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CLASSIFICATION OF FOLIATIONS ON CP? OF DEGREE 3 WITH
DEGENERATE SINGULARITIES

CLAUDIA R. ALCANTARA AND RAMON RONZON-LAVIE

ABsTRACT. The aim of this work is to classify foliations on CP? of degree 3 with degenerate
singular points. For that we construct a stratification of the space of holomorphic foliations
by locally closed, irreducible, non-singular algebraic subvarieties which parametrize foliations
with a special degenerate singularity. We also prove that there are only two foliations with
isolated singularities with automorphism group of dimension two, the maximum possible di-
mension. Finally we obtain the unstable foliations with only one singular point, that is, a
singular point with Milnor number 13.

1. INTRODUCTION

The aim of this work is to classify holomorphic foliations on CP? of degree 3 with certain
degenerate singular point using Geometric Invariant Theory (GIT). This theory was developed
principally by David Hilbert and David Mumford (see [6]). We obtain locally closed, irreducible,
non-singular algebraic subvarieties which parametrize foliations of degree 3 with a special degen-
erate singularity. We also get the dimension and explicit generators for each stratum. Similar
results for degree 2 are given in [2] and in [3]|, we have some general results for degree d.

Geometric Invariant Theory gives a method for constructing quotients for group actions on
algebraic varieties. More specifically, we have a linear action by a reductive group on a pro-
jective variety and we can construct a good quotient if we remove the closed set of unstable
points. When the projective variety parametrizes geometric objects, the unstable points are in
some sense degenerate objects. For example, the unstable plane algebraic curves with respect to
the action by projective transformations are curves with non-ordinary singularities with order
greater than 2.

In this article the projective variety Fj is the space of holomorphic foliations on CP? of degree
3 and the action is given by change of coordinates. For this action we obtain the closed set of
unstable foliations. We will prove that a foliation is unstable if and only if it has a special
degenerate singular point (see Theorem 8). In this closed set we construct the stratification
studied by Kirwan (in [12]), Hesselink (in [9]) and Kempf (in [11]). The strata are locally closed,
non-singular, irreducible algebraic subvarieties of F3. We characterize the generic foliation on
every stratum according to the Milnor number and multiplicity of their singularities. We also
obtain the dimension of the strata (see Theorem 7).
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As a corollary we describe the irreducible components of the closed set of unstable foliations.
We find, up to change of coordinates, the only two foliations with isolated singularities with
automorphism group of dimension 2 (see Theorem 10). Finally we classify unstable foliations on
CP? of degree 3 with only one singular point, that is with Milnor number 13 (see Theorem 11).
This result is important because the classification of foliations on CP? with only one singular
point is known only for degree 2 (see [5] and [2]).

In sections 2 and 3 we recall the basic results about Geometric Invariant Theory and foliations
that we need in the sequel. We compute in section 4 the unstable foliations of degree 3 using
the numerical criterion of one parameter subgroups. The construction of the stratification of the
space of foliations and the characterization of the generic foliation on every stratum is included
in section 5. The last section is devoted to give some important corollaries of the construction.

2. GEOMETRIC INVARIANT THEORY

In this section we recall basic facts about Geometric Invariant Theory. All the definitions and
results can be found in [14] and [11].

Let V be a projective variety in CP", and consider a reductive group G acting linearly on V.

Definition 1. Let 2 € V C CP", and consider T € C"*! such that T € x. Denote by O(T) the
orbit of T in the affine cone of V and by O(zx) the orbit of x. Then

(1)  is unstable if 0 € O(T).

(i) = is semi-stable if 0 ¢ O(T). The set of semi-stable points will be denoted by V*°.

(iti) x is stable if it is semi-stable, O(x) is closed in V*° and dim O(x) = dim G. The set of
stable points will be denoted by V*°.

The main result in GIT is the following:

Theorem 1. (see page 74 in [14])
(i) There exists a projective variety Y and a morphism ¢ : V°° =Y, which is a good quotient.

(ii) There exists an open set Y* CY such that ¢~ (Y*) = V* and the morphism ¢| : V* — Y
is a good quotient and an orbit space.

It is very often difficult to find the unstable points for a given action, but there exists a very
useful criterion due to Hilbert and Mumford. Let us describe it.

A 1l-parameter subgroup (1-PS) of the group G is an algebraic morphism A : C* — G. Since
the action on V is linear, this induces a diagonal representation of C*:

C* - GL(n+1,0C)
t A(t):Cct - et
v = A(t)v.
Therefore there exists a basis {vg, ..., v, } of C"*! such that A\(t)v; = t"iv;, where r; € Z.

Definition 2. Letz € X and let A\ : C* — G be a 1-PS of G. Ifz € x and T =Y, a;v;, then
At)z =37 o t"av;. We define the following function

w(x, A) == min{r; : a; # 0}.

The numerical criterion can now be stated.
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Theorem 2. (see Theorem 4.9 of [14])
(i) = is stable if and only if p(x,\) < 0 for every 1-PS, A\, of G.
(ii) x is unstable if and only if there exists a 1-PS, X\, of G such that u(x,A) > 0.

Definition 3. If u(z,A) > 0 we will say that x is A-unstable.

The following is a useful tool for applying the criterion of 1-PS when G = SL(n,C). We
formulate the result for the case n = 3.

Lemma 1. (see [14]) Every I-parameter subgroup of SL(3,C) has the form

thr 0 0
At)=g[ 0 = 0 g
0 0 ths

for some g € SL(3,C) and some integers ki, ko, ks such that ki > ko > ks and k1 + ko + k3 = 0.

3. FOLIATIONS ON CP? OF DEGREE d

This section provides the definitions and results that we need to know about holomorphic
foliations on CP? for the development of the paper.

Definition 4. A holomorphic foliation X of CP? of degree d is a non-trivial morphism of vector
bundles:

X :0(1—d)— TCP?
modulo multiplication by a nonzero scalar. The space of foliations of degree d is
Fy:=PHY(CP? TCP*(d — 1)),
where d > 0.

Take homogeneous coordinates (z : y : z) on CP?. Up to multiplication by a nonzero scalar
there are two equivalent ways to describe a foliation of degree d (see [8]):

(1) By a homogeneous vector field:

o 0 0 P(ZL', Y, Z)
X:P(ﬂ%y,z)*+Q($7yvz)*+R($ay,Z)*: Q(l',y,Z)
or oy 0z
R(z,y,2)
where P,Q, R € C|z,y, z] are homogeneous of degree d. And if we consider the radial
foliation
9] 0 0
E=x— — —
o + yay * ‘oz

then X and X + F(x,y, z)E represent the same foliation for all F' € C[z,y, z] homoge-
neous of degree d — 1.

(2) By a homogeneous 1-form: Q = L(z,y,z)dz + M(z,y, 2)dy + N(x,y, z)dz, such that
L,M,N € Clz,y,z| are homogeneous of degree d + 1 and these satisfy the Euler’s
condition L +yM + zN = 0.

With this we can see that the space of foliations on CP? of degree d is a projective space of
dimension d? + 4d + 2. We will use the description 1 for the rest of the paper.

We now define the notion of singular point for a foliation and two important invariants for
this.
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Definition 5. A point p=(a:b:c) € CP? is singular for the above foliation X if

(P(a7 b’ C)? Q(a’ b? c)? R(a’ b? C)) = (ka7 kb? kc)
for some k € C. The set of singular points of X will be denoted by Sing(X).

(103

be a local generator of X inp= (1:b:c). Then

Definition 6. Let

the Milnor number of p is j1,(X) := dimc S}%p )

the multiplicity of p is my(X) := min{ord,(f),ord,(9)}.

Proposition 1. (see [4]) Let X be a foliation of degree d with isolated singularities then
P rd+1=> p,(X).
peCP?

From Lemma 1.2 in [7] we can deduce that

X € Fy : there exists p € CP? such that wp(X) > 2
p

is a divisor in Fy, therefore we have the following:

Theorem 3. The set {X € Fy : every singular point for X has Milnor number 1} is open and
non-empty in Fq.

Finally we give the definition of algebraic leaf for a foliation.

Definition 7. A plane curve defined by a polynomial F(x,y, z) is an algebraic leaf for X or
invariant by X if and only if there exists a polynomial H(x,y, z) such that:

OF (z,y, 2) OF (z,y,2)
ox oy

Theorem 4. (see Theorem 1.1, p.158 in [10] and [13]) The set

OF (z,y,2)

P(x,y,2) 92

+Q(z,y,2) + R(z,y,2) =FH.

{X € Fq: X has no algebraic leaves}
is open and non-empty in Fq.

Generically a foliation on CP? of degree d does not have degenerate singularities and does not
have algebraic leaves. So it is important to classify foliations in the complement of these sets.
In this article we say something about that for degree 3.

The group PGL(3,C) of automorphisms of CP? is a reductive group that acts linearly on Fy
by change of coordinates:

PGL(3,C) x Fq — Fy
(9. X)— gX =DgXo(g").

In the computations we will use SL(3,C) instead of PGL(3,C), we will get the same results.
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4. UNSTABLE FOLIATIONS ON CP? OF DEGREE 3

As we saw before the space of foliations F3 is a projective space of dimension 23. In this
section we apply the numerical criterion of one parameter subgroups to obtain the closed set of
unstable foliations of degree 3. Remember that X € F; is unstable with respect to the action by
change of coordinates if and only if there exists A a 1-PS of SL(3,C) such that (X, A) > 0 (see
Theorem 2). For all A a 1-PS of SL(3,C) there exists g € SL(3,C) such that D(t) := g\(t)g~!
is a diagonal 1-PS, with the form:

th 0 0
D:C* = SL(3,C), tws 0o tk= 0o |,
0 0 ths

for some intergers ki, ko, k3 such that k1 > ko > k3 and k1 + ko + k3 = 0.

Since u(gX, D) = u(X,g71Dg) = u(X, ) (see remark 4.10 of [14]), every unstable foliation
is in the orbit of an unstable point with respect to a diagonal 1-PS. Therefore, we will find the
unstable foliations with respect to a diagonal one parameter subgroup and then we will take the
set of orbits of these points.

Let us consider the basis for the vector space H?(CP?, TCP?(2)) given by

LRI NN Y )
{Mﬁx’May’m 82" Y9, ™ 82 52

: M € Clz,y, 2] is a monic monomial of degree 3}.

This basis diagonalizes the action of SL(3,C). Let X = P4~ < —+ Qay + Raz be a foliation on CP?
of degree 3 where

Jf Y, 2 Za Bxa B 3—a—p
Jf e Zb Bxa B 3—a—p
R(z,y,2) =Y capz®y’2>0.

Then we are looking for the points X € F3 such that there exist k1, ko, k3 € Z with k1 > ko > k3
and k1 + kg + k3 = 0 and such that max{—Ep, —FEq,—Egr} < 0, where

Ep =min{—ki(a — 1) — koS — k37 : aa,p # 0}
Eq =min{—kia — ko(8 — 1) — k3y : bag # 0}
Er = min{—kja — ko8 — kz(y — 1) : ca,p # 0}.

From definition 2, u(X, D) = —max{—FEp, —Eqg, —Er}, where D is the diagonal 1-PS defined
above.

Since k1 > 0 and k3 < 0, then we can define ¢; := k' . Therefore g1 + g2 +¢3 =0, 1 > q2 > g3

and ¢ € [ ,1] N Q. We must find the conditions in the rational numbers g; to have non-zero
coefficients for the monomials of P,@ and R. It is easy to obtain the following conclusion.
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Coefficients aq g

Coefficients b
— 1)k + Bka + ks < 0 o
(o — D)k1 + B2 + ks ak1+(ﬁ—1)k2+’7k3<0

a=2[8=0,7=1, EOJ
: : ! ’1 a—l,ﬁ—l,'y—l,qge(Ol]

azl,ﬁ:l,y:l,qge[
a=1,=0,7y=2,q €[~
a=0,=37=0,¢ €[~
a=0,=2,v=1,q € [—
0410,5:1,’)/:2,QQ€[
a:0u5:07W:37QZ6[

a=1,8=0,7v=2,q € (
a:07ﬁ237’7:01q2€[
a=0,=2,7v=1,¢ € [-
=
=

m\»—tw\»—tmww\uww\.
—

1
,0

04:075:1’7:27%6
01:075:0,7:3»(]26

M\HI\JM—A[\’)\»—!N‘H[\’JM—*[\D\»—!NM—*
[ U —
== ==

Coeflicients cq g
ah+ﬁb+(—”%<0
a=0p3=37=0¢€c[-3—7)

From this, we see that a3 g, az,1, b3,0, 02,1, b1,2, 3,0, €2,1, c1,2 = 0 and we can have a1 1, a1,
@0,2, 60,1, @0,0, Do,2, bo1, boo # 0. Now we do a partition of [—%, 1] to have the subspaces of
unstable foliations with respect to a diagonal 1-PS.

1 1
o 2| = as0,bao, b, bio =
g2 € { 3’ 3} a2,0,b2,0,b1,1,b1,0 =0

1 1
——, = = boo,b11 =0
Q2 € ( 3 4> a2,0,92,0,01,1

1
g2 € [_4’0) = a2,0,b2,0,01,1,¢c03 =0

g2 = 0= as0,01,2,b2,0,01,1,b0,3,c03 =0

1
Q2 € <0, 3> = a1,2,b2,0,b0,3,c03 =0

1
g2 € [37 2} = a1,2,a0,3,b2,0,b0,3,c0,3 =0

1
G2 € (27 1} = a1,2,a0,3,b0,3,c0,3 = 0.

Consider the seven subspaces with the corresponding coefficients equal to zero. In these sets
we have 3 maximal subspaces of H(CP?, TCP?(2)). That we describe below:

0 0 0 40 0 8 0
e 2 Y 2 Y I I 37
Vl —<33y 8xam Zax zrz O 7y O 7y Za 7y o O )
D gD 0 a0 0 0y

= Y ay,y . —,yz? 77 5" 5

\% '—<x2z 4 X z3 xzzg 4 2 9 ﬁ $222 x z2 acz2i
2 =\egnayignast g gy g S oy oy By
8 20 (9 .3 0 >
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0 0 0 0 0 0 0
V ::< 2 a a 27, 37, 2 a 277 377 a > 27a
3 R e T T L Ll Al gjyzay e dy
0 0 0
2, 0 20 30
Y Z@y’yz 8y’z 8y>«:’
Then,
{X € H°(CP?, TCP?(2)) : there exists D a 1-PS diagonal such that (X, D) > 0} = V;UVaUVa.
Therefore we can state:

Theorem 5. The closed set of unstable foliations on CP? of degree 3 is
F3" = SL(3,C)PV; USL(3,C)PV2 U SL(3,C)PVs.

5. THE STRATIFICATION OF Fj3

In the previous section we exhibit the closed set of unstable foliations on CP? of degree 3.
In this section we will use properties of the singularities of the foliations to construct locally
closed, non-singular subvarieties of F§". Firstly we will explain the stratification described in
the following Theorem by F. Kirwan and then apply it to Fs.

Theorem 6. (see Theorem 13.5 in [12]) Let V' be a non-singular projective variety with a linear
action by a reductive group G. Then there exists a stratification

{Sp : B € B}
of V such that the unique open stratum is V*° and every stratum Sg in the set of unstable

points is non-singular, locally closed and isomorphic to G X p, Y§®, where Y5* is a non-singular
locally-closed subvariety of V' and Pg is a parabolic subgroup of G.

Throughout the text we will use the same notation as in §12 of [12].

Definition 8. Let Y (G) be the set of one parameter subgroups X : C* — G. Define in Y (G) x N
the equivalence relation: (A1,n1) is related with (Aa,n2) if and only if A\ (t"2) = A2 (t™*) for all
t € C*. A wvirtual one parameter subgroups of G is an equivalence class of this relation,
the set of these classes will be denoted by M(G).

The indexing set B of the stratification is a finite subset of M(G) and this may be described
in terms of the weights of the representation of G which defines the action. For the construction
we must consider on M (G) a norm ¢ which is the square of an inner product ( , ). This norm
gives the partial order > on B.

On the other hand, the representation of D on C**!, where D is a maximal torus of G, splits
as a sum of scalar representations given by characters ay, ..., a,. These characters are elements
of the dual of M (D) but we can identify them with elements of M (D) using {( , ).

Definition 9. Once we have the indexing set B we can describe the objects that appear in
Theorem 6. Let 5 € B, we define:
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the map pg : Yg — Zg,(xoy ..., xn) — (2(,...,2) as wj = z; if (a;,B) = ¢q(B) and :U; =0
otherwise.

Consider Stab(3), the stabilizer of § under the adjoint action of G. There exists a unique
connected reductive subgroup Gy of Stabg such that M(Gg) = {\ € M(Stabg) : (\,B) = 0}
(see 12.21 in [12]). With this group we can define

73" ={x € Zp : x is semistable under the action of Gz on Zg}

and Yj* :pgl(ng).

Finally the parabolic group of § is: if x € Y§* then Pg = {geG:gx e YES}.
Remark 1. Since Sg is isomorphic to G X p, Y3*, it has dimension dimY;*® 4+ dim G — dim Pg.

5.1. The representation of F3. Norbert A’Campo and Vladimir Popov give in [15] a com-
puter program such that given a reductive group and one of its representation, the output is
the finite subset B of virtual 1-parameter subgroups for the above stratification. For a more
detailed construction of the virtual 1-parameter subgroups in the case of the action by change
of coordinates of SL(3,C) in Fy we refer to section 3 of [3]. For F3 the virtual 1-parameter
subgroups for the stratification are:

e (330 e (et e (o2 e (12D
b= (g ) o= (omgo-s ) obrim (3253 ) = (10,41,
By = (;(1),;1,;?) s Bro = <§7 (13’Z> , P11 = <;,0,;) ;

P12 == <§,—;7—;) , Pig 1= <é7é,—;> s Bra = <251,—211,—241> )

5._3i£5._li3
157217427 42)07 T\ 787 39 78

Now we consider the induced representation H°(CP?, TCP?(2)) of the Lie algebra sl3(C). The
weight diagrama for this irreducible representation is the following (the number ¢ denoted the
virtual 1-PS 5;):
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e 0y
5 0 )
3 2)
x° — —_ =
o0y é()r . A yzzi
o
, 0
30 _ 2 O
0t o yéy
1 2 0
32 oY —
xo&z 0z o ° yzzdi
=
zzui
00z
3 0
ox

From this information we can easily obtain the sets Z; and Y; described in definition 9. In Y;
with ¢ € {1,2,3,4,5,7,8,10,13} every foliation has a curve of singularities, we can study these
foliations as foliations of degree 2, so we are going to discard these strata.

To obtain the strata with foliations with isolated singularities we must find
7% i ={x e Z;: p(x,\) < (A, B;) for all A € M(Stab(;))}.
See definition 12.10 of [12]. For this we will use the following results.

Lemma 2. (see [2, p. 430]) Let X € Z; such that the virtual one parameter subgroup (ng,ny,nsz)
corresponding to B; satisfies ng > ny > ny. Then X € Z7° if and only if B; is the closest point
to zero in Cx with respect to D, where Cx is the convex hull formed with the weights of X .

The only virtual 1-PS where ny = ng in 512, for finding Z75 we need further analysis. We must

recall that Stab(f12) is the stabilizer of 812 under the adjoint action of SL(3,C) on M(SL(3,C))
(see 12.21 in [12]), i.e.,

2
3
Stab(B12) =< g € SL(3,C) : g -1 g = -

|
winN

Wl
ol

ail 0 0
0 agzo  A23 S SL(37 (C)
0 asx ass

We know that if A € M (Stab(312)) then there exists g € Stab(12) such that gAg~! has the
form Diag(tF:, %2 tk3) where ky > kg > ks3; therefore:



FOLIATIONS ON CP? OF DEGREE 3 61

Zis ={x € Zia : p(gz, \) < (N, Bia), for all X = Diag(t®*,t*2 %), where ky > ky > k3 and
g € Stab(B12)}-
Where, from the weight diagram:
2%7y3§y’yzz§y’yz2§y’Z3§y7y3%>c,
and we have (A(t) = Diag(t"*,t"2,t*3), B15) = 2ky — £ks — 2k3. For X € Z15 we obtain

0 0
A= P<J;y28—x, xyz%, Tz

al,gt*%zny + alylt*krki":ryz + alyot*%?’xz?
A(t) X = b073t72k2y3 —+ b072t7k27k:3y22 —+ b071t72k3y22 -+ b070tk273k323
co Btk373k2y3

therefore u(X,\) = min{—2ky, —ko — k3, —2ks, ko — 3ks, ks — 3ko}. With the conditions

—2ky < 2ky — tko —tks & ky > ks
—kg—kgﬁ%kl—%kQ—%kg 4 0>0
—2k3 < %/ﬁ — %]@ - %k‘3 & ko < k3
k2—3k3§2 ko — <~ kQSkg

ky 1 1
k373k2§§k ;‘Ekgfg 4 kgzkg.

k3
1—3 ks

we conclude that Z{5 = {X € Z12 : (a1,2,a1,1,b0,3, 0.2, ¢0,3) # 0, (a1,1,a1,0,b0,2,0,1,b0,0) # 0}
Now we can give the full list of linear subspaces of F3 for the construction of the strata.

ao,3y3
Zg$* =P b070z3 € Zs a3 # 0,bp0 #0
0
a1,0$22 + a0,3y3
ng —P bo’lyzg 1 ap,3 7£ O, (al,Oa bO,l) 7& 0

0

a117yz + ao3y>
735 =P | brorz® + booy?z | 1 b1 #0,(a1,1,a03,b02) #0
0

a120y* + a1 12yz + ag pxrz?
735 =P< | bosy® + bo2y?z + bo1yz? + booz?

00,393
(a1,2,a1,1,b0,3,b0,2,c03) # 0, (a1,1,a1,0,b0,2,b0,1,b0,0) 7 0}
(11,293?/2
Zfi =P b1,0$2’2 + b073y3 : bl,O 75 0, (a1}27 bo’g) 75 0
0

a270x22 + a073y3
Zis =P bi1zyz tao3 #0,(az20,b1,1) #0
0
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3
Co,3Y

0
ng =P b1,0$22 : b170 75 O7 00,3 7é 0 5
Co,3y3
and
a0,3y> + ao2y*z + ao,1yz* + agp 02>
Yoo =P bo,02> taop3 # 0,boo #0
0
a1,022% + ao 3y® + ag 29?2 + ao1y2* + ag,02?
Yoo =P bo,1y2% + b 02> tao3 #0,(ai,0,b0,1) #0
0
a112yz + a1,022% + ao 39> + ao 2y%z + ao71yrz2 + ag,02*
Ylsls =P bLOI’ZQ + b072y22’ + bo,lyzz + b(),()zd
0
bio #0,(a1,1,0a0,3,bo02) # 0}
5 L 3 L
2i=0 aijyJSzZ T+ ijo_a&jy]z?’ ’
YlsQS =P Zj:() bO,jyjzgij
00,3y3
(a1,2,a1,1,b0,3,b0,2,¢0,3) # 0, (a1,1,a1,0,b0,2,b0,1,b0,0) # 0}
a127y? + a112y2 + a1 0222 + 00,393 + ao,QyQZ + ag,1y2? + ag02*
Yi=P b1,0xz2 + bo 39> + bo2y?z + bo,1yz2 + by 02>
0
b1o #0,(a1,2,b0,3) # 0}
a2,07%z + a1,17yz + a1,0x2% + ao,3y° + ao2y*2 + ap1yz% + agpz?
Y155S =P b171$y21 + b170$2’2 + b072y22’ + b071y22 + 60,02’3
0
ag3 # 0, (az0,b1,1) # 0}
a102y? + a1 1Yz + a1,022? + ag 3y° + ag2y?z + ag,1yz? + ag2®
Yig =P b1,0xz2 + bo 39> + bo2y?z + bo,1yz2 + by 02>

bio #0,c03 # 0}-



FOLIATIONS ON CP? OF DEGREE 3 63

6. STRATA OF THE SPACE OF FOLIATIONS OF DEGREE 3 AND ITS SINGULARITIES
In this section we calculate the Milnor number and the multiplicity of a common singularity
in the generic foliation in every stratum. We also obtain the dimension of the strata.
Note that the point p = (1 : 0 : 0) is a singularity for every foliation in Y;** for all i = 6, 9,
11, 12, 14, 15, 16. Along this section we use the following notation: given a foliation,

P(z,y,2)
X = Q($7yaz) € Y'iss’
R(z,y, 2)

we consider the corresponding local polynomial vector field around (0, 0):

Xo = (QUyn2) ~ yP(L 3. 2) 5+ (RLw.2) = 2P, 2) 5

We define fz(yaz) = Q(Lyaz) - yp(layaz), gl(yaz) = R(Lyaz) - ZP(l,y,Z) and IO(f7 g)
will be the intersection index of f and g at (0,0).

6.1. Stratum 6. As we saw before if X € Y then ag 3 and by o are different from zero and
fo(y,2) = Q(L,y,2) —yP(l,y,2) = bo,ozg - 00,3214 - ao,zy?’z - <10,1Z/2Z2 - a(),OyZ3
96(y,2) = —2P(1,y,2) = —ao3y°z — ao2y*2”> — ap,1y2* — ag,02".
Note that by 02® and P(1,y, z) does not have common tangent lines, therefore

:U’p(X) = IO(fG(yvz)ng(yaz)) = IO(f6(yvz)7Z) + IO(fG(y,z),P(l,%z))
= Io(—agsy*,z) +9 =13

my(X) = 3.
. . fG . .. . . Z3 .
Finally, the 2-jet of p is trivial and the 3-jet is L if we suppose by,o = 1. On the other
6
3
hand, if X is a foliation of degree 3 with m(1:0:0)(X) = 3, f(1:0:0)(X) = 13 and with 3-jet ZO ,

it is easy to see that X € Yy'°. In this case the corresponding parabolic subgroup Fs is the
subgroup of upper triangular matrices, therefore dim S¢ = dim Y¢#* +dim SL(3,C) —dim Ps =7
(see Remark 1).

6.2. Stratum 9. If X € Y§® then ag 3 # 0 and (a1,0,b0.1) # (0, 0); therefore
f9(y7 Z) = Q(]-vya Z) - yP(]-vyv Z) = (bO,l - a/l,O)yZ2 + bO,OZ3
- a0,3y4 - ao,zysz - CL0,11/22’2 - Clo,oyz3
9o(y,2) = —2P(l,y,2) = _al,OZS - a073y3z - 610,29222 - ao,lyzg - a0,024,
and
,u‘p(X) = IO(fQ(y, Z)a 99(y7 Z)) = IO(fQ(ya Z)7 Z) + IO(fg(ya Z)7 P(17 Y, Z))
= In(ao3y", z) + 21o(z, ao,3y°) + Io(bo,1y + booz, P(1,y, 2))
=10+ Io(bo,1y + bo,oz, P(1,y,2)).

Note that Io(bo1y + bo,0z, P(1,y, 2)) is
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2 a10#0,bp1 #0
3 (bo,1 = 0,b0,0 # 0) or (a1,0 =0 and by 1y + b0z is not tangent for P(1,y, z))
00 (b1,0,b0,0) =0 or (a1,0 =0 and by 1y + by 0z is tangent for P(1,y, z))

If a1 0 # 0 it is clear that the multiplicity of the singular point is 3. If a9 = 0 then by ; # 0

(bo.1 = a170)yz23+ bo.0=" . Then in the
—a1,0%

open set where a9 # 0,bp,1 # 0 every foliation has a singular point with multiplicity 3 and

Milnor number 12. In this case the corresponding parabolic subgroup is the subgroup of upper

triangular matrices, therefore dim .Sg = 9.

and also the multiplicity is 3. Finally, the 3-jet is <

6.3. Stratum 11. Remember that if X € Y% then b1 ¢ and (a1,1, ao,3,bo.2) are different from
zero, and

fu(y,2) = Q(L,y,2) —yP(Ly,2)
=b1,02> + (bo2 — a1,1)y*z + (bo1 — a1,0)y2> + bo02*
- a0,3y4 - aO,QySZ - 610,12/222 - ao,oyz?’,

g11(y, 2) = —2P(1,y,2) = —a11y2> — a1,02° — ao3y°2 — ag2y*2% — ap.1y2> — ag0z*.

If ap,3 =0, then z = 0 is a curve of singularities. Suppose ag 3 # 0. Note that
Io(f11,911) = To(—ao3y*, 2) + Io(z, —ao,3y°)+
Io(b1,0% + bo2y” + bo,1yz + boo2”, P(1,y, 2))
=T+ Io(b1,0z + bo2y” + bo1yz + bo2”, P(1,y, 2)).

And

Io(b1,02 + booy® + bo 1Yz + bo.02?, a11y2 + a1,02° + ag 3y° + ao2y*z + ag1y2* + ap02”)

a
=1 (bl,OZ + bo.2y* + bo.1yz + bo,o2, (ao,?, - bl’l bo,z) y?
1,0

)

a1,0 a1, 9 a0 a1,1 2
+ (ao,z - bo,2 — bo,1> yz+ (ap1 — bo,1 — boo | Y2
b1,0 b1,0 b1,0 b1,0

s )

ai,o
+ <CL0,0 — b bo’o) 2’3>
1,0

3 ifapsbip # ai1bo2

4 if ap3bi,0 = a1,1bo,2 and ag2b1,0 # a1,100,1 + a1,0bo,2
5

6

= if [ . ] and a071b170 7é a171b070 + CLL()bQ,l
if [...],a0,1b1,0 = a1,1b0,0 + a1,0b0,1 and agob1,0 # a1,0b0,0
oo if [...],a0,1b1,0 = a1,1b0,0 + a1,0b0,1 and agpb1,0 = a1,0bo,0
where [ . } is a0736170 = a1,1b072, (1072b170 = aleo,l + a1,0b072.

We conclude that in the open set of Y11 where ag 3b1,0 # a1,1b0,2 every foliation has a singular-

ity with Milnor number 10. Since by ¢ 7 0 then the multiplicity for the singular point (1 :0 : 0)
2

is equal to 2 and the 2-jet is (Z . The corresponding parabolic subgroup is the subgroup of

0
upper triangular matrices, therefore dim .S;; = 12.
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6.4. Stratum 12. If X € Y;%’ then we have that

(a1,2,a1,1,b0,2,b0,3,c0,3) and (a1,1,a1,0,b0,0,b0,1,b0,2)
are different from zero and
fr2(y,2) = Q(L,y, 2) —yP(1,y,2)
= (bo,3 — al,z)y3 + (bo,2 — al,l)yQZ + (bo,1 — al,o)y22 + 50,023
- a0,3y4 - a0,2y32 - ao,lZ/QZ2 - ULo,oyZ3
912(y, 2) = co3y” — 2P(1,y, 2)
= Co,3y3 - a1,2922 - a1,1il/Z2 - a1,023
- a073y3z - Clo,zyzz2 - (10,13123 - 00,02’4-

These polynomials are homogenous in two variables, then generically we have

I,(f12,912) = 9.

If (a172,a1}1,60’3) 7é 0 then gi12 75 0 and mp(X) =3. If (a1)27a1’1700,3) = 0 then (bo’g,bo’g) 75 0
and we have also m,(X) = 3. In this case the parabolic subgroup is

ap; G2 (g3
Py = 0 Qoo (23 S SL(?),(C) s
0 a3 ass

therefore dim S, = 13.
Moreover, the set

{X € F;5 : there exists p such that m,(X) = 3, p,(X) = 9},

is an open set in S12 because a foliation with these properties for the point (1 : 0 : 0) is unstable
and it does not be in another stratum.

6.5. Stratum 14. If X € Y%’ then by ¢ and (a1,2,b0,3) are different from zero, and

f14(y7z) = Q(la y,Z) - yP(]-aya Z)
=b1,02° + (bo,3 — a1,2)y° + (bo.2 — a1,1)y°2 + (bo,1 — a1,0)y2” + bo,02°
- 00,33/4 - ao,zy?’z - 610,1y222 - ao,oyZ3

q14(y, 2) = —2P(1,y,2) = —a12y%2 — a1,1y2° — a1,02°

3 2.2 3 4
—ap,3Y 2 — Qo2Y 2" — Qo,1Y2 — Ap,0% -

Note that

Io(f14,g14) = Io((bo 3 — a1 ,2)y® — ag 3%, 2)

2 2 3 2 2 3
+ Io(f14, —a1,2y —a11Yz — a0z — ap3Y — A2y 2 — Qp,1Yz" — Q0,02 )

If we suppose that a1 # 0 and bg3 # a2 then the Milnor number of (1 : 0 : 0) is 7. If
ai # 0,bo3 = a12 and ag 3 # 0 we have f1(1.0.0)(X) = 8. On the other hand, a;,2 # 0,bo,3 = a1,
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and ap3 = 0 implies that we have a curve of singularities. Supposing a;2 = 0, we obtain
bo,3 # a1,2,0, and with this we have

Io(f14, a11Yz + a1,0z2 + a073y3 + a072y22 + G0,1y2’2 + 0407023)

a
=1 <b1,022 + bo,3y° + bo 2y*z + bo1y2® + bo0z>, a1,1y2 + <al,o - bo’3b1,0) P
0,3

)

ap,3 ap,3 ap,3
+ <a0,2 - bo,z) y?z + (ao,l - b0,1> yz? + (ao,o - bo,o) 23>
bo.3 bo,3 bo,s

a
=3+ 1 (1)1,022 + bo 3y + bo2y*z + bo1y2* + bo 02’ 1.1y + (al,O - b0’351,o> z
0,3

B

a a a
+ <a0,2 — 03 bo72> y* + (ao,l B bo,1> Yz + <ao,o — 08 bmo) Zz)-
bo,3 bo,3 bo,3

We can verify that if a;; # 0 then the last expression is equal to 5. When a1,; = 0 we can
see that

2 3 2 2 3
Io(fia, 01192 + a1,02" + ao,3y° + o2y~ 2 + ao,1y2" + aog,0z”)
2 3 2 2 3 7 3, 4 2 ro2, 1 .3
=1 (bl,OZ +b0,3y° + bo,2y"z + bo,1yz” + bo 027, ag 3y° + ag 2y 2 + ag1yz” + ag o2 )a
/ a0y
where a; ; denotes a; ; — mbm.
In conclusion,

Io(b1,02” + bo,3y> + bo,2y°2 + bo,1yz> + bo,02°, ah sy + af oy” + ap 1Yz + agz?)
6 ifags; #0

7 ifagz=0andap, #0

=<8 if (a{)yg,a(w) =0 and a671 #£0
9 if (ap3,0a09,a0,) =0and ajo # 0
oo if (%,37“6,% a6,1:a6,0) =0.

Therefore,

7 ifbyzF a2 #0

8 if (bg,3 = a1,2 # 0 and ap3 # 0) or if (a2 =0 and a;; # 0)
9 if (a1,2,a1,1) =0 and ag 3 # 0

(1:0:0)(X) = 10 if (a1,2,01,1,0p3) = 0 and ag 5 # 0

11 if (a1,2,a1,1,003,a02) = 0 and ag; # 0

12 if (a1,2,a11, a673,a672, ap,) = 0 and a6,0 #0

H / / / / _
oo if (a12,a1,1, ap,35ap,2, ao,uao,o) =0

2
ZO . Since the parabolic subgroup is the
subgroup of upper triangular matrices we obtain dim S14 = 14. Moreover, the set

Since b1,0 # 0 we get m(1.0.0)(X) = 2 with 2-jet

2
{X € F;3 : there exists p such that m,(X) =2, p,(X) = 7 and 2-jet linearly equivalent to (% > 1,
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is an open set in S14, because a foliation with these properties for the point (1 : 0 : 0) is unstable
and it does not be in another stratum.

6.6. Stratum 15. If X € Y7%¥ we have that ag 3 and (as,,b1,1) are different from zero, and
f15(ya Z) = Q(la Y, Z) - yP(L Y, Z)
= (b1 — a2,0)yz + b1,02° + (bo2 — a1,1)y*2 + (bo,1 — a1,0)yz* + bo02*
- a0,3y4 - a0,2y32 - Clo,1y222 - ao,oyz3

915(y,2) = 7ZP(17yaZ)

2 2 3 3 2.2 3 4
—a2,02 —G11Yz" — G102 —Ao,3Y 2 — QoY Zz — Ap,1Yz — Q0,02

Note that

Io( f15,915) = Io(—ao3y*, 2)

+ Io(fi5, —a1,2y — a1,12 — a1,02* — ag 3y° — ap2y°2 — ap,1yz* — ag02°)
=4+ Io(by1yz + b1,02° + bo2y?z + bo 1y2° + bo 02>,

2,02+ a11Yyz + 111,022 + (10,3213 + a0,2y22 + ao,lyz2 + 00,023)
=4+ Ip(z,a03y>) + Io(b11y + b1,02 + bo2y* + bo1yz + bo 022,

2 3 2 2 3
a0z + a1,1yz + a1,02” + ao3y° + ao2y”z + ap1yz” + ap,02°).

It is clear that if b1 ; and as o are different from zero then the intersection index of fi5 and
g15 is 8. Suppose that as 9 # 0 and by; = 0, then
Io(b1,02 + bo2y® + bo1yz + bo,02%, a0z + a1,1yz + a1,02>+
a0,3y3 + a0,2y22 + a071y22 + ao,ozg)
2 if boo #0
3 if b072 =0 and bl,O 75 0
= 4 if (bo)g, bl,O) =0 and bO,l 7é 0
6 if (b072, bl,O; b071) =0 and bo,o 7é 0
oo if (bo,2,b1,0,b0,1,b0,0) =0

Now suppose a0 = 0 and by ;1 # 0. We define
L(y,z) =biay +biroz M(y,z) = a11yz + a1 02

N(y,2) = bo2y® + boayz + booz> F(y,z) = ao3y” + ao2y’z + ao,1y2” + ag,0z”
‘We have

Io(L+N,M+F) =2 if L4 M.
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Now suppose L | M, we have two cases: if Lt N,

Io(L+ N,M + F)

M

On the other hand, if L | N:

M M N M
I (L+N,FLN> - (L,FLN>+IO <1+L,F N>

L
if Lt (LF — MN
:h<LF—MN>:3 L1 )
L s if L|(LF —MN)

We conclude that in S15 we have a nonempty open set which consists of foliations with a singu-

larity with multiplicity 2 and Milnor number 8. But we can have in this stratum foliations with

a singularity with multiplicity 2 and Milnor number 9, 10, 11, 12 and 13 or with a curve of singu-

(b1,1 — a2,0)yz + by 22
70,27022

the parabolic subgroup is the subgroup of upper triangular matrices we obtain dim Sy5 = 14.

larities. The 2-jet around the singular point (1:0:0) of X is ( . Since

6.7. Stratum 16. If X € Y§ then b1 9 # 0 and ¢ 3 # 0. We have

fi5(y,2) = Q(L,y,2) —yP(l,y,2)
=b1,02> + (bo,3 — a1,2)y” + (bo,2 — a1,1)y*z + (bo,1 — a1,0)y2” + bo,02°
- 00,3314 - ao,zygz - Clo,lnyZ2 - a0,0y23
915(y, 2) = cosy® — 2P(1,y, 2)

3 2 2 3 3 2.2 3 4
=C0,3Y —A12Y" % —Q11Yz" —A1,02° — @ 3Y 2 — Ao2Y 2" — ap,1YZ" — @p,0% ,

and the polynomials co 3y® — a1,2y%z — a1,1y2* — a1,02> and by g2* do not have common factors.
As a result the Milnor number of (1 : 0 : 0) is 6. And the multiplicity of this point is 2 with

22

2-jet, 0
therefore dim S = 15.
In the following theorem we summarize the above.

. The corresponding parabolic subgroup is the subgroup of upper triangular matrices,

Theorem 7. The spaces S; = SL(3,C)Y;** for i € {1,...,16}, are locally closed, irreducible
non-singular algebraic subvarieties of F3. They form a stratification of the closed set of unstable
foliations F3™, and S; C Uj<i S;. Moreover, these varieties satisfy the following:
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Stratum Characterization of the generic foliation
517 SQ; 537
S4, S5, S7, Every foliation has a curve of singularities
Ss, S10, S13
g {X € Fz : dp with mp(X) =3, pp(X) = 13 and 3-jet linearly equivalent
6 3
. z
dlmS(;:? to <0>}SG
dimgg —9 {X € F5: Ip with mp(X) =3, pp(X) =12} NSy is open in Sy
5 =
g {X € F5: 3p with mp(X) =2, p,(X) = 10 and 2-jet linearly equivalent to
11 2
dim S1; =12 (ZO >} N .S11 is open in Sip
dim 512_ 13 Contains {X € F3 : Ip with m,(X) =3, pp(X) = 9} as an open set
12 =
g Contains {X € F3 : 3p with m,(X) =2, p1,(X) = 7 and 2-jet linearly
14
dim S14 = 14 equivalent to 26 } as an open set
dim;?: 14 {X € F5: Ip with m,(X) =2, p,p,(X) =8} NS5 is open in Sis
g {X € F5: 3p with m,(X) =2, p,(X) = 6 and 2-jet linearly equivalent to
16 2
dim 516 =15 (ZO >} = 516

In [3] we also have studied the strata Sg, Sg and Sig. As a consequence of the above we can
mention the following general result.

Theorem 8. Let X € F3 with isolated singularities. Then X is unstable if and only if:

(1) X has a singular point with multiplicity 3 or

(2) X has a singular point with multiplicity 2 and 2-jet linearly equivalent to zQ(% or

(3) X € Si5.
Moreover, the trreducible components of F3™ are the closure of the locally closed subvarieties Sis
and Sig. The first one has dimension 14 and the second one has dimension 15.

Proof. The first affirmation is consequence of the results in the table. For the second one we
use proposition 4.2 of [9], it says that S; is irreducible and S; = SL(3,C)Y; for all j. Since
Yi6 C U,215 Y and Si5 ¢ Si6, we have that F§™ = S15U S is the decomposition in irreducible
components.

O
Remark 2. Note that V3 = Y15 and Vi = Yig in theorem 5.

6.8. Semistable non-stable foliations on CP? of degree 3. In this subsection we describe
the semistable non-stable foliations on CP? of degree 3.

Theorem 9. The set of semistable non-stable foliations on CP? of degree 3 with isolated singu-

larities is
P(y,=2)

SL(3,C)PS | by 12yz + by gx2? + Z?:O bo,jy 2377
1,022 + co 29?2 + co1y2% + bo 023

P(y,z) € Csly, 2], (bo,3,c0,2) # 0, (b1,1,c1,0) # 0}-
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Proof. Let X € F5° — F5 then X is not in any strata and it satisfies one of the following
properties:

(1) dimO(X) < 8: in this case, by Theorem 1.2 of [1], the foliation is A-invariant for some
1-PS X and it is not in any Z;. Then the foliation is, up to change of coordinates, such
that the line with its weights pass through zero, if we see the representation we conclude
that X is:

0
biizyz +bosy® |,
1,022 + cooy?2

where (bo,3,c0,2) # 0, (b1,1,¢1,0) # 0, since X has isolated singularities we can suppose
C1,0 = 1.

(2) O(X) is not closed in F3°: then there exists ¥ € F5° N (O(X) — O(X)). Since
dim O(Y") < 8, we conclude that Y is the above foliation, therefore X has its weights in
one hyperplane given by the weights of Y, therefore X is, up to change of coordinates,
in

P(y, z)
PS | biizyz + by oz2? + Zj-:o by 2377 | Py, 2) € Csly, 2], (bo3, co,2) # 0, (b1,1,¢1,0) # 0
1,022 + co2y%2 4 co1y2% + bo 023

7. COROLLARIES

7.1. The dimension of the orbits. Generically the orbit of a foliation on CP? has dimension
8, for example, a stable foliation satisfies this property. It theorem 1.2 of [1] we classify foliations
with isolated singular points such that the dimension of the orbit is less than or equal to 7.
We can see in proposition 2.3 of [5] that the dimension of an orbit of a foliation with isolated
singularities of degree d is greater than or equal to 6. In the same paper the authors describe the
two unique foliations of degree 2, up to change of coordinates, such that the orbit has dimension
6. For the case of foliations of degree 3 we have the same situation.

Theorem 10. There are, up to change of coordinates, two foliations on CP? of degree 3 with
isolated singularities with automorphism group of dimension 2: y?’a% + 238% and y?’é% + z?’%.
Proof. In proposition 2.5 of [5] we can see that if Aut(X) has dimension 2 then it is isomorphic to
the group of affine transformations of the line. Therefore by theorem 1.2 of [1], X is A-invariant
for some 1-PS A, and X is also invariant by (C,+). This last affirmation implies, by the same
theorem, that X is unstable with a singular point with Milnor number > 12. An unstable
foliation invariant by a 1-PS is, up to change of coordinates, in Z15 U Z14 U Z12 U Z11 U Zg U Zg.
It is easy to see that the unique foliations with a singular point with Milnor number > 12 are in
Zy and Zg, they are y3 -2 + zga% and y3 2 + 232,

O
7.2. Foliations on CP? of degree 3 with one singular point. The classification of foliations
on CP? with one singular point is known only for degree 2 (see [5] and [2]). In this section we
describe all the unstable foliations on CP? of degree 3 with one singular point, that means with
a singular point with Milnor number 13. To obtain the result we need the following lemma.

Lemma 3. Let X be a foliation on CP? of degree d. If X has a singular point p with multiplicity
d and Milnor number greater than d?, then X has an invariant line that passes through p.
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Proof. We can suppose that X is a foliation on CP? of degree d such that m(LOZO)(X) = d and
fi(1:0:0)(X) > d*. Then

Py 1+ Py

X = Qa

Ry
where Py, Qg, R € Cly, 2] are homogeneous of degree k. In the chart Uy, the foliation is
0 0
—yPy_1)— Ry — 2Py 1)—
(Qa —yPua 1)8y+( d— z2Lq 1)82:3
since f1(1:0.0)(X) > d? then there exists a line L = ay — Bz such that Qg4 — yP;_1 = LF and
Ryq — z2P;—1 = LG for some F,G € Cly, z]. Therefore aQy — SRs = L(Ps—1 + oF — 8G), and
this means that L is invariant for X and it passes through (1:0: 0). O

Theorem 11. The unstable foliations on CP? of degree 3 with one singular point are:

(1) The stratum Sg, which has dimension 7.
(2) The subspace of So:
a1,002° +y° + a0 2y®z + ag 1y2* + ag 02
SL(g, (C) b0,1y22 =+ b0’023 : b071 = 0, a170b070 7é O or
0

ar0=0,bo1 # 0 and by 1y + b0z 1 ¥ + a2’z + ap,1y2> + ao,ozs},

of dimension 8.
(3) The subspace of S11:
a1 1zyz + a1 0x2% + ao 39> + ao 2y%2 + ao 192 + ag 02>
SL(3, (C) 1’22 + b0’2y22§ + b0’1y22 + b0,023 : (alyl, CL073, bo,g) 7é 0,
0

ao,0 7 @1,0b0,0;a1,0 = @1,1bo,0 + a1,0b0,1; @02 = a1,1b0,1 + a1,0b0,2; a0,3 = a1,1b0,2},

of dimension 9.
(4) The subspace of Sia:

z(ary — B12)(azy — B22) + y* + ao2y?z + a0 1yz* + agz®
SL(3,C) alary — B12)*(ay — B22)
0

It has isolated singularities, (a1, a2) # 0 and ajas = 0; or acy =1 and By, P € (C*},

of dimension 10.
(5) The subspace of Si5:

2z + a117yz + aLoa:zQ + a073y3 + a0,2y22’ + a071y22 + a070z3
SL(3, (C) bo,()ZS 1 ap,3 75 0 s
0

of dimension 10.
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In Sg, SS9 and S12 the singular point has multiplicity 3 and in S11, S15 has multiplicity 2.

Proof. It remains only to find the foliations with one singular point in Si2, the other cases were
studied in the construction of the strata.

To obtain the dimension of these spaces, we must observe that if X is a foliation in any of
the described linear subspaces of Y5*, Y%, or Y% then for g € SL(3,C) we have that gX is in
the same linear subspace if and only if g is in the corresponding parabolic subgroup. Therefore
the dimension of the space is the dimension of the linear subspace plus 3.

Now let X € Y{% such that (1:0:0) is the unique singularity. By the above lemma, X has an
invariant line ay — Bz. There exists g € Pj5 such that z is invariant for gX € Y{%’. For that we
can suppose:

zL1(y, 2)La(y, 2) + a0 3y® + ao 2y*z + ao,1yz* + ap02®

X = Lg(y,Z)L4(y,Z)L5(y,Z)
0

where Ly (y, z) = agy — Brz and ag, Br, ao,j, € C for k =1,...,5 and j = 0,1,2,3. The Milnor
number of (1:0:0) is

I(L3LsLs — y(L1La + ao3y® + ao2y*z + ao1y2* + ao,02®),
2(Ly1 Ly 4 a0 3y® + ao2y?z + ao,1y2* + ap,02”))
= I(2,L3L4Ls — y(L1La + ag3y®)) + I(L3LaLs, L1 Ly + ag 3y° + ao 29z + ap 1y2* + ao,02>),
and this is 13 if and only if

I(z,L3LyLs — y(L1 Lo + ag 39°)) = 4,

I(L3L4Ls, L1 Ly + ag 3y> + ag 2y*2 + ap1y2* + ag02®) = 9,
and this happens if and only if ag 3 # 0, z|(LsLaLs —yL1Ls), LsL4Ls = aL? Ly for some a # 0,
and L3 Lo { (ag 39> +ao 2y?2+ a0 1y22+ao,02%). Since z|L1 Ly(aL; —y) then we have the following

cases: a1 = 0, ag = 0 or acr; = 1. The condition for X to be in Y;% says that if a; = 0 then
ag # 0 and if g = 0 then a3 # 0. If aay =1 then £y, B2 € C*. We get

z(ary — P12)(aey — B2z) + y° + ao2y*2 + ap1y2* + ag,02®
X = 04(0412/—/313)2(042y—522)
0

Then the dimension of the projectivization of the linear space where X lives is 7. When we move
the invariant line through (1 : 0 : 0) we obtain a family of foliations of dimension 8 and when we
take the action by SL(3,C) module the parabolic subgroup Pj2 we obtain a space of dimension
10. O

To finish the classification of foliations on CP? of degree 3 with one singularity with Milnor
number 13 remains to find the semistable foliations with this property. For foliations on CP? of
degree 2 we know that there exists only one semistable foliation, up to change of coordinates (see
Theorem 5.9 of [2]), with only one singular point. In this case the singularity is a saddle-node,
that means multiplicity 1 non-nilpotent. For degree 3 the situation is different, for example, we
have the following foliations:
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Xy = ZBQ + (222 +xy2)(% — (zyz + yg)g

Ox 0z
0 0 0
X, = y%’% + (zyz + z3)8—y - yga.

Both are semistable foliations of degree 3 with only one singularity, the first one has a nilpotent
singularity and in second one the singularity has multiplicity 2. In general is very difficult to find
foliations on CP? of degree d with one singular point. It is clear that using this stratification we
can get all the unstable foliations. We think that using recursively this construction it is possible
to find also the semi-stable foliations of degree d with a singularity with Milnor number d?+d+1.
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