subspaces of

unstable foliations with respect to a diagonal 1-PS.

q2 ∈
[
−1

2
,−1

3

]
⇒ a2,0, b2,0, b1,1, b1,0 = 0

q2 ∈
(
−1

3
,−1

4

)
⇒ a2,0, b2,0, b1,1 = 0

q2 ∈
[
−1

4
, 0

)
⇒ a2,0, b2,0, b1,1, c0,3 = 0

q2 = 0⇒ a2,0, a1,2, b2,0, b1,1, b0,3, c0,3 = 0

q2 ∈
(

0,
1

3

)
⇒ a1,2, b2,0, b0,3, c0,3 = 0

q2 ∈
[

1

3
,

1

2

]
⇒ a1,2, a0,3, b2,0, b0,3, c0,3 = 0

q2 ∈
(

1

2
, 1

]
⇒ a1,2, a0,3, b0,3, c0,3 = 0.

Consider the seven subspaces with the corresponding coefficients equal to zero. In these sets
we have 3 maximal subspaces of H0(CP2, T CP2(2)). That we describe below:

V1 :=
〈
xy2

∂

∂x
, xyz

∂

∂x
, xz2

∂

∂x
, y3

∂

∂x
, y2z

∂

∂x
, yz2

∂

∂x
, z3

∂

∂x
,

xz2
∂

∂y
, y3

∂

∂y
, y2z

∂

∂y
, yz2

∂

∂y
, z3

∂

∂y
, y3

∂

∂z

〉
C

V2 :=
〈
x2z

∂

∂x
, xyz

∂

∂x
, xz2

∂

∂x
, y2z

∂

∂x
, yz2

∂

∂x
, z3

∂

∂x
, x2z

∂

∂y
, xyz

∂

∂y
, xz2

∂

∂y
,

y2z
∂

∂y
, yz2

∂

∂y
, z3

∂

∂y

〉
C
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V3 :=
〈
x2z

∂

∂x
, xyz

∂

∂x
, xz2

∂

∂x
, y3

∂

∂x
, y2z

∂

∂x
, yz2

∂

∂x
, z3

∂

∂x
, xyz

∂

∂y
, xz2

∂

∂y
,

y2z
∂

∂y
, yz2

∂

∂y
, z3

∂

∂y

〉
C
,

Then,

{X ∈ H0(CP2, T CP2(2)) : there exists D a 1-PS diagonal such that µ(X,D) > 0} = V1∪V2∪V3.
Therefore we can state:

Theorem 5. The closed set of unstable foliations on CP2 of degree 3 is

Fun3 = SL(3,C)PV1 ∪ SL(3,C)PV2 ∪ SL(3,C)PV3.

5. The Stratification of F3

In the previous section we exhibit the closed set of unstable foliations on CP2 of degree 3.
In this section we will use properties of the singularities of the foliations to construct locally
closed, non-singular subvarieties of Fun3 . Firstly we will explain the stratification described in
the following Theorem by F. Kirwan and then apply it to F3.

Theorem 6. (see Theorem 13.5 in [12]) Let V be a non-singular projective variety with a linear
action by a reductive group G. Then there exists a stratification

{Sβ : β ∈ B}
of V such that the unique open stratum is V ss and every stratum Sβ in the set of unstable
points is non-singular, locally closed and isomorphic to G×Pβ Y ssβ , where Y ssβ is a non-singular
locally-closed subvariety of V and Pβ is a parabolic subgroup of G.

Throughout the text we will use the same notation as in §12 of [12].

Definition 8. Let Y (G) be the set of one parameter subgroups λ : C∗ → G. Define in Y (G)×N
the equivalence relation: (λ1, n1) is related with (λ2, n2) if and only if λ1(tn2) = λ2(tn1) for all
t ∈ C∗. A virtual one parameter subgroups of G is an equivalence class of this relation,
the set of these classes will be denoted by M(G).

The indexing set B of the stratification is a finite subset of M(G) and this may be described
in terms of the weights of the representation of G which defines the action. For the construction
we must consider onM(G) a norm q which is the square of an inner product 〈 , 〉. This norm
gives the partial order > on B.

On the other hand, the representation of D on Cn+1, where D is a maximal torus of G, splits
as a sum of scalar representations given by characters α0, ..., αn. These characters are elements
of the dual of M(D) but we can identify them with elements of M(D) using 〈 , 〉.

Definition 9. Once we have the indexing set B we can describe the objects that appear in
Theorem 6. Let β ∈ B, we define:

Zβ = {(x0 : ... : xn) ∈ V : xj = 0 if 〈αj , β〉 6= q(β)},
Yβ = {(x0 : ... : xn) ∈ V : xj = 0 if 〈αj , β〉 < q(β)

and xj 6= 0 for some j with 〈αj , β〉 = q(β)},
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the map pβ : Yβ → Zβ , (x0, ..., xn) 7→ (x′0, ..., x
′
n) as x′j = xj if 〈αj , β〉 = q(β) and x′j = 0

otherwise.

Consider Stab(β), the stabilizer of β under the adjoint action of G. There exists a unique
connected reductive subgroup Gβ of Stabβ such that M(Gβ) = {λ ∈ M(Stabβ) : 〈λ, β〉 = 0}
(see 12.21 in [12]). With this group we can define

Zssβ = {x ∈ Zβ : x is semistable under the action of Gβ on Zβ}

and Y ssβ = p−1β (Zssβ ).

Finally the parabolic group of β is: if x ∈ Y ssβ then Pβ = {g ∈ G : gx ∈ Y ssβ }.

Remark 1. Since Sβ is isomorphic to G×Pβ Y ssβ , it has dimension dimY ssβ + dimG− dimPβ.

5.1. The representation of F3. Norbert A’Campo and Vladimir Popov give in [15] a com-
puter program such that given a reductive group and one of its representation, the output is
the finite subset B of virtual 1-parameter subgroups for the above stratification. For a more
detailed construction of the virtual 1-parameter subgroups in the case of the action by change
of coordinates of SL(3,C) in Fd we refer to section 3 of [3]. For F3 the virtual 1-parameter
subgroups for the stratification are:

β1 :=

(
5

3
,

2

3
,−7

3

)
, β2 :=

(
5

3
,−1

3
,−4

3

)
, β3 :=

(
3

2
, 0,−3

2

)
, β4 :=

(
5

3
,−5

6
,−5

6

)
,

β5 :=

(
55

42
,−11

42
,−22

21

)
, β6 :=

(
7

6
,−1

3
,−5

6

)
, β7 :=

(
2

3
,

2

3
,−4

3

)
, β8 := (1, 0,−1) ,

β9 :=

(
20

21
,− 4

21
,−16

21

)
, β10 :=

(
2

3
,

1

6
,−5

6

)
, β11 :=

(
1

2
, 0,−1

2

)
,

β12 :=

(
2

3
,−1

3
,−1

3

)
, β13 :=

(
1

6
,

1

6
,−1

3

)
, β14 :=

(
5

21
,− 1

21
,− 4

21

)
,

β15 :=

(
2

21
,

1

42
,− 5

42

)
, β16 :=

(
7

78
,− 1

39
,− 5

78

)
.

Now we consider the induced representation H0(CP2, TCP2(2)) of the Lie algebra sl3(C). The
weight diagrama for this irreducible representation is the following (the number i denoted the
virtual 1-PS βi):
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From this information we can easily obtain the sets Zi and Yi described in definition 9. In Yi
with i ∈ {1, 2, 3, 4, 5, 7, 8, 10, 13} every foliation has a curve of singularities, we can study these
foliations as foliations of degree 2, so we are going to discard these strata.

To obtain the strata with foliations with isolated singularities we must find

Zssi := {x ∈ Zi : µ(x, λ) ≤ 〈λ, βi〉 for all λ ∈M(Stab(βi))}.

See definition 12.10 of [12]. For this we will use the following results.

Lemma 2. (see [2, p. 430]) Let X ∈ Zi such that the virtual one parameter subgroup (n0, n1, n2)
corresponding to βi satisfies n0 > n1 > n2. Then X ∈ Zssi if and only if βi is the closest point
to zero in CX with respect to D, where CX is the convex hull formed with the weights of X.

The only virtual 1-PS where n1 = n2 in β12, for finding Zss12 we need further analysis. We must
recall that Stab(β12) is the stabilizer of β12 under the adjoint action of SL(3,C) onM(SL(3,C))
(see 12.21 in [12]), i.e.,

Stab(β12) =

g ∈ SL(3,C) : g

 2
3
− 1

3
− 1

3

 g−1 =

 2
3
− 1

3
− 1

3


=


a11 0 0

0 a22 a23
0 a32 a33

 ∈ SL(3,C)

 .

We know that if λ ∈ M(Stab(β12)) then there exists g ∈ Stab(β12) such that gλg−1 has the
form Diag(tk1 , tk2 , tk3), where k1 ≥ k2 ≥ k3; therefore:
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Zss12 = {x ∈ Z12 : µ(gx, λ) ≤ 〈λ, β12〉, for all λ = Diag(tk1 , tk2 , tk3), where k1 ≥ k2 ≥ k3 and
g ∈ Stab(β12)}.

Where, from the weight diagram:

Z12 = P
〈
xy2

∂

∂x
, xyz

∂

∂x
, xz2

∂

∂x
, y3

∂

∂y
, y2z

∂

∂y
, yz2

∂

∂y
, z3

∂

∂y
, y3

∂

∂z

〉
C
,

and we have 〈λ(t) = Diag(tk1 , tk2 , tk3), β12〉 = 2
3k1 −

1
3k2 −

1
3k3. For X ∈ Z12 we obtain

λ(t) ·X =

 a1,2t
−2k2xy2 + a1,1t

−k2−k3xyz + a1,0t
−2k3xz2

b0,3t
−2k2y3 + b0,2t

−k2−k3y2z + b0,1t
−2k3yz2 + b0,0t

k2−3k3z3

c0,3t
k3−3k2y3

 ,

therefore µ(X,λ) = min{−2k2,−k2 − k3,−2k3, k2 − 3k3, k3 − 3k2}. With the conditions

−2k2 ≤ 2
3k1 −

1
3k2 −

1
3k3 ⇔ k2 ≥ k3

−k2 − k3 ≤ 2
3k1 −

1
3k2 −

1
3k3 ⇔ 0 ≥ 0

−2k3 ≤ 2
3k1 −

1
3k2 −

1
3k3 ⇔ k2 ≤ k3

k2 − 3k3 ≤ 2
3k1 −

1
3k2 −

1
3k3 ⇔ k2 ≤ k3

k3 − 3k2 ≤ 2
3k1 −

1
3k2 −

1
3k3 ⇔ k2 ≥ k3.

we conclude that Zss12 = {X ∈ Z12 : (a1,2, a1,1, b0,3, b0,2, c0,3) 6= 0, (a1,1, a1,0, b0,2, b0,1, b0,0) 6= 0}.
Now we can give the full list of linear subspaces of F3 for the construction of the strata.

Zss6 = P


a0,3y3b0,0z

3

0

 ∈ Z6 : a0,3 6= 0, b0,0 6= 0


Zss9 = P


a1,0xz2 + a0,3y

3

b0,1yz
2

0

 : a0,3 6= 0, (a1,0, b0,1) 6= 0


Zss11 = P


a1,1xyz + a0,3y

3

b1,0xz
2 + b0,2y

2z
0

 : b1,0 6= 0, (a1,1, a0,3, b0,2) 6= 0



Zss12 = P


 a1,2xy

2 + a1,1xyz + a1,0xz
2

b0,3y
3 + b0,2y

2z + b0,1yz
2 + b0,0z

3

c0,3y
3

 :

(a1,2, a1,1, b0,3, b0,2, c0,3) 6= 0, (a1,1, a1,0, b0,2, b0,1, b0,0) 6= 0
}

Zss14 = P


 a1,2xy

2

b1,0xz
2 + b0,3y

3

0

 : b1,0 6= 0, (a1,2, b0,3) 6= 0


Zss15 = P


a2,0x2z + a0,3y

3

b1,1xyz
0

 : a0,3 6= 0, (a2,0, b1,1) 6= 0


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Zss16 = P


 0
b1,0xz

2

c0,3y
3

 : b1,0 6= 0, c0,3 6= 0

 ,

and

Y ss6 = P


a0,3y3 + a0,2y

2z + a0,1yz
2 + a0,0z

3

b0,0z
3

0

 : a0,3 6= 0, b0,0 6= 0



Y ss9 = P


a1,0xz2 + a0,3y

3 + a0,2y
2z + a0,1yz

2 + a0,0z
3

b0,1yz
2 + b0,0z

3

0

 : a0,3 6= 0, (a1,0, b0,1) 6= 0



Y ss11 = P


a1,1xyz + a1,0xz

2 + a0,3y
3 + a0,2y

2z + a0,1yz
2 + a0,0z

3

b1,0xz
2 + b0,2y

2z + b0,1yz
2 + b0,0z

3

0

 :

b1,0 6= 0, (a1,1, a0,3, b0,2) 6= 0
}

Y ss12 = P


 ∑2

j=0 a1,jxy
jz2−j +

∑3
j=0 a0,jy

jz3−j∑3
j=0 b0,jy

jz3−j

c0,3y
3

 :

(a1,2, a1,1, b0,3, b0,2, c0,3) 6= 0, (a1,1, a1,0, b0,2, b0,1, b0,0) 6= 0
}

Y ss14 = P


a1,2xy2 + a1,1xyz + a1,0xz

2 + a0,3y
3 + a0,2y

2z + a0,1yz
2 + a0,0z

3

b1,0xz
2 + b0,3y

3 + b0,2y
2z + b0,1yz

2 + b0,0z
3

0

 :

b1,0 6= 0, (a1,2, b0,3) 6= 0
}

Y ss15 = P


a2,0x2z + a1,1xyz + a1,0xz

2 + a0,3y
3 + a0,2y

2z + a0,1yz
2 + a0,0z

3

b1,1xyz + b1,0xz
2 + b0,2y

2z + b0,1yz
2 + b0,0z

3

0

 :

a0,3 6= 0, (a2,0, b1,1) 6= 0
}

Y ss16 = P


a1,2xy2 + a1,1xyz + a1,0xz

2 + a0,3y
3 + a0,2y

2z + a0,1yz
2 + a0,0z

3

b1,0xz
2 + b0,3y

3 + b0,2y
2z + b0,1yz

2 + b0,0z
3

c0,3y
3

 :

b1,0 6= 0, c0,3 6= 0
}
.
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6. Strata of the space of foliations of degree 3 and its singularities

In this section we calculate the Milnor number and the multiplicity of a common singularity
in the generic foliation in every stratum. We also obtain the dimension of the strata.

Note that the point p = (1 : 0 : 0) is a singularity for every foliation in Y ssi for all i = 6, 9,
11, 12, 14, 15, 16. Along this section we use the following notation: given a foliation,

X =

 P (x, y, z)
Q(x, y, z)
R(x, y, z)

 ∈ Y ssi ,

we consider the corresponding local polynomial vector field around (0, 0):

X0 = (Q(1, y, z)− yP (1, y, z))
∂

∂y
+ (R(1, y, z)− zP (1, y, z))

∂

∂z
.

We define fi(y, z) := Q(1, y, z) − yP (1, y, z), gi(y, z) := R(1, y, z) − zP (1, y, z) and I0(f, g)
will be the intersection index of f and g at (0, 0).

6.1. Stratum 6. As we saw before if X ∈ Y ss6 then a0,3 and b0,0 are different from zero and

f6(y, z) = Q(1, y, z)− yP (1, y, z) = b0,0z
3 − a0,3y4 − a0,2y3z − a0,1y2z2 − a0,0yz3

g6(y, z) = −zP (1, y, z) = −a0,3y3z − a0,2y2z2 − a0,1yz3 − a0,0z4.

Note that b0,0z3 and P (1, y, z) does not have common tangent lines, therefore

µp(X) = I0(f6(y, z), g6(y, z)) = I0(f6(y, z), z) + I0(f6(y, z), P (1, y, z))

= I0(−a0,3y4, z) + 9 = 13

mp(X) = 3.

Finally, the 2-jet of
(
f6
g6

)
is trivial and the 3-jet is

(
z3

0

)
, if we suppose b0,0 = 1. On the other

hand, if X is a foliation of degree 3 with m(1:0:0)(X) = 3, µ(1:0:0)(X) = 13 and with 3-jet
(
z3

0

)
,

it is easy to see that X ∈ Y ss6 . In this case the corresponding parabolic subgroup P6 is the
subgroup of upper triangular matrices, therefore dimS6 = dimY ss6 + dimSL(3,C)− dimP6 = 7
(see Remark 1).

6.2. Stratum 9. If X ∈ Y ss9 then a0,3 6= 0 and (a1,0, b0,1) 6= (0, 0); therefore

f9(y, z) = Q(1, y, z)− yP (1, y, z) = (b0,1 − a1,0)yz2 + b0,0z
3

− a0,3y4 − a0,2y3z − a0,1y2z2 − a0,0yz3

g9(y, z) = −zP (1, y, z) = −a1,0z3 − a0,3y3z − a0,2y2z2 − a0,1yz3 − a0,0z4,

and

µp(X) = I0(f9(y, z), g9(y, z)) = I0(f9(y, z), z) + I0(f9(y, z), P (1, y, z))

= I0(a0,3y
4, z) + 2I0(z, a0,3y

3) + I0(b0,1y + b0,0z, P (1, y, z))

= 10 + I0(b0,1y + b0,0z, P (1, y, z)).

Note that I0(b0,1y + b0,0z, P (1, y, z)) is
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
2 a1,0 6= 0, b0,1 6= 0

3 (b0,1 = 0, b0,0 6= 0) or (a1,0 = 0 and b0,1y + b0,0z is not tangent for P (1, y, z))

∞ (b1,0, b0,0) = 0 or (a1,0 = 0 and b0,1y + b0,0z is tangent for P (1, y, z))

If a1,0 6= 0 it is clear that the multiplicity of the singular point is 3. If a1,0 = 0 then b0,1 6= 0

and also the multiplicity is 3. Finally, the 3-jet is
(

(b0,1 − a1,0)yz2 + b0,0z
3

−a1,0z3
)
. Then in the

open set where a1,0 6= 0, b0,1 6= 0 every foliation has a singular point with multiplicity 3 and
Milnor number 12. In this case the corresponding parabolic subgroup is the subgroup of upper
triangular matrices, therefore dimS9 = 9.

6.3. Stratum 11. Remember that if X ∈ Y ss11 then b1,0 and (a1,1, a0,3, b0,2) are different from
zero, and

f11(y, z) = Q(1, y, z)− yP (1, y, z)

= b1,0z
2 + (b0,2 − a1,1)y2z + (b0,1 − a1,0)yz2 + b0,0z

3

− a0,3y4 − a0,2y3z − a0,1y2z2 − a0,0yz3,
g11(y, z) = −zP (1, y, z) = −a1,1yz2 − a1,0z3 − a0,3y3z − a0,2y2z2 − a0,1yz3 − a0,0z4.

If a0,3 = 0, then z = 0 is a curve of singularities. Suppose a0,3 6= 0. Note that

I0(f11, g11) = I0(−a0,3y4, z) + I0(z,−a0,3y3)+

I0(b1,0z + b0,2y
2 + b0,1yz + b0,0z

2, P (1, y, z))

= 7 + I0(b1,0z + b0,2y
2 + b0,1yz + b0,0z

2, P (1, y, z)).

And

I0(b1,0z + b0,2y
2 + b0,1yz + b0,0z

2, a1,1yz + a1,0z
2 + a0,3y

3 + a0,2y
2z + a0,1yz

2 + a0,0z
3)

= I0

(
b1,0z + b0,2y

2 + b0,1yz + b0,0z
2,

(
a0,3 −

a1,1
b1,0

b0,2

)
y3

+

(
a0,2 −

a1,0
b1,0

b0,2 −
a1,1
b1,0

b0,1

)
y2z +

(
a0,1 −

a1,0
b1,0

b0,1 −
a1,1
b1,0

b0,0

)
yz2

+

(
a0,0 −

a1,0
b1,0

b0,0

)
z3
)

=



3 if a0,3b1,0 6= a1,1b0,2

4 if a0,3b1,0 = a1,1b0,2 and a0,2b1,0 6= a1,1b0,1 + a1,0b0,2

5 if [. . .] and a0,1b1,0 6= a1,1b0,0 + a1,0b0,1

6 if [. . .], a0,1b1,0 = a1,1b0,0 + a1,0b0,1 and a0,0b1,0 6= a1,0b0,0

∞ if [. . .], a0,1b1,0 = a1,1b0,0 + a1,0b0,1 and a0,0b1,0 = a1,0b0,0

where [. . .] is a0,3b1,0 = a1,1b0,2, a0,2b1,0 = a1,1b0,1 + a1,0b0,2.
We conclude that in the open set of Y11 where a0,3b1,0 6= a1,1b0,2 every foliation has a singular-

ity with Milnor number 10. Since b1,0 6= 0 then the multiplicity for the singular point (1 : 0 : 0)

is equal to 2 and the 2-jet is
(
z2

0

)
. The corresponding parabolic subgroup is the subgroup of

upper triangular matrices, therefore dimS11 = 12.



FOLIATIONS ON CP2 OF DEGREE 3 65

6.4. Stratum 12. If X ∈ Y ss12 then we have that

(a1,2, a1,1, b0,2, b0,3, c0,3) and (a1,1, a1,0, b0,0, b0,1, b0,2)

are different from zero and

f12(y, z) = Q(1, y, z)− yP (1, y, z)

= (b0,3 − a1,2)y3 + (b0,2 − a1,1)y2z + (b0,1 − a1,0)yz2 + b0,0z
3

− a0,3y4 − a0,2y3z − a0,1y2z2 − a0,0yz3

g12(y, z) = c0,3y
3 − zP (1, y, z)

= c0,3y
3 − a1,2y2z − a1,1yz2 − a1,0z3

− a0,3y3z − a0,2y2z2 − a0,1yz3 − a0,0z4.

These polynomials are homogenous in two variables, then generically we have

Ip(f12, g12) = 9.

If (a1,2, a1,1, c0,3) 6= 0 then g12 6= 0 and mp(X) = 3. If (a1,2, a1,1, c0,3) = 0 then (b0,3, b0,2) 6= 0
and we have also mp(X) = 3. In this case the parabolic subgroup is

P12 =


 α11 α12 α13

0 α22 α23

0 α32 α33

 ∈ SL(3,C)

 ,

therefore dimS12 = 13.
Moreover, the set

{X ∈ F3 : there exists p such that mp(X) = 3, µp(X) = 9},

is an open set in S12 because a foliation with these properties for the point (1 : 0 : 0) is unstable
and it does not be in another stratum.

6.5. Stratum 14. If X ∈ Y ss14 then b1,0 and (a1,2, b0,3) are different from zero, and

f14(y, z) = Q(1, y, z)− yP (1, y, z)

= b1,0z
2 + (b0,3 − a1,2)y3 + (b0,2 − a1,1)y2z + (b0,1 − a1,0)yz2 + b0,0z

3

− a0,3y4 − a0,2y3z − a0,1y2z2 − a0,0yz3

g14(y, z) = −zP (1, y, z) = −a1,2y2z − a1,1yz2 − a1,0z3

− a0,3y3z − a0,2y2z2 − a0,1yz3 − a0,0z4.

Note that

I0(f14, g14) = I0((b0,3 − a1,2)y3 − a0,3y4, z)
+ I0(f14,−a1,2y2 − a1,1yz − a1,0z2 − a0,3y3 − a0,2y2z − a0,1yz2 − a0,0z3).

If we suppose that a1,2 6= 0 and b0,3 6= a1,2 then the Milnor number of (1 : 0 : 0) is 7. If
a1,2 6= 0, b0,3 = a1,2 and a0,3 6= 0 we have µ(1:0:0)(X) = 8. On the other hand, a1,2 6= 0, b0,3 = a1,2
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and a0,3 = 0 implies that we have a curve of singularities. Supposing a1,2 = 0, we obtain
b0,3 6= a1,2, 0, and with this we have

I0(f14, a1,1yz + a1,0z
2 + a0,3y

3 + a0,2y
2z + a0,1yz

2 + a0,0z
3)

= I0

(
b1,0z

2 + b0,3y
3 + b0,2y

2z + b0,1yz
2 + b0,0z

3, a1,1yz +

(
a1,0 −

a0,3
b0,3

b1,0

)
z2

+

(
a0,2 −

a0,3
b0,3

b0,2

)
y2z +

(
a0,1 −

a0,3
b0,3

b0,1

)
yz2 +

(
a0,0 −

a0,3
b0,3

b0,0

)
z3
)

= 3 + I0

(
b1,0z

2 + b0,3y
3 + b0,2y

2z + b0,1yz
2 + b0,0z

3, a1,1y +

(
a1,0 −

a0,3
b0,3

b1,0

)
z

+

(
a0,2 −

a0,3
b0,3

b0,2

)
y2 +

(
a0,1 −

a0,3
b0,3

b0,1

)
yz +

(
a0,0 −

a0,3
b0,3

b0,0

)
z2
)
.

We can verify that if a1,1 6= 0 then the last expression is equal to 5. When a1,1 = 0 we can
see that

I0(f14, a1,1yz + a1,0z
2 + a0,3y

3 + a0,2y
2z + a0,1yz

2 + a0,0z
3)

= I0

(
b1,0z

2 + b0,3y
3 + b0,2y

2z + b0,1yz
2 + b0,0z

3, a′0,3y
3 + a′0,2y

2z + a′0,1yz
2 + a′0,0z

3

)
,

where a′i,j denotes ai,j −
a1,0
b1,0

bi,j .

In conclusion,

I0(b1,0z
2 + b0,3y

3 + b0,2y
2z + b0,1yz

2 + b0,0z
3, a′0,3y

3 + a′0,2y
2 + a′0,1yz + a′0,0z

2)

=



6 if a′0,3 6= 0

7 if a′0,3 = 0 and a′0,2 6= 0

8 if (a′0,3, a
′
0,2) = 0 and a′0,1 6= 0

9 if (a′0,3, a
′
0,2, a

′
0,1) = 0 and a′0,0 6= 0

∞ if (a′0,3, a
′
0,2, a

′
0,1, a

′
0,0) = 0.

Therefore,

µ(1:0:0)(X) =



7 if b0,3 6= a1,2 6= 0

8 if (b0,3 = a1,2 6= 0 and a0,3 6= 0) or if (a1,2 = 0 and a1,1 6= 0)
9 if (a1,2, a1,1) = 0 and a′0,3 6= 0

10 if (a1,2, a1,1, a
′
0,3) = 0 and a′0,2 6= 0

11 if (a1,2, a1,1, a
′
0,3, a

′
0,2) = 0 and a′0,1 6= 0

12 if (a1,2, a1,1, a
′
0,3, a

′
0,2, a

′
0,1) = 0 and a′0,0 6= 0

∞ if (a1,2, a1,1, a
′
0,3, a

′
0,2, a

′
0,1, a

′
0,0) = 0

Since b1,0 6= 0 we get m(1:0:0)(X) = 2 with 2-jet
(
z2

0

)
. Since the parabolic subgroup is the

subgroup of upper triangular matrices we obtain dimS14 = 14. Moreover, the set

{X ∈ F3 : there exists p such that mp(X) = 2, µp(X) = 7 and 2-jet linearly equivalent to
(
z2

0

)
},
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is an open set in S14, because a foliation with these properties for the point (1 : 0 : 0) is unstable
and it does not be in another stratum.

6.6. Stratum 15. If X ∈ Y ss15 we have that a0,3 and (a2,0, b1,1) are different from zero, and

f15(y, z) = Q(1, y, z)− yP (1, y, z)

= (b1,1 − a2,0)yz + b1,0z
2 + (b0,2 − a1,1)y2z + (b0,1 − a1,0)yz2 + b0,0z

3

− a0,3y4 − a0,2y3z − a0,1y2z2 − a0,0yz3

g15(y, z) = −zP (1, y, z)

= −a2,0z2 − a1,1yz2 − a1,0z3 − a0,3y3z − a0,2y2z2 − a0,1yz3 − a0,0z4.

Note that

I0(f15, g15) = I0(−a0,3y4, z)
+ I0(f15,−a1,2y − a1,1z − a1,0z2 − a0,3y3 − a0,2y2z − a0,1yz2 − a0,0z3)

= 4 + I0(b1,1yz + b1,0z
2 + b0,2y

2z + b0,1yz
2 + b0,0z

3,

a2,0z + a1,1yz + a1,0z
2 + a0,3y

3 + a0,2y
2z + a0,1yz

2 + a0,0z
3)

= 4 + I0(z, a0,3y
3) + I0(b1,1y + b1,0z + b0,2y

2 + b0,1yz + b0,0z
2,

a2,0z + a1,1yz + a1,0z
2 + a0,3y

3 + a0,2y
2z + a0,1yz

2 + a0,0z
3).

It is clear that if b1,1 and a2,0 are different from zero then the intersection index of f15 and
g15 is 8. Suppose that a2,0 6= 0 and b1,1 = 0, then

I0(b1,0z + b0,2y
2 + b0,1yz + b0,0z

2, a2,0z + a1,1yz + a1,0z
2+

a0,3y
3 + a0,2y

2z + a0,1yz
2 + a0,0z

3)

=



2 if b0,2 6= 0

3 if b0,2 = 0 and b1,0 6= 0

4 if (b0,2, b1,0) = 0 and b0,1 6= 0

6 if (b0,2, b1,0, b0,1) = 0 and b0,0 6= 0

∞ if (b0,2, b1,0, b0,1, b0,0) = 0

Now suppose a2,0 = 0 and b1,1 6= 0. We define

L(y, z) = b1,1y + b1,0z M(y, z) = a1,1yz + a1,0z
2

N(y, z) = b0,2y
2 + b0,1yz + b0,0z

2 F (y, z) = a0,3y
3 + a0,2y

2z + a0,1yz
2 + a0,0z

3.

We have

I0(L+N,M + F ) = 2 if L -M.



68 CLAUDIA R. ALCÁNTARA AND RAMÓN RONZÓN-LAVIE

Now suppose L |M , we have two cases: if L - N ,

I0(L+N,M + F ) = I0

(
L+N,F − M

L
N

)

=


3 if L2 - (LF −MN)

4 if L2 | (LF −MN) and L3 - (LF −MN)

5 if L3 | (LF −MN) and L4 - (LF −MN)

6 if L4 | (LF −MN)

.

On the other hand, if L | N :

I0

(
L+N,F − M

L
N

)
= I0

(
L,F − M

L
N

)
+ I0

(
1 +

N

L
,F − M

L
N

)
= I0

(
L,F − M

L
N

)
=

{
3 if L - (LF −MN)

∞ if L | (LF −MN)

We conclude that in S15 we have a nonempty open set which consists of foliations with a singu-
larity with multiplicity 2 and Milnor number 8. But we can have in this stratum foliations with
a singularity with multiplicity 2 and Milnor number 9, 10, 11, 12 and 13 or with a curve of singu-

larities. The 2-jet around the singular point (1 : 0 : 0) of X is
(

(b1,1 − a2,0)yz + b1,0z
2

−a2,0z2
)
. Since

the parabolic subgroup is the subgroup of upper triangular matrices we obtain dimS15 = 14.

6.7. Stratum 16. If X ∈ Y ss16 then b1,0 6= 0 and c0,3 6= 0. We have

f15(y, z) = Q(1, y, z)− yP (1, y, z)

= b1,0z
2 + (b0,3 − a1,2)y3 + (b0,2 − a1,1)y2z + (b0,1 − a1,0)yz2 + b0,0z

3

− a0,3y4 − a0,2y3z − a0,1y2z2 − a0,0yz3

g15(y, z) = c0,3y
3 − zP (1, y, z)

= c0,3y
3 − a1,2y2z − a1,1yz2 − a1,0z3 − a0,3y3z − a0,2y2z2 − a0,1yz3 − a0,0z4,

and the polynomials c0,3y3 − a1,2y2z − a1,1yz2 − a1,0z3 and b1,0z2 do not have common factors.
As a result the Milnor number of (1 : 0 : 0) is 6. And the multiplicity of this point is 2 with

2-jet
(
z2

0

)
. The corresponding parabolic subgroup is the subgroup of upper triangular matrices,

therefore dimS16 = 15.
In the following theorem we summarize the above.

Theorem 7. The spaces Si = SL(3,C)Y ssi for i ∈ {1, . . . , 16}, are locally closed, irreducible
non-singular algebraic subvarieties of F3. They form a stratification of the closed set of unstable
foliations Fun3 , and Si ⊂

⋃
j≤i Sj. Moreover, these varieties satisfy the following:
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Stratum Characterization of the generic foliation
S1, S2, S3,
S4, S5, S7,
S8, S10, S13

Every foliation has a curve of singularities

S6

dimS6 = 7

{
X ∈ F3 : ∃p with mp(X) = 3, µp(X) = 13 and 3-jet linearly equivalent

to
(
z3

0

)}
= S6

S9

dimS9 = 9
{X ∈ F3 : ∃p with mp(X) = 3, µp(X) = 12} ∩ S9 is open in S9

S11

dimS11 = 12

{X ∈ F3 : ∃p with mp(X) = 2, µp(X) = 10 and 2-jet linearly equivalent to(
z2

0

)
} ∩ S11 is open in S11

S12

dimS12 = 13
Contains {X ∈ F3 : ∃p with mp(X) = 3, µp(X) = 9} as an open set

S14

dimS14 = 14

Contains
{
X ∈ F3 : ∃p with mp(X) = 2, µp(X) = 7 and 2-jet linearly

equivalent to
(
z2

0

)}
as an open set

S15

dimS15 = 14
{X ∈ F3 : ∃p with mp(X) = 2, µp(X) = 8} ∩ S15 is open in S15

S16

dimS16 = 15

{X ∈ F3 : ∃p with mp(X) = 2, µp(X) = 6 and 2-jet linearly equivalent to(
z2

0

)
} = S16

In [3] we also have studied the strata S6, S9 and S16. As a consequence of the above we can
mention the following general result.

Theorem 8. Let X ∈ F3 with isolated singularities. Then X is unstable if and only if:
(1) X has a singular point with multiplicity 3 or
(2) X has a singular point with multiplicity 2 and 2-jet linearly equivalent to z2 ∂

∂y or
(3) X ∈ S15.

Moreover, the irreducible components of Fun3 are the closure of the locally closed subvarieties S15

and S16. The first one has dimension 14 and the second one has dimension 15.

Proof. The first affirmation is consequence of the results in the table. For the second one we
use proposition 4.2 of [9], it says that Sj is irreducible and Sj = SL(3,C)Yj for all j. Since
Y16 ⊂

⋃
j 6=15 Yj and S15 6⊂ S16, we have that Fun3 = S15∪S16 is the decomposition in irreducible

components.
�

Remark 2. Note that V3 = Y15 and V1 = Y16 in theorem 5.

6.8. Semistable non-stable foliations on CP2 of degree 3. In this subsection we describe
the semistable non-stable foliations on CP2 of degree 3.

Theorem 9. The set of semistable non-stable foliations on CP2 of degree 3 with isolated singu-
larities is

SL(3,C)P


 P (y, z)

b1,1xyz + b1,0xz
2 +

∑3
j=0 b0,jy

jz3−j

c1,0xz
2 + c0,2y

2z + c0,1yz
2 + b0,0z

3

 :

P (y, z) ∈ C3[y, z], (b0,3, c0,2) 6= 0, (b1,1, c1,0) 6= 0
}
.
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Proof. Let X ∈ Fss3 − Fs3 then X is not in any strata and it satisfies one of the following
properties:

(1) dimO(X) < 8: in this case, by Theorem 1.2 of [1], the foliation is λ-invariant for some
1-PS λ and it is not in any Zj . Then the foliation is, up to change of coordinates, such
that the line with its weights pass through zero, if we see the representation we conclude
that X is:  0

b1,1xyz + b0,3y
3

c1,0xz
2 + c0,2y

2z

 ,

where (b0,3, c0,2) 6= 0, (b1,1, c1,0) 6= 0, since X has isolated singularities we can suppose
c1,0 = 1.

(2) O(X) is not closed in Fss3 : then there exists Y ∈ Fss3 ∩ (O(X) − O(X)). Since
dimO(Y ) < 8, we conclude that Y is the above foliation, therefore X has its weights in
one hyperplane given by the weights of Y , therefore X is, up to change of coordinates,
in

P


 P (y, z)

b1,1xyz + b1,0xz
2 +

∑3
j=0 b0,jy

jz3−j

c1,0xz
2 + c0,2y

2z + c0,1yz
2 + b0,0z

3

 : P (y, z) ∈ C3[y, z], (b0,3, c0,2) 6= 0, (b1,1, c1,0) 6= 0

 .

�

7. Corollaries

7.1. The dimension of the orbits. Generically the orbit of a foliation on CP2 has dimension
8, for example, a stable foliation satisfies this property. It theorem 1.2 of [1] we classify foliations
with isolated singular points such that the dimension of the orbit is less than or equal to 7.
We can see in proposition 2.3 of [5] that the dimension of an orbit of a foliation with isolated
singularities of degree d is greater than or equal to 6. In the same paper the authors describe the
two unique foliations of degree 2, up to change of coordinates, such that the orbit has dimension
6. For the case of foliations of degree 3 we have the same situation.

Theorem 10. There are, up to change of coordinates, two foliations on CP2 of degree 3 with
isolated singularities with automorphism group of dimension 2: y3 ∂

∂x + z3 ∂
∂y and y3 ∂

∂x + z3 ∂
∂z .

Proof. In proposition 2.5 of [5] we can see that if Aut(X) has dimension 2 then it is isomorphic to
the group of affine transformations of the line. Therefore by theorem 1.2 of [1], X is λ-invariant
for some 1-PS λ, and X is also invariant by (C,+). This last affirmation implies, by the same
theorem, that X is unstable with a singular point with Milnor number ≥ 12. An unstable
foliation invariant by a 1-PS is, up to change of coordinates, in Z15 ∪Z14 ∪Z12 ∪Z11 ∪Z9 ∪Z6.
It is easy to see that the unique foliations with a singular point with Milnor number ≥ 12 are in
Z9 and Z6, they are y3 ∂

∂x + z3 ∂
∂y and y3 ∂

∂x + z3 ∂
∂z .

�

7.2. Foliations on CP2 of degree 3 with one singular point. The classification of foliations
on CP2 with one singular point is known only for degree 2 (see [5] and [2]). In this section we
describe all the unstable foliations on CP2 of degree 3 with one singular point, that means with
a singular point with Milnor number 13. To obtain the result we need the following lemma.

Lemma 3. Let X be a foliation on CP2 of degree d. If X has a singular point p with multiplicity
d and Milnor number greater than d2, then X has an invariant line that passes through p.
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Proof. We can suppose that X is a foliation on CP2 of degree d such that m(1:0:0)(X) = d and
µ(1:0:0)(X) > d2. Then

X =

xPd−1 + Pd
Qd
Rd


where Pk, Qk, Rk ∈ C[y, z] are homogeneous of degree k. In the chart U0, the foliation is

(Qd − yPd−1)
∂

∂y
+ (Rd − zPd−1)

∂

∂z
,

since µ(1:0:0)(X) > d2 then there exists a line L = αy − βz such that Qd − yPd−1 = LF and
Rd − zPd−1 = LG for some F,G ∈ C[y, z]. Therefore αQd − βRd = L(Pd−1 + αF − βG), and
this means that L is invariant for X and it passes through (1 : 0 : 0). �

Theorem 11. The unstable foliations on CP2 of degree 3 with one singular point are:
(1) The stratum S6, which has dimension 7.
(2) The subspace of S9:

SL(3,C)

{a1,0xz2 + y3 + a0,2y
2z + a0,1yz

2 + a0,0z
3

b0,1yz
2 + b0,0z

3

0

 : b0,1 = 0, a1,0b0,0 6= 0 or

a1,0 = 0, b01 6= 0 and b0,1y + b0,0z - y3 + a0,2y
2z + a0,1yz

2 + a0,0z
3

}
,

of dimension 8.
(3) The subspace of S11:

SL(3,C)

{a1,1xyz + a1,0xz
2 + a0,3y

3 + a0,2y
2z + a0,1yz

2 + a0,0z
3

xz2 + b0,2y
2z + b0,1yz

2 + b0,0z
3

0

 : (a1,1, a0,3, b0,2) 6= 0,

a0,0 6= a1,0b0,0; a1,0 = a1,1b0,0 + a1,0b0,1; a0,2 = a1,1b0,1 + a1,0b0,2; a0,3 = a1,1b0,2

}
,

of dimension 9.
(4) The subspace of S12:

SL(3,C)

{x(α1y − β1z)(α2y − β2z) + y3 + a0,2y
2z + a0,1yz

2 + a0,0z
3

α(α1y − β1z)2(α2y − β2z)
0

 :

It has isolated singularities, (α1, α2) 6= 0 and α1α2 = 0; or αα1 = 1 and β1, β2 ∈ C∗
}
,

of dimension 10.
(5) The subspace of S15:

SL(3,C)

{x2z + a1,1xyz + a1,0xz
2 + a0,3y

3 + a0,2y
2z + a0,1yz

2 + a0,0z
3

b0,0z
3

0

 : a0,3 6= 0

}
,

of dimension 10.
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In S6, S9 and S12 the singular point has multiplicity 3 and in S11, S15 has multiplicity 2.

Proof. It remains only to find the foliations with one singular point in S12, the other cases were
studied in the construction of the strata.

To obtain the dimension of these spaces, we must observe that if X is a foliation in any of
the described linear subspaces of Y ss9 , Y ss11 , or Y ss15 then for g ∈ SL(3,C) we have that gX is in
the same linear subspace if and only if g is in the corresponding parabolic subgroup. Therefore
the dimension of the space is the dimension of the linear subspace plus 3.

Now let X ∈ Y ss12 such that (1 : 0 : 0) is the unique singularity. By the above lemma, X has an
invariant line αy − βz. There exists g ∈ P12 such that z is invariant for gX ∈ Y ss12 . For that we
can suppose:

X =

xL1(y, z)L2(y, z) + a0,3y
3 + a0,2y

2z + a0,1yz
2 + a0,0z

3

L3(y, z)L4(y, z)L5(y, z)
0


where Lk(y, z) = αky − βkz and αk, βk, a0,j ,∈ C for k = 1, ..., 5 and j = 0, 1, 2, 3. The Milnor
number of (1 : 0 : 0) is

I
(
L3L4L5 − y(L1L2 + a0,3y

3 + a0,2y
2z + a0,1yz

2 + a0,0z
3),

z(L1L2 + a0,3y
3 + a0,2y

2z + a0,1yz
2 + a0,0z

3)
)

= I(z, L3L4L5 − y(L1L2 + a0,3y
3)) + I(L3L4L5, L1L2 + a0,3y

3 + a0,2y
2z + a0,1yz

2 + a0,0z
3),

and this is 13 if and only if

I(z, L3L4L5 − y(L1L2 + a0,3y
3)) = 4,

I(L3L4L5, L1L2 + a0,3y
3 + a0,2y

2z + a0,1yz
2 + a0,0z

3) = 9,

and this happens if and only if a0,3 6= 0, z|(L3L4L5− yL1L2), L3L4L5 = αL2
1L2 for some α 6= 0,

and L2
1L2 - (a0,3y

3+a0,2y
2z+a0,1yz

2+a0,0z
3). Since z|L1L2(αL1−y) then we have the following

cases: α1 = 0, α2 = 0 or αα1 = 1. The condition for X to be in Y ss12 says that if α1 = 0 then
α2 6= 0 and if α2 = 0 then α1 6= 0. If αα1 = 1 then β1, β2 ∈ C∗. We get

X =

x(α1y − β1z)(α2y − β2z) + y3 + a0,2y
2z + a0,1yz

2 + a0,0z
3

α(α1y − β1z)2(α2y − β2z)
0

 .

Then the dimension of the projectivization of the linear space where X lives is 7. When we move
the invariant line through (1 : 0 : 0) we obtain a family of foliations of dimension 8 and when we
take the action by SL(3,C) module the parabolic subgroup P12 we obtain a space of dimension
10. �

To finish the classification of foliations on CP2 of degree 3 with one singularity with Milnor
number 13 remains to find the semistable foliations with this property. For foliations on CP2 of
degree 2 we know that there exists only one semistable foliation, up to change of coordinates (see
Theorem 5.9 of [2]), with only one singular point. In this case the singularity is a saddle-node,
that means multiplicity 1 non-nilpotent. For degree 3 the situation is different, for example, we
have the following foliations:
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X1 = z3
∂

∂x
+ (x2z + xy2)

∂

∂y
− (xyz + y3)

∂

∂z

X2 = y2z
∂

∂x
+ (xyz + z3)

∂

∂y
− y3 ∂

∂z
.

Both are semistable foliations of degree 3 with only one singularity, the first one has a nilpotent
singularity and in second one the singularity has multiplicity 2. In general is very difficult to find
foliations on CP2 of degree d with one singular point. It is clear that using this stratification we
can get all the unstable foliations. We think that using recursively this construction it is possible
to find also the semi-stable foliations of degree d with a singularity with Milnor number d2+d+1.
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