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EULER CHARACTERISTICS OF LINEAR SYMPLECTIC QUOTIENTS

AND O(2)-SPACES

CARLA FARSI, HANNAH MEIT, AND CHRISTOPHER SEATON

Abstract. We give explicit computations of the Γ-Euler characteristic for several families of

orbit space definable translation groupoids. These include the translation groupoids associated

to finite-dimensional linear representations of the circle and real and unitary representations
of the real 2 × 2 orthogonal group. In the case of translation groupoids associated to linear

symplectic quotients of representations of an arbitrary compact Lie group G, we show that

unlike the other cases, the Γ-Euler characteristic depends only on the group and not on the
representation.

1. Introduction

The Euler characteristic χ is classically defined in the context of triangulable topological
spaces as a homotopy invariant. It can be generalized to definable spaces, a generalization of
semialgebraic spaces, sacrificing homotopy invariance but preserving finite additivity. The Euler
characteristic has been generalized to many contexts, including the introduction of many Euler
characteristics for orbifolds, spaces locally modeled on the quotient of a manifold by a finite
group. These various orbifold Euler characteristics can be indexed by a finitely generated group
Γ, resulting in the Γ-Euler characteristics χΓ. Orbifolds can be represented by certain classes
of groupoids; when the groupoid corresponds to a global action of a group G on a topological
space X, it is called a translation groupoid and denoted G ⋉X. In this case, the object space
of the groupoid is given by X, the arrow space is G×X, with (g, x) representing an arrow from
x to gx.

In the recent paper [8], the first and third author gave the definition of the Γ-Euler charac-
teristics χΓ of sufficiently well-behaved topological groupoids with definable orbit spaces. This
extended the work of [13], which generalized a large collection of orbifold Euler characteristics
to translation groupoids by compact Lie groups that may have infinite isotropy and hence do
not present orbifolds.

For each finitely presented group Γ, the Γ-Euler characteristic χΓ is an invariant of orbit space
definable groupoids, roughly topological groupoids whose orbit spaces and their partitions into
(weak) orbit types can be made definable. In the case of a translation groupoid G⋉X given by
the definable action of a compact Lie group G on a definable space X, which is the primary focus
of this paper, the groupoid is orbit space definable if the usual orbit space G\X is definable,
and the partition of G\X into orbits with isomorphic isotropy groups is a finite partition into
definable sets. In this context, the Γ-Euler characteristic χΓ is defined as an integral over the
orbit space G\X using the Euler characteristic as a finitely additive measure [29]. When Γ is
trivial, the integrand is 1 yielding the usual Euler characteristic of G\X. For general Γ, the

2020 Mathematics Subject Classification. Primary 57S15; Secondary 22A22, 14P10, 57R18.
Key words and phrases. definable Euler characteristic, circle-representation, O(2)-representation, symplectic

quotient, orbit space definable groupoid.
C.F. was partially supported by the Simons Foundation Collaboration Grants for Mathematicians #523991

and #MPS-TSM-00007731. H.M. was supported by the Rhodes College Summer Fellowship Program and by

the National Science Foundation under Grant #2015553. C.S. was supported by an AMS-Simons Research

Enhancement Grant for PUI Faculty.

http://dx.doi.org/10.5427/jsing.2025.28a


2 CARLA FARSI, HANNAH MEIT, AND CHRISTOPHER SEATON

integrand is χ(Gx\Hom(Γ, Gx)), the Euler characteristic of the space of conjugacy classes of
group homomorphisms from Γ to an isotropy group Gx; see Equation (2.1). When Γ = Zℓ, χZℓ

recovers the orbifold Euler characteristic of order ℓ defined in [13]; in particular, χZ is equal to
the orbifold Euler characteristic. This is proven in [8, Theorem 5.4] and follows from the fact that
χΓ can also be computed as the integral over the space of conjugacy classes of homomorphisms
Γ → G, of the Euler characteristic of CG(ϕ)\X⟨ϕ⟩, where X⟨ϕ⟩ denotes the points fixed by
the image of ϕ ∈ Hom(Γ, G) and CG(ϕ) denotes the centralizer of the image of ϕ. The Γ-Euler
characteristics χΓ are invariant under Morita equivalence of topological groupoids, multiplicative
over Cartesian products of groupoids, and additive over disjoint unions of orbit spaces in the
appropriate sense. With additional mild hypotheses on the orbit space definable groupoids,
the Γ-Euler characteristics can be realized as the usual (finitely additive) Euler characteristics of
definable topological spaces, the Γ-inertia spaces. For a translation groupoid G⋉X, the Γ-inertia
space is the orbit space of the Γ-loop space {(ϕ, x) ∈ Hom(Γ, G)×X : ϕ(γ) ∈ Gx∀x ∈ Γ} by the
G-action given by g(ϕ, x) = (gϕg−1, gx). When Γ = Z, the Z-loop space can be identified with
the collection of isotropy groups attached to the corresponding point in X, and when Γ = Zℓ,
the Zℓ-loop space can be identified with the collection of commuting ℓ-tuples of elements of
isotropy groups. For a general orbit space definable groupoid G, the Γ-inertia space is the orbit
space of the inertia groupoid ΛΓG, whose object space is the space Hom(Γ,G) of groupoid
homomorphisms Γ → G, which can be understood as the space of homomorphisms from Γ into
the isotropy groups of G, and whose arrows are given by the action of G on Hom(Γ,G) by
conjugation. The precise definitions of χΓ and orbit space definable groupoids are recalled in
Section 2; see [8] for more details.

In this paper, we give explicit computations of χΓ for several collections of translation
groupoids. In each case, the translation groupoid is given by a linear action of a compact
Lie group G on a finite-dimensional vector space V or a G-invariant definable subset X of V ,
and hence is orbit space definable. We consider the explicit cases where G = S1 is the circle or
G = O(2) is the real 2 × 2 orthogonal group in detail, and also consider the linear symplectic
quotient associated to an arbitrary compact Lie group. A key tool is the use of circle actions on
the orbit space of the groupoid to simplify these computations. To this end, we generalize the lo-
calization formula of [19] for the Euler characteristic of a compact Riemannian manifold on which
a torus acts smoothly to affine definable spaces with definable torus actions; see Theorem 3.1.

These computations serve several purposes. First, they give an indication of the degree to
which χΓ(G ⋉ X) of a translation groupoid G ⋉ X depends on the group G and its action on
X. In some of the simplest examples one might initially compute, χΓ(G ⋉ X) = 0; however,
the cases considered here indicate that χΓ(G⋉X) generally depends heavily on both G and its
action on X; see Remarks 4.5 and 5.6. In addition, these computations offer counterexamples
to properties one might expect from χΓ; see e.g. Remark 4.4.

Our computations also indicate general properties of the Γ-Euler characteristics χΓ. A notable
example is the case of linear symplectic quotients, the (singular) symplectic quotients associated
to unitary representations of compact Lie groups. As is recalled at the end of Section 6, linear
symplectic quotients are local models for symplectic quotients of manifolds, whose topology is
an active area of investigation [6]. Explicit computations of χΓ for translation groupoids defining
linear symplectic quotients corresponding to representations of S1 and O(2) suggested that the
χΓ of these groupoids have a particularly simple form in general. This led to the proof of the main
result of this paper, Theorem 6.1, which demonstrates that χΓ of a linear symplectic quotient
by a compact Lie group G depends only on the group and not on the representation, and is
therefore equal to χΓ of the group G as a groupoid with one unit. This differs significantly from
many of the other cases considered in this paper, for which χΓ depends both on the group and
the action.
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The outline of this paper is as follows. In Section 2, we recall the background needed to define
χΓ focusing on the case of translation groupoids by linear group actions. Section 3 presents
the localization formula for the Euler characteristic in the presence of torus actions as well as
specializations that allow us to avoid explicit descriptions of some of the orbit types in the orbit
space G\X in the computation of χΓ(G⋉X). In Section 4 we compute χΓ(S1⋉V ) where V is a
finite-dimensional representation of the circle as well as χΓ(S1⋉X) for an S1-invariant subspace
of such a V ; Section 5 gives similar computations for a representation of the orthogonal group
O(2). In Section 6, we prove Theorem 6.1, which determines the Γ-Euler characteristic of the
linear symplectic quotient associated to a representation of an arbitrary compact Lie group G.
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2. Background

In this section, we briefly summarize the background and definitions that we will need. The
reader is referred to [8, Sec. 2–3] for more details.

Recall [28, Ch. 1, Def. (2.1)] that an o-minimal structure on R is a sequence (Sn)n∈N where
each Sn is a collection of subsets of Rn that is closed under unions and set differences, with
the following properties: if A ∈ Sn, then A × R,R × A ∈ Sn+1; each Sn contains the diagonal
{(x, . . . , x) : x ∈ R} ⊂ Rn; the projection of A ∈ Sn+1 to Sn as the first n coordinates is in Sn; S1

is the set of finite unions of points and open intervals; and S2 contains {(x, y) ∈ R2 : x < y}. An
example of an o-minimal structure on R is that of the semialgebraic sets, that is, the finite unions
of solution sets to finite systems of polynomial equations and inequalities. Throughout, fix an
o-minimal structure (Sn)n∈N on R such that each Sn contains the semialgebraic sets in Rn; the
o-minimal structure of semialgebraic sets will be sufficient for much of this paper, but we state
some of the results of Section 3 more generally. We say that a subset A ⊆ Rn that is an element
of Sn is definable, and a function f : A → Rm is a definable function if its graph is a definable
subset of Rm+n. An affine definable space is a pair (X, ιX) such that X is a topological space
and ιX : X → Rn is a topological embedding, where Rn has the standard topology, such that
ιX(X) is a definable set. A subset A ⊂ X is definable if ιX(A) is a definable subset of Rn, and a
morphism of affine definable spaces (X, ιX) and (Y, ιY ) is a continuous function f : X → Y such
that ιY ◦ f ◦ ι−1

X is a definable function on ιX(X). By [28, Ch. 3, (2.11)], every definable subset
A ⊆ Rn admits a finite decomposition into cells [28, Ch. 3, Def. (2.3)], the Euler characteristic
of a d-dimensional cell is defined to be (−1)d, and the Euler characteristic χ(A) of A is defined
to be the sum of the Euler characteristics of its cells [28, Ch. 4, Sec. 2]. If (X, ιX) is an affine
definable space and A ⊆ X is definable, then the Euler characteristic χ(A) of A is the Euler
characteristic of ιX(A). By [2, Thrm. 2.2], the Euler characteristic χ(A) depends only on the
underlying topological space A.

For a groupoid G1 ⇒ G0, where G0 is the space of objects and G1 is the space of arrows,
we denote the structure functions as source s : G1 → G0, target t : G1 → G0, multiplication
m : G1s×tG1 → G1, unit u : G0 → G1, and inverse i : G1 → G1. For x ∈ G0, we let Gx

x denote
the isotropy group, Gx

x := (s, t)−1(x, x), and Gx the orbit, Gx := {y ∈ G0 : ∃g ∈ (s, t)−1(x, y)}.
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A topological groupoid is a groupoid such thatG0 andG1 are topological spaces and the structure
functions are continuous; we will also assume that G0 and G1 are Hausdorff and paracompact
and s is an open map. We let |G| denote the orbit space and π : G0 → |G| the orbit map, which
is a quotient map as s is open. A topological groupoid is orbit space definable if it is equipped
with a map ι|G| : |G| → Rn such that (|G|, ι|G|) is an affine definable space, Gx

x is a compact
Lie group for each x ∈ G0, and the partition of |G| into sets of orbits of points with isomorphic
isotropy groups is a finite partition into definable subsets. Following [26, Def. 5.6], we refer to
the elements of this partition of |G| as weak orbit types; i.e., the orbits Gx and Gy of respective
points x, y ∈ G0 are in the same weak orbit type if Gx

x ≃ Gy
y as compact Lie groups.

Let us describe an important class of examples that will be the focus of much of this paper;
we summarize the relevant definitions and results here and refer the reader to [8, Sec. 2.2]
and [4, 24] for more details and references. Let G be a compact Lie group. Then G has
a faithful representation and hence is isomorphic to a compact linear algebraic group. This
identifies G with a semialgebraic group, a semialgebraic subset of some Euclidean space that
is a topological group whose multiplication and inverse maps are definable functions in the
o-minimal structure of semialgebraic sets. It is moreover a semialgebraic linear group, i.e.,
is semialgebraically isomorphic to a semialgebraic subgroup of GLm(R). The corresponding
semialgebraic linear group is unique and hence gives G the unique structure of an affine definable
topological group with respect to any o-minimal structure that contains the semialgebraic sets.

That is, with respect to the above embedding of G into GLm(R) ⊂ Rm2

, the multiplication and
inverse maps are morphisms of the affine definable spaces G×G → G and G → G, respectively.

An affine definable G-space X is then an affine definable space (X, ιX) whereX is a topological
G-space and the action map G×X → X is a morphism of affine definable spaces; we then say
that the G-action is a definable G-action. It follows that X admits a definable proper quotient,
i.e., G\X admits a unique structure, up to definable homeomorphism, as an affine definable
space with respect to which the orbit map X → G\X is a morphism of affine definable spaces.
If the o-minimal structure is that of semialgebraic sets and X ⊆ Rn is semialgebraic, i.e., ιX
is the identity, X is called a semialgebraic G-set. In this case, the translation groupoid G ⋉X
is an orbit space definable groupoid by [8, Cor. 3.6]. In particular, if V is a finite-dimensional
linear representation of G and X is a semialgebraic subset of V , then G ⋉X is an orbit space
definable groupoid.

If G is an orbit space definable groupoid and Γ is a finitely presented discrete group, the
Γ-Euler characteristic of G [8, Def. 3.8] is

(2.1) χΓ(G) =

∫
|G|

χ
(
Gx

x\Hom(Γ,Gx
x)
)
dχ(Gx),

where Hom(Γ,Gx
x) is the space of group homomorphisms from Γ to the isotropy group Gx

x with
the compact-open topology, the integral is that with respect to the Euler characteristic [29],
see also, e.g., [5], and the action of Gx

x on Hom(Γ,Gx
x) is by pointwise conjugation. Because

the integrand χ
(
Gx

x\Hom(Γ,Gx
x)
)
depends only on the isomorphism class of Gx

x, this can be
reformulated as follows. Let

|G| = |G|1 ⊔ |G|2 ⊔ · · · ⊔ |G|r
denote the partition of the orbit space into weak orbit types, i.e., orbits of points with isomorphic
isotropy groups. For each i, let Gi denote the isotropy group of a choice of point whose orbit is
in |G|i. Then

(2.2) χΓ(G) =

r∑
i=1

χ
(
|G|i

)
χ
(
Gi\Hom(Γ, Gi)

)
.

In the same way, if

|G| = X1 ⊔X2 ⊔ · · · ⊔Xs
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is a partition of |G| into definable subsets that are each contained in a weak orbit type and Gi

denotes a choice of isotropy group of a point whose orbit is in Xi, then

(2.3) χΓ(G) =

s∑
i=1

χ(Xi)χ
(
Gi\Hom(Γ, Gi)

)
.

Finally, let us fix some notation that is used throughout this paper. If G is a compact Lie
group, X is a G-space, and H ≤ G, we let (H) denote the G-conjugacy class of H in G and
define XH := {x ∈ X : hx = x ∀h ∈ H}, the set of points fixed by H; XH := {x ∈ X : Gx = H},
points with isotropy group H; and X(H) := {x ∈ X : Gx ∈ (H)}, points with isotropy group
conjugate to H. The set X(H) is called the orbit type associated to the conjugacy class (H).
Because X(H) is G-invariant, we will use the term “partition into orbit types” to describe the
partition of X as well as the induced partition of the orbit space G\X. Note that if G ⋉X is
an orbit space definable groupoid, then an orbit type of |G⋉X| = G\X is obviously contained
in a weak orbit type.

For a topological space X, we let Homeo(X) denote the group of homeomorphisms X → X.
If ρ : G → GL(V ) is a linear representation of G, g ∈ G, and W ⊆ V is a ρ(g)-invariant subspace,
we use the notation ρ(g)|W to denote the restriction of ρ(g) to W . If W is ρ(g)-invariant for
all g ∈ G, we use ρ|W to denote the resulting restricted representation G → GL(W ) defined by
g 7→ ρ(g)|W . If X is a ρ(g)-invariant subset of V , we also use ρ(g)|X to denote the restriction
of ρ(g) to X and, if X is ρ(g)-invariant for all G, ρ|X to denote the map G → Homeo(X) given
by g 7→ ρ(g)|X . For a positive integer n, we let n = {1, 2, . . . , n}, R(n) denote the group of nth
roots of unity, D2n denote the dihedral group with 2n elements, and Fn denote the free group
with n generators.

3. Localization to the fixed points of a torus action

An important tool we will use throughout this paper is the simplification of Euler characteristic
computations in the presence of circle actions. This is a consequence of the following localization
theorem for the Euler characteristic, which is well-known in the context of torus actions on
manifolds; see [19, Remark on p. 64] and [9, Thrm. 9.3]. In this section, we will prove this result
and then elaborate consequences for the computation of χΓ in specific circumstances.

Theorem 3.1. Let T = (S1)ℓ be a torus and let X be an affine definable space that admits a
definable T -action. Then χ(X) = χ(XT ). In particular, χ(X) = 0 if XT = ∅.

Proof. As T is compact, X admits a definably proper quotient π : X → T\X so that T\X is an
affine definable space and π is a morphism of affine definable spaces; see [8, pp.2348–9]. By the
trivialization theorem [28, Ch. 9 (1.7)], there is a partition T\X = Y1 ⊔ · · · ⊔ Yr of T\X into
definable subsets such that π−1(Yi) is definably homeomorphic to Fi × Yi for a definable set Fi

that is itself definably homeomorphic to π−1(x) for each x ∈ Yi. Reindex the Yi if necessary so
that Fi is a single point for i ≤ k and not a singleton for i > k, where we may have k = 0 or
k = r. As the action map T ×X → X induces for each x ∈ X a definable homeomorphism of
Tx\T onto the orbit π−1(x) of x in X, it follows that each Fi is definably homeomorphic to Ti\T
where Ti is the isotropy group of a point x ∈ π−1(Yi). Therefore, Ti = T for i ≤ k and Ti ⪇ T for

i > k; that is, XT =
⊔k

i=1 π
−1(Yi). If i > k, then as Fi ≃ Ti\T is a positive-dimensional compact

connected abelian Lie group and hence a nontrivial torus, we have by the multiplicativity of χ
[28, Ch. 4, Cor. (2.11)] that χ

(
π−1(Yi)

)
= χ(Fi × Yi) = 0. It follows that

χ(X) =

r∑
i=1

χ
(
π−1(Yi)

)
=

k∑
i=1

χ
(
π−1(Yi)

)
= χ(XT ). □

Combining Theorem 3.1 with Equation (2.3) yields the following.
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Corollary 3.2. Let G be an orbit space definable groupoid, let

|G| = X1 ⊔X2 ⊔ · · · ⊔Xs

be a partition of |G| into definable sets such that each Xi is contained in a weak orbit type, and
let Gi be the isotropy group of a point whose orbit is in Xi. Let Ti be a (possibly trivial) torus

for each i, suppose that each Xi admits a definable Ti-action, and let I = {i : XTi
i ̸= ∅}. Then

(3.1) χΓ(G) =
∑
i∈I

χ(XTi
i )χ

(
Gi\Hom(Γ, Gi)

)
.

In the sequel, we will primarily apply Theorem 3.1 in situations where T = S1, and it will be
convenient to state a few specializations to this case. As the only proper closed subgroups of S1
are finite, we have the following.

Corollary 3.3. Let X be an affine definable space that admits a definable S1-action such that
the isotropy group of each x ∈ X is finite. Then χ(X) = 0.

We will need the following specific application of Corollary 3.3.

Corollary 3.4. Let G be a compact Lie group and ρ : G → GL(V ) a finite-dimensional linear
G-representation. Suppose X ⊆ V is a G-invariant definable subset, H is the isotropy group of
a point in X, and Z ⊂ X(H) is G-invariant and definable. Let Y = Z ∩ XH . Suppose further

that T ≤ CHomeo(Y )

(
ρ
(
NG(H)

)
|Y

)
is a subgroup of the centralizer of ρ

(
NG(H)

)
|Y in Homeo(Y )

such that T ≃ S1, T acts on Y with finite isotropy, and the intersection of T and ρ
(
NG(H)

)
|Y

in Homeo(Y ) is finite. Then

χΓ(G⋉X) = χΓ

(
G⋉

(
X ∖ Z

))
.

Proof. The orbit type in |G⋉X| associated to H is given by G\X(H), which is homeomorphic to
NG(H)\XH by [25, Thrm. 4.3.10]. Restricting this homeomorphism to G\Z yields a homeomor-
phism to NG(H)\Y . As T commutes with ρ

(
NG(H)

)
|Y , the T -action descends to a definable

action on NG(H)\Y , and the fact that T has finite intersection with ρ
(
NG(H)

)
|Y in Homeo(Y )

implies that the T -action on NG(H)\Y has finite isotropy. □

Continuing to let V denote a linearG-representation, letD = {e
√
−1 θI ∈ GL(V ) : θ ∈ R} ≃ S1

denote the subgroup of GL(V ) that acts on V as scalar multiplication by e
√
−1 θ. Because D

is in the center of GL(V ), for each isotropy group H of the G-action on V , we have that VH ,
V(H), and V H are D-invariant. Then as D fixes no points in V except the origin, we have the
following.

Corollary 3.5. Let G be a compact Lie group, ρ : G → GL(V ) a finite-dimensional linear G-

representation, and let D = {e
√
−1 θI ∈ GL(V ) : θ ∈ R} ≃ S1 denote the subgroup of GL(V )

that acts on V as scalar multiplication by e
√
−1 θ. Let X ⊆ V be G-invariant, D-invariant, and

definable; let

G\X = (G\X)1 ⊔ (G\X)2 ⊔ · · · ⊔ (G\X)s

denote the partition of G\X into orbit types; and for each i, let Hi denote the isotropy group of
a choice of point with orbit in (G\X)i. For a fixed j, suppose 0 /∈ XHj and the intersection of

D|XHj
with ρ

(
NG(Hj)

)
|XHj

in Homeo(XHj ) is finite. Then for any finitely presented Γ, (G\X)j

does not contribute to the Γ-Euler characteristic of G⋉X, i.e.,

χΓ(G⋉X) =

s∑
i=1
i ̸=j

χ
(
(G\X)i

)
χ
(
Gi\Hom(Γ, Gi)

)
.
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4. Computations for S1-representations

In this section, we compute the Γ-Euler characteristics of translation groupoids associated to
linear representations of the circle. We additionally consider some cases of invariant subsets of
representations.

Let V be a finite-dimensional hermitian vector space, let U(V ) denote the group of unitary
transformations V → V , and let ρ : S1 → U(V ) be a unitary S1-representation. Choosing a
basis with respect to which the action is diagonal, let (x1, . . . , xn) be coordinates for V with
respect to this basis, and then the action of S1 is described by a weight vector (a1, . . . , an) ∈ Zn.
Specifically, the action is given by

z(x1, . . . , xn) = (za1x1, . . . , z
anxn), z ∈ S1, (x1, . . . , xn) ∈ V.

The isotropy group of a point (x1, . . . , xn) ∈ V is determined by the coordinates xi that are
nonzero, and the possible isotropy groups are either S1 or the finite group R(m) of mth roots of
unity isomorphic to Z/mZ, m ≥ 1.

Let n = {1, 2, . . . , n}. We partition V by defining for I ⊆ n the set

VI = {(x1, . . . , xn) ∈ V : xi ̸= 0 ∀i ∈ I and xi = 0 : ∀i /∈ I}.

We also define aI = {ai : i ∈ I} to be the set of weights corresponding to elements of I and set
a∅ = {0}. Then each VI is a subset of an orbit type in V so that {VI : I ⊆ n} is a partition
subordinate to the partition of V into orbit types. Specifically, the isotropy group of VI is given
by the group R

(
gcd(aI)

)
of gcd(aI)th roots of unity, where in the case aI = {0}, we use the

common convention that gcd({0}) = 0 and adopt the convention that R(0) = S1. Note that the
closure V cl

I of VI is the coordinate subspace of V given by

V cl
I = {(x1, . . . , xn) ∈ V : xi = 0 : ∀i /∈ I}.

Note further that V S1 =
⊔

I⊆n : aI={0} VI .

Theorem 4.1. Let ρ : S1 → U(V ) be a unitary S1-representation with weight vector
a = (a1, . . . , an) ∈ Zn and let Γ be a finitely presented discrete group. Then

χΓ(S1 ⋉ V ) = χ
(
Hom(Γ,S1)

)
−

n∑
i=1
ai ̸=0

χ
(
Hom(Γ,Z/aiZ)

)
.

Proof. Consider the partition of S1\V into the sets {S1\VI : I ⊆ n}. Each element S1\VI is
contained in the weak orbit type of the group R

(
gcd(aI)

)
. In particular,

S1\V S1 = V S1 =
⊔

I⊆n : aI={0}

VI ,

and each S1\VI with aI ̸= {0} is contained in the weak orbit type of the finite group R
(
gcd(aI)

)
.

As S1 is abelian so that conjugation is trivial, we can rewrite Equation (2.3) in this context as

χΓ(S1 ⋉ V ) = χ
(
Hom(Γ,S1)

)
χ
(
S1\V S1)

+
∑

I⊆n : aI ̸={0}

χ
(
Hom(Γ,Z/ gcd(aI)Z)

)
χ
(
S1\VI

)
.(4.1)

The set S1\V S1 = V S1 is a complex subspace of V , hence a single even-dimensional cell with
Euler characteristic 1, so that the first term in Equation (4.1) reduces to χ

(
Hom(Γ,S1)

)
.

For each i such that ai ̸= 0, V{i} ≃ C∖ {0}, and z ∈ S1 acts on V{i} as multiplication by zai .

It follows that the orbit space S1\V{i} is an open interval with isotropy group R(|ai|) ≃ Z/aiZ,
and the corresponding term in (4.1) is −χ

(
Hom(Γ,Z/aiZ)

)
.
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To complete the proof, we claim that for each I that contains at least two elements and
such that aI ̸= {0}, we have χ

(
S1\VI

)
= 0. Let I = {i1, . . . , ik} with k ≥ 2 and at least one

aij ̸= 0 so that aI ̸= {0}. If the ai1 , . . . , aik do not all coincide, then the circle action on VI

by scalar multiplication, i.e., the restriction of the action with weight vector (1, . . . , 1) on the
vector space V cl

I , commutes with the S1-action on VI and has finite intersection with ρ(S1)|VI
. If

ai1 = ai2 = · · · = aik , then the same holds for the circle action with weight vector (1, . . . , 1,−1)
on V cl

I . In either case, χ
(
S1\VI

)
= 0 by Corollary 3.4. □

Remark 4.2. The only real irreducible representation of S1 that does not admit a unitary struc-
ture is the trivial 1-dimensional representation. Hence, if V is a finite-dimensional real linear

representation of S1 then V = W ⊕ V S1 where W admits a unitary structure and V S1 is a real
vector space. Say W has weight vector (a1, . . . , an) ∈ Zn and note that each ai ̸= 0 by construc-

tion. As groupoids, S1 ⋉ V ≃ (S1 ⋉W )× V S1 where V S1 is the base groupoid consisting only of
units. Then by the multiplicativity of χΓ [8, Lem. 4.17], we have that the Γ-Euler characteristic
χΓ(S1 ⋉ V ) is given by

(−1)dχΓ(S1 ⋉W ) + (−1)dχ
(
Hom(Γ,S1)

)
+ (−1)d+1

n∑
i=1

χ
(
Hom(Γ,Z/aiZ)

)
,

where d is the real dimension of V S1 .

Recall that Fℓ denotes the free group with ℓ generators. When Γ = Zℓ or Fℓ, we have
Hom(Γ,S1) ≃ (S1)ℓ and Hom(Γ,Z/aiZ) ≃ (Z/aiZ)ℓ, implying the following.

Corollary 4.3. Let ρ : S1 → U(V ) be a unitary S1-representation with weight vector
a = (a1, . . . , an) ∈ Zn. Then

χZℓ(S1 ⋉ V ) = χFℓ
(S1 ⋉ V ) = −

n∑
i=1

|ai|ℓ.

If V is a real representation so that V = W ⊕ V S1 where W is unitary with weight vector
a = (a1, . . . , an) ∈ Zn and each ai ̸= 0, then

χZℓ(S1 ⋉ V ) = χFℓ
(S1 ⋉ V ) = (−1)d+1

n∑
i=1

|ai|ℓ,

where d is the real dimension of V S1 .

Remark 4.4. From Corollary 4.3, we see that when Γ = Zℓ or Fℓ, if V1 and V2 are two unitary
representations of S1, then

χΓ

(
S1 ⋉ (V1 ⊕ V2)

)
= χΓ(S1 ⋉ V1) + χΓ(S1 ⋉ V2).

By Theorem 4.1 and Remark 4.2, this identity does not hold for Γ such that χ
(
Hom(Γ,S1)

)
̸= 0,

nor for Γ = Zℓ or Fℓ when the Vi are real representations. We will see in Section 5 that this also
does not hold for representations of O(2), even when restricting to unitary representations; see
Theorem 5.1.

Remark 4.5. Regarding the question of how much the Γ-Euler characteristics χΓ depend on the
representation, let us observe that if V1 and V2 are unitary representations of the circle such that
χΓ(S1⋉V1) = χΓ(S1⋉V2) for Γ = Zℓ with ℓ = 1, . . . , n, then the absolute values of the weights of
V1 and V2 coincide up to permuting weights. This follows from Corollary 4.3 and the facts that
the power sums generate the elementary symmetric polynomials and the elementary symmetric
polynomials separate orbits of points in Cn. If the Vi are real representations, then the same

holds, and the sign of any χZℓ(S1 ⋉ Vi) determines the parity of the real dimensions of the V S1
i .

Of course, if the real dimensions of the V S1
i have the same parity and the absolute values of the
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weights are the same for both, then χΓ(S1 ⋉ V1) = χΓ(S1 ⋉ V2) for any Γ by Theorem 4.1 and
Remark 4.2.

A slight modification of the proof of Theorem 4.1 also yields the following.

Corollary 4.6. Let ρ : S1 → U(V ) be a unitary S1-representation with weight vector
a = (a1, . . . , an) ∈ Zn. Suppose X ⊂ V is an S1-invariant definable subset with the follow-
ing property: For each I = {i1, . . . , ik} with k ≥ 2 and aI ̸= {0} such that VI ∩X ̸= ∅, if aI has
more than one element, then X ∩VI is invariant under the circle action by scalar multiplication,
and if aI is a singleton, then X ∩ VI is invariant under a circle action with weight (±1, . . . ,±1)
where each sign occurs at least once. Then

χΓ(S1 ⋉X) = χ
(
Hom(Γ,S1)

)
χ
(
X ∩ V S1)+ n∑

i=1
ai ̸=0

χ
(
G\(X ∩ V{i})

)
χ
(
Hom(Γ,Z/aiZ)

)
.

Note that the hypotheses of Corollary 4.6 are satisfied for any X defined by restrictions on
the moduli of the coordinates of elements of V . As an example, let

S = {(x1, . . . , xn) ∈ V : |x1|2 + · · ·+ |xn|2 = 1} ≃ S2n−1

denote the unit sphere in V . Then S ∩ V S1 is empty or an odd-dimensional sphere so that

χ
(
S ∩V S1) = 0, and if ai ̸= 0, then G\(S ∩V{i}) is a point so that χ

(
G\(S ∩V{i})

)
= 1, yielding

χΓ(S1 ⋉ S) =

n∑
i=1
ai ̸=0

χ
(
Hom(Γ,Z/aiZ)

)
.

Similarly, if B = {(x1, . . . , xn) ∈ V : |x1|2 + · · ·+ |xn|2 ≤ 1} is the unit ball in V , then B ∩ V S1

is a point or closed ball so that χ
(
B ∩ V S1) = 1, and G\(B ∩ V{i}) is a half-open interval with

χ
(
G\(B ∩ V{i})

)
= 0, yielding

χΓ(S1 ⋉B) = χ
(
Hom(Γ,S1)

)
.

Another important case of an S1-invariant subset of a unitary S1-representation V is the zero
fiber of the moment map, which will be considered in Section 6 in the general setting of a unitary
representation of an arbitrary compact Lie group.

5. Computations for O(2)-representations

Throughout this section, G = O(2) = O(2,R), which consists of SO(2), the rotations

rθ =

(
cos θ − sin θ
sin θ cos θ

)
and O(2)∖ SO(2), the reflections

sθ =

(
cos θ sin θ
sin θ − cos θ

)
,

for θ ∈ R. We briefly recall the representation theory of G and refer the reader to [23, Theo-
rem 7.2.1] and [18, Section 11.2] for more information.

The irreducible unitary representations of O(2) are those induced from the 1-dimensional
irreducible representations of SO(2) ≃ S1. For a ∈ Z, let ϵa denote the 1-dimensional circle
representation given by multiplication by za for z ∈ S1 (i.e., the representation with weight
vector (a) in the language of Section 4). Let τa denote the induced representation of O(2).
Then τ0 splits into the trivial 1-dimensional representation and the 1-dimensional representation
det with kernel SO(2) whose action is multiplication by the determinant ±1. For a ̸= 0, τa
is irreducible and isomorphic to τ−a. We will therefore only consider τα for α > 0, using the
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notation α to emphasize that the integer must be positive. Then {det, τα : α > 0} is a complete
list of unitary irreducible representations of O(2). Expressed as matrices, det : rθ 7→ (1) and
det : sθ 7→ (−1), while for α > 0,

τα : rθ 7→
(
e
√
−1αθ 0

0 e−
√
−1αθ

)
, τα : sθ 7→

(
0 e

√
−1αθ

e−
√
−1αθ 0

)
.

In either det or τα, the isotropy group of the origin is of course O(2). The isotropy group of
any nonzero point of det is SO(2). In τα with coordinates (x1, x2), the kernel is the group

R(α) ≃ Z/αZ of αth roots of unity in SO(2). If |x1| = |x2|, then x1 = e
√
−1αθx2 has solutions

corresponding to α distinct reflections so that (x1, x2) has isotropy isomorphic to D2α, the
dihedral group with 2α elements.

5.1. Computations for O(2)-representations with general Γ. An arbitrary unitary repre-
sentation V of O(2) such that V O(2) = {0} is of the form

(5.1) V =

(
n⊕

i=1

ταi

)
⊕ ddet

where each αi > 0, d ≥ 0, and dimV = 2n+ d. Note that the underlying action of SO(2) ≃ S1

has weight vector (α1,−α1, . . . , αn,−αn,

d︷ ︸︸ ︷
0, . . . , 0).

Let (xi,1, xi,2) be complex coordinates for ταi
and let yj be the complex coordinate for the

jth det factor. Then the complex coordinates for V are given by

(x1,1, x1,2, x2,1, . . . , xn,1, xn,2, y1, . . . , yd) ∈ C2n+d.

It will be convenient to partition V into subsets of orbit types as follows:

• The origin, which has isotropy O(2).
• For each i ∈ n, the set Xi of points v ∈ V such that exactly one of xi,1 and xi,2 are

nonzero and all other coordinates are zero. These points have isotropy group R(αi)
isomorphic to Z/αiZ.

• For each nonempty I ⊆ n, the set X∗
I of points v ∈ V with xi,1, xi,2 ̸= 0 for i ∈ I and all

other coordinates zero such that |xi,1| = |xi,2| for all i and there is a common solution

θ ∈ [0, 2π) to e
√
−1αiθxi,2 = xi,1 for i ∈ I. It follows that there are gcd{αi : i ∈ I} such

solutions so that these points have isotropy isomorphic to D2 gcd{αi:i∈I}.

• For each I ⊆ n with at least two elements, the set X×
I of points v ∈ V such that either

all of the xi,1 ̸= 0 for i ∈ I or all of the xi,2 ̸= 0 for i ∈ I, with all other coordinates
zero. These points have isotropy isomorphic to Z/ gcd{αi : i ∈ I}Z.

• For each nonempty I ⊆ n, the set XI of points v ∈ V such that at least one of xi,1

and xi,2 are nonzero for each i ∈ I; xi,1 = xi,2 = 0 for i /∈ I; yj = 0 for all j; v /∈ X∗
I ;

v /∈ X×
I ; and, if I has one element i, both xi,1, xi,2 ̸= 0 so that v /∈ Xi. These points

have isotropy isomorphic to Z/ gcd{αi : i ∈ I}Z.
• For each nonempty J ⊆ d, the set Y J of points v ∈ V such that yj ̸= 0 for j ∈ J with
all other coordinates zero. These points have isotropy SO(2).

• For each nonempty I ⊆ n and nonempty J ⊆ d, the set XI,J of points v ∈ V such that
at least one of xi,1 and xi,2 are nonzero for each i ∈ I, yj ̸= 0 for j ∈ J , and all other
coordinates are zero. These points have isotropy isomorphic to Z/ gcd{αi : i ∈ I}Z.

Note that if xi,1 ̸= 0 and xi,2 = 0 for a point v ∈ V , then the action of O(2) ∖ SO(2) maps v
to a point satisfying xi,1 = 0 and xi,2 ̸= 0. Otherwise, the O(2)-action preserves the zero and
nonzero coordinates of v. If v ∈ X∗

I for some I ⊆ n, then the action of O(2) preserves the

number of common solutions θ ∈ [0, 2π) to e
√
−1αiθxi,2 = xi,1 for i ∈ I. Therefore, each of the
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sets Xi, X
∗
I , X

×
I , XI , Y J , and XI,J defined above are O(2)-invariant. Note that points in

X∗
I , X

×
I , and XI have at least two nonzero coordinates.

Theorem 5.1. Let ρ : O(2) → U(V ) be a unitary O(2)-representation with V O(2) = {0} of the
form (5.1) and let Γ be a finitely presented discrete group. Then

(5.2) χΓ

(
O(2)⋉ V

)
= χ

(
O(2)\Hom(Γ,O(2))

)
−

n∑
i=1

χ
(
Hom(Γ,Z/αiZ)

)
.

Proof. The orbit space of the origin is a single point with isotropy O(2), yielding the term
χ
(
O(2)\Hom(Γ,O(2))

)
. For i ∈ n, the set O(2)\Xi is homeomorphic to an open interval;

specifically, each point in Xi contains a unique point in its orbit such that xi,1 is positive real
and xi,2 = 0. Therefore, each Xi contributes −χ

(
Hom(Γ,Z/αiZ)

)
to χΓ(O(2)⋉ V ).

For a set X×
I corresponding to I ⊆ n with |I| ≥ 2 elements such that the αi with i ∈ I all

coincide, X×
I is homeomorphic to (C ∖ {0})|I| ⊔ (C ∖ {0})|I|, and O(2)\X×

I is homeomorphic

to (0, 1) × (C ∖ {0})|I|−1. To see this, note that the orbit of each v ∈ X×
I contains a unique

point such that xi,1 ̸= 0 for each i ∈ I and, if i1 is the smallest element of I, then xi1,1 is
positive real; for i ̸= i1, the xi,1 can take any value in C ∖ {0}. As |I| − 1 ≥ 1, it follows that

χ
(
O(2)\X×

I

)
= χ

(
(0, 1)× (C∖ {0})|I|−1

)
= 0.

For any set Z of the form X∗
I , XI , Y J , or XI,J , or of the form X×

I where the αi for i ∈ I
do not all coincide, the circle action by scalar multiplication on V preserves Z and has finite
intersection with O(2) in Homeo(Z). Hence the corresponding contribution to χΓ(O(2)⋉ V ) is
zero by Corollary 3.5, completing the proof. □

Remark 5.2. The hypothesis in Theorem 5.1 that V O(2) = {0} can easily be removed by noting
that, for an arbitrary unitary O(2)-representation W , W = WO(2) × V with V as in (5.1),
where WO(2) is a complex vector space so that χ

(
WO(2)

)
= 1. Hence, as in Remark 4.2,

χΓ

(
O(2)⋉ V

)
= χΓ

(
O(2)⋉W

)
.

Continuing to let V denote a unitary O(2)-representation such that V O(2) = {0} of the form
(5.1), let VR ⊂ V denote the set of real points in V . That is,

VR = {(x1,1, x1,2, x2,1, . . . , xn,1, xn,2, y1, . . . , yd) ∈ V : xi,1 = xi,2 ∀i and yj ∈ R ∀j}.
Then VR is a real representation of O(2). For example, the defining representation of O(2) is
given by (τ1)R.

Theorem 5.3. Let ρ : O(2) → U(V ) be a unitary O(2)-representation with V O(2) = {0} of the
form (5.1) and let Γ be a finitely presented discrete group. Then

χΓ

(
O(2)⋉ VR

)
= χ

(
O(2)\Hom(Γ,O(2))

)
+

(−1)d − 1

2
χ
(
Hom(Γ,S1)

)
−
∑

∅̸=I⊆n

(−2)|I|−1χ
(
D2 gcd{αI}\Hom(Γ, D2 gcd{αI})

)
−

∑
I={i1,i2}⊆n

χ
(
D2 gcd{αI}\Hom(Γ, D2 gcd{αI})

)
+

1− (−1)d

2

n∑
i=1

χ
(
Hom(Γ,Z/αiZ)

)
,

(5.3)

where we use the shorthand {αI} to denote {αi : i ∈ I}.

Proof. The orbit space of the origin is again a point with isotropy O(2), yielding the term
χ
(
O(2)\Hom(Γ,O(2))

)
. The sets Xi and X×

I do not intersect VR, so we consider the sets
X∗

I for nonempty I ⊆ n with |I| elements. Let I = {i1, . . . , ik} and then the O(2)-orbit
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of (xi1,1, xi1,2) ∈ (τi1)R contains a unique element with xi1,1 = xi1,2 positive real, which has
isotropy D2αi1

. In order to be an element of X∗
I , (xi2,1, xi2,2) ∈ (τi2)R must be contained in

one of αi1/ gcd(αi1 , αi2) lines through the origin (excluding the origin), and the action of D2αi1

identifies these lines. Hence the D2αi1
-orbit of (xi2,1, xi2,2) contains a unique element with xi2,1

on one of two rays (excluding the origin), the positive real axis and the set of points with argument
π gcd(αi1 , αi2)/αi1 ; such points (xi1,1, xi1,2, xi2,1, xi2,2) ∈ (τi1⊕τi2)R have isotropyD2 gcd(αi1 ,αi2 )

.

In the same way, the D2 gcd(αi1 ,αi2 )
-orbit of (xi3,1, xi3,2) contains a unique element on one of two

rays excluding the origin. Continuing by induction, the orbit space of X∗
I is homeomorphic

to (0, 1) ×
(
(0, 1) ⊔ (0, 1)

)|I|−1
. It therefore has Euler characteristic −(−2)|I|−1 and isotropy

D2 gcd{αi:i∈I}, yielding the first sum in Equation (5.3).
The set XI only intersects VR if I has at least two elements, as any real point (xi,1, xi,2)

satisfies |xi,1| = |xi,2| and hence is an element of X∗
I . First assume I = {i1, i2} has two elements,

and then as in the case of X∗
I , there is a unique point in the O(2)-orbit of (xi1,1, xi1,2) ∈ (τi1)R

such that xi1,1 = xi1,2 is positive real; this point has isotropy D2αi1
. Then xi2,1 must lie

in the complement of the αi1/ gcd(αi1 , αi2) lines through the origin fixed by a reflection in
D2αi1

. This separates C into 2αi1/ gcd(αi1 , αi2) open 2-cells, and there is a unique point in the

D2αi1
-orbit of (xi2,1, xi2,2) ∈ (τi2)R contained in the 2-cell bounded by the positive real axis and

the ray of points with argument π gcd(αi1 , αi2)/αi1 . It follows that the O(2)-orbit space of XI

is homeomorphic to (0, 1)× C and hence χ
(
O(2)\XI

)
= −1 with isotropy D2 gcd(αi1

,αi2
). Now

suppose I has at least three elements, let i1 be the smallest, and then there must be at least one
other element i2 such that (xi2,1, xi2,2) ∈ (τi2)R is not fixed by any of the reflections in D2αi1

(otherwise, the point is in X∗
I). Choose a third element i3 ∈ I, and then xi3,1 is unconstrained

in C∖ {0}. Arguing as in the case I has two elements, there is a unique point in the O(2)-orbit
of (xi1,1, xi1,2, xi2,1, xi2,2, xi3,1, xi3,2) ∈ (τi1 ⊕ τi2 ⊕ τi3)R such that xi1,1 is positive real, xi2,1 is
contained in a single open 2-cell, and xi3,1 is an element of (Z/ gcd(αi1 , αi2 , αi2)Z)\(C∖{0}) with
the cyclic group acting as rotations. It follows that the O(2)-orbit space of XI is homeomorphic
to (0, 1)× C× (C∖ {0})× · · · and hence has vanishing Euler characteristic. Note that if I has
more than three elements, the remaining factors contributed by each will each be homeomorphic
C∖{0} by the same argument as in the case of xi3 . It follows that the XI contribute the second
sum in Equation (5.3).

Now let J ⊆ d be nonempty with |J | elements, and then Y J is homeomorphic to (R∖{0})|J|.
The action of O(2) is by scalar multiplication by−1, so the orbit space O(2)\Y J is homeomorphic

to R×
(
R∖{0}

)|J|−1
and has Euler characteristic −(−2)|J|−1. These points have abelian isotropy

S1 so that the Y J contribute

−
∑

∅̸=J⊆d

(−2)|J|−1χ
(
Hom(Γ,S1)

)
= −χ

(
Hom(Γ,S1)

) d∑
|J|=1

(
d

|J |

)
(−2)|J|−1

=
(−1)d − 1

2
χ
(
Hom(Γ,S1)

)
to χΓ

(
O(2)⋉ VR

)
.

It remains only to consider the XI,J for nonempty sets I ⊂ n and J ⊂ d. First assume
I = {i} is a singleton and J is arbitrary with |J | > 0 elements, and let j1 be the small-
est element of J . The O(2)-orbit of (xi,1, xi,2, yj1) contains a unique point with xi,1 positive
real and yj1 positive, and the isotropy group Z/αiZ of this point acts trivially on the remain-
ing coordinates yj for j ∈ J . It follows that the orbit space O(2)\XI,J of XI,J is home-

omorphic to R2 ×
(
R ∖ {0}

)|J|−1
and hence has Euler characteristic (−2)|J|−1, contributing

(−2)|J|−1χ
(
Hom(Γ,Z/αiZ)

)
to χΓ

(
O(2)⋉VR

)
. If I = {i1, i2, . . .} has at least two elements, then

choosing an O(2)-orbit representative such that xi1,1 is positive real and yj1 > 0, xi2,1 can take
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any nonzero value in C∖{0}, and the Z/αi1Z-action on C∖{0} results in a (Z/αi1Z)\(C∖{0})
factor in the orbit space homeomorphic to C ∖ {0}. It follows that O(2)\XI,J has vanishing
Euler characteristic. Hence, the contribution to χΓ

(
O(2)⋉ VR

)
of the sets XI,J is given by

n∑
i=1

∑
∅̸=J⊆d

(−2)|J|−1χ
(
Hom(Γ,Z/αiZ)

)
=

n∑
i=1

χ
(
Hom(Γ,Z/αiZ)

) d∑
|J|=1

(
d

|J |

)
(−2)|J|−1

=

n∑
i=1

1− (−1)d

2
χ
(
Hom(Γ,Z/αiZ)

)
. □

5.2. Computations for O(2)-representations with free and free abelian Γ. To special-
ize the computations of Section 5.1 to the groups Γ = Zℓ and Fℓ, we need only compute
χ
(
H\Hom(Γ, H)

)
for the isotropy groups H that appear in Equations (5.2) and (5.3). For

abelian H, this computation is trivial and was considered in Section 4; we have

χ
(
S1\Hom(Γ,S1)

)
= χ

(
Hom(Γ,S1)

)
= 0

and
χ
(
(Z/αZ)\Hom(Γ, (Z/αZ))

)
= χ

(
Hom(Γ, (Z/αZ))

)
= αℓ

for both Γ = Zℓ and Γ = Fℓ. We now consider the remaining cases.
By choosing a generating set for Fℓ, Hom(Fℓ, H) can be identified with the set of ordered

ℓ-tuples of elements of H, and the action of Fℓ on Hom(Fℓ, H) corresponds to simultaneous
conjugation of an ℓ-tuple. The partition of the set of ℓ-tuples of elements of O(2) into O(2)-orbit
types under simultaneous conjugation is as follows. Note that the center of O(2) is given by
{r0, rπ}, the centralizer of any other rotation is SO(2), and the centralizer of a reflection sθ is
{r0, rπ, sθ, rπsθ = sθ+π}; all sθ are conjugate, and rθ is conjugate only to r−θ.

(i) ℓ-tuples (g1, . . . , gℓ) ∈ O(2) such that each gi ∈ {r0, rπ}. These ℓ-tuples are fixed by
O(2).

(ii) ℓ-tuples (g1, . . . , gℓ) ∈ O(2) such that each gi ∈ SO(2) and at least one gi /∈ {r0, rπ}.
The isotropy group of these ℓ-tuples is SO(2).

(iii) ℓ-tuples (g1, . . . , gℓ) ∈ O(2) in which a single reflection sθ occurs at least once and all gi
commute with sθ. The isotropy group of any such ℓ-tuple is {r0, rπ, sθ, sθ+π}.

(iv) ℓ-tuples (g1, . . . , gℓ) ∈ O(2) fixed only by the center {r0, rπ} of O(2). These ℓ-tuples
contain at least one reflection sθ and at least one gi that does not commute with sθ.
These ℓ-tuples have isotropy {r0, rπ}.

The ℓ-tuples of types (i), (ii), and (iii) are commuting ℓ-tuples and hence represent elements of
Hom(Zℓ,O(2)), while the ℓ-tuples of type (iv) do not commute.

Lemma 5.4. For any ℓ ≥ 1,

(5.4) χ
(
O(2)\Hom(Zℓ,O(2))

)
= 22ℓ−1,

and for ℓ ≥ 2, we have

(5.5) χ
(
O(2)\Hom(Fℓ,O(2))

)
= 2ℓ−2(2ℓ + 1).

Proof. We consider the orbits of ℓ-tuples of each type listed above and compute

χ
(
O(2)\Hom(Γ,O(2))

)
for the Γ under consideration.

As the center of O(2) has two elements, there are 2ℓ ℓ-tuples of type (i), and the O(2)-orbit of
each is a singleton. The space of ℓ-tuples of types (i) and (ii) combined form the space SO(2)ℓ,
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and those of type (i) yield 2ℓ discrete points in SO(2)ℓ. Hence, the ℓ-tuples of type (ii) consist
of the complement of these points, a space with Euler characteristic −2ℓ. Each type (ii) ℓ-tuple
is centralized by SO(2) and hence has an orbit with two elements; it follows that the space of
type (ii) tuples forms a 2-to-1 cover of its orbit space, which therefore has Euler characteristic
−2ℓ−1. The space of orbits of ℓ-tuples of type (iii) is discrete; although there are infinitely many
choices for sθ, they are all conjugate, so we can for instance choose the unique representative
of each orbit such that the first reflection to occur in the ℓ-tuple is s0. To count the resulting
orbits of ℓ-tuples, let r be the first position for which gr is a reflection. There are 2 choices for

each gi with i < ℓ and 4 choices for each gi with i > r, yielding
∑ℓ

r=1 2
r−14ℓ−r = 2ℓ−1(2ℓ − 1)

orbits. Because Hom(Zℓ,O(2)) is identified with the space of commuting ℓ-tuples, i.e., those of
types (i), (ii), and (iii), we have

χ
(
O(2)\Hom(Zℓ,O(2))

)
= 2ℓ − 2ℓ−1 + 2ℓ−1(2ℓ − 1) = 22ℓ−1,

establishing Equation (5.4).
If ℓ = 1, then there are no ℓ-tuples of type (iv), as any singleton containing a reflection is type

(iii). We claim by induction on ℓ that if ℓ ≥ 2, then the space of O(2)-orbits of ℓ-tuples of type
(iv) has Euler characteristic −2ℓ−2(2ℓ − 1). First consider ℓ = 2. A type (iv) tuple must contain
a reflection, and there is a unique element of each orbit such that the first reflection that occurs
is s0 and the other element is either a rotation rθ or a reflection sθ with θ ∈ (0, π). The orbit
space is therefore three intervals: the tuples of the form (s0, sθ), those of the form (s0, rθ), and
those of the form (rθ, s0), so that the Euler characteristic is −3 = −2ℓ−2(2ℓ − 1).

Now, let X be the space of ℓ-tuples of type (iv) for some ℓ ≥ 2, and assume

χ(O(2)\X) = −2ℓ−2(2ℓ − 1).

If (g1, . . . , gℓ+1) is a type (iv) (ℓ+ 1)-tuple, then (g1, . . . , gℓ) must be type (ii), (iii), or (iv); we
first consider the case that (g1, . . . , gℓ) is type (iv). Choosing a representative of each orbit in
O(2)\X and concatenating any gℓ+1 ∈ O(2) to this representative yields a representative of the
orbit of a type (iv) (ℓ + 1)-tuple. Therefore, the set of orbits of type (iv) (ℓ + 1)-tuples such
that (g1, . . . , gℓ) is as well type (iv) is homeomorphic to (O(2)\X) × O(2) and has zero Euler
characteristic.

As seen above, the space of orbits of type (ii) ℓ-tuples has Euler characteristic −2ℓ−1, and
each is centralized by SO(2). Choose a representative (g1, . . . , gℓ) of each orbit, and then we may
concatenate any reflection gℓ+1 = sθ to yield a type (iv) (ℓ + 1)-tuple. Conjugating by SO(2),
there is a unique representative of the resulting (ℓ+1)-tuple such that gℓ+1 = s0. It follows that
the space of orbits of type (iv) (ℓ + 1)-tuples whose first ℓ coordinates are type (ii) has Euler
characteristic −2ℓ−1.

Similarly, the space consisting of orbits of type (iii) ℓ-tuples has Euler characteristic
2ℓ−1(2ℓ − 1). We can choose a unique representative of each orbit as above such that the
first reflection to occur is s0, and the centralizer of this ℓ-tuple is {r0, rπ, s0, sπ}. We may form
a type (iv) (ℓ+1)-tuple by concatenating any element of O(2) that is not in this centralizer, and
then we may conjugate by s0 to choose a unique element of the orbit of the resulting (ℓ+1)-tuple
such that gℓ+1 = sθ or rθ with θ ∈ (0, π). It follows that the Euler characteristic of the space of
(ℓ+ 1)-tuples formed in this way is −2ℓ(2ℓ − 1). Combining the above computations, the space
of orbits of type (iv) (ℓ+ 1)-tuples has Euler characteristic

−2ℓ(2ℓ − 1)− 2ℓ−1 = −2ℓ−1(2ℓ+1 − 1),

completing the induction.
With this, Equation (5.5) is obtained by adding −2ℓ−2(2ℓ− 1), the Euler characteristic of the

space of orbits of type (iv) ℓ-tuples, to Equation (5.4). □

Combining Lemma 5.4 with Theorem 5.1 yields the following.
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Corollary 5.5. Let ρ : O(2) → U(V ) be a unitary O(2)-representation of the form (5.1) such
that V O(2) = {0}. For any ℓ ≥ 1,

χZℓ

(
O(2)⋉ V

)
= 22ℓ−1 −

n∑
i=1

αℓ
i ,

and for ℓ ≥ 2,

χFℓ

(
O(2)⋉ V

)
= 2ℓ−2(2ℓ + 1)−

n∑
i=1

αℓ
i .

Remark 5.6. As in Remark 4.5, observe that the χZℓ

(
O(2) ⋉ V

)
for ℓ = 1, . . . , n determine

the αi, and the same holds for the χFℓ

(
O(2)⋉ V

)
. Hence, among unitary O(2)-representations

of the same dimension, finitely many of the χZℓ

(
O(2) ⋉ V

)
or χFℓ

(
O(2) ⋉ V

)
determine the

representation.

Remark 5.7. With V as in Theorem 5.1, note that O(2)⋉ V fits into a short exact sequence of
Lie groupoids

1V −→ S1 ⋉ V
ν−→ O(2)⋉ V

κ−→ Z/2Z ⋉ (S1\V ) −→ 1V

where 1V denotes the base groupoid V ⇒ V over V in which all arrows are units, ν is the
embedding of the connected component containing the units, and κ is the quotient map. The

S1-action has weight vector (α1,−α1, . . . , αn,−αn,

d︷ ︸︸ ︷
0, . . . , 0) as noted after Equation (5.1). The

nontrivial element of Z/2Z acts on S1\V by

S1(x1,1, x1,2, . . . , xn,1, xn,2, y1, . . . , yd) 7→ S1(x1,2, x1,1, . . . , xn,2, xn,1,−y1, . . . ,−yd).

The action of S1 on V by scalar multiplication fixes only the origin and commutes with the
O(2)-action so that by Corollary 3.2,

χΓ

(
Z/2Z ⋉ (S1\V )

)
= χ

(
Hom(Γ,Z/2Z)

)
for each finitely presented Γ. In particular, for each positive integer ℓ, it follows that

χZℓ

(
Z/2Z ⋉ (S1\V )

)
= χFℓ

(
Z/2Z ⋉ (S1\V )

)
= 2ℓ.

We have χΓ(1V ) = 1 for all Γ, and by Corollary 4.3,

χZℓ(S1 ⋉ V ) = χFℓ
(S1 ⋉ V ) = −2

n∑
i=1

αℓ
i .

In [8, Theorem 5.13], it was demonstrated that χΓ is multiplicative over short exact sequences
1 → B → G → H → 1 where B is a bundle of compact Lie groups, H is a translation groupoid,
and the isotropy groups in G are abelian; [8, Example 14] then demonstrated that there is no
simple relationship between the χΓ when the assumption that the Gx

x are abelian was dropped.
Comparing the above χΓ to Corollary 5.5 further indicates that multiplicativity of χΓ over short
exact sequences only holds in specific circumstances. In particular, χFℓ

and χZℓ coincide for 1V ,
S1 ⋉ V , and Z/2Z ⋉ (S1\V ) yet do not for O(2)⋉ V .

We now consider χ
(
D2m\Hom(Zℓ, D2m)

)
. The center of D2m is {r0, rπ} if m is even and

trivial if m is odd. If m is even, there are two conjugacy classes of reflections; if m is odd, all
reflections are conjugate. For any m, the D2m-conjugacy class of any rotation rθ with θ ̸= 0, π
is the pair r±θ.

Lemma 5.8. Let m be any positive integer and let P (m) = 2 if m is even and 1 if m is odd.
For any ℓ ≥ 1,

(5.6) χ
(
D2m\Hom(Zℓ, D2m)

)
=

mℓ + P (m)ℓ(2ℓ+1 − 1)

2
,
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and for ℓ ≥ 2, we have

(5.7) χ
(
D2m\Hom(Fℓ, D2m)

)
=

(2P (m))ℓ + P (m)mℓ−1(2ℓ − 1) +mℓ

2
.

Proof. First assume m is odd, in which case rπ /∈ D2m. Then there is only one type (i) ℓ-tuple
in Dℓ

2m, and its orbit is a singleton. There are mℓ − 1 type (ii) ℓ-tuples, each with an orbit of
size 2, yielding (mℓ − 1)/2 orbits. There are m(2ℓ − 1) type (iii) ℓ-tuples that contain a single
reflection and the identity, each with an orbit of size m, yielding 2ℓ − 1 orbits. Hence the orbits
of commuting ℓ-tuples consist of

1 +
mℓ − 1

2
+ (2ℓ − 1) =

mℓ + 2ℓ+1 − 1

2

points, yielding Equation (5.6) in this case. Subtracting the numbers of type (i), (ii), and (iii)
ℓ-tuples from the total number (2m)ℓ of ℓ-tuples yields (mℓ − m)(2ℓ − 1) type (iv) ℓ-tuples,
each with an orbit of size 2m, hence (mℓ−1 − 1)(2ℓ − 1)/2 orbits of type (iv) ℓ-tuples. Then
χ
(
D2m\Hom(Fℓ, D2m)

)
for m odd is given by

mℓ + 2ℓ+1 − 1

2
+

(mℓ−1 − 1)(2ℓ − 1)

2
=

2ℓ +mℓ−1(2ℓ − 1) +mℓ

2
,

corresponding to Equation (5.7) in this case.
Now assume m is even. There are 2ℓ type (i) ℓ-tuples, each with trivial orbit, and mℓ − 2ℓ

type (ii) ℓ-tuples partitioned into orbits of size 2. For a given reflection sθ, there are 4ℓ − 2ℓ

tuples consisting of {r0, rπ, sθ, s−θ} that are not of type (ii), and m/2 choices for sθ, yielding
m(4ℓ − 2ℓ)/2 type (iii) ℓ-tuples in orbits of size m/2. Hence,

χ
(
D2m\Hom(Zℓ, D2m)

)
= 2ℓ +

mℓ − 2ℓ

2
+ (4ℓ − 2ℓ) =

mℓ + 2ℓ(2ℓ+1 − 1)

2
,

completing the proof of Equation (5.6).
We again count the ℓ-tuples of type (iv) by subtracting those of type (i), (ii), and (iii) from

(2m)ℓ, yielding

(2m)ℓ − 2ℓ − (mℓ − 2ℓ)− m(4ℓ − 2ℓ)

2
=

(2ℓ − 1)(2mℓ −m2ℓ)

2

ℓ-tuples of type (iv) in orbits of size m. Adding the resulting number of orbits to

χ
(
D2m\Hom(Zℓ, D2m)

)
yields χ

(
D2m\Hom(Fℓ, D2m)

)
and completes the proof of Equation (5.7). □

Combining Lemmas 5.4 and 5.8 with Theorem 5.3 yields the following.

Corollary 5.9. Let ρ : O(2) → U(V ) be a unitary O(2)-representation of the form (5.1) with
V O(2) = {0} and let VR denote the set of real points in V . Let P (m) = 2 if m is even and 1 if
m is odd. For any ℓ ≥ 1, using the shorthand {αI} to denote {αi : i ∈ I},

χZℓ

(
O(2)⋉ VR

)
= 22ℓ−1

+
∑

∅̸=I⊆n

(−2)|I|−2
(
gcd{αI}ℓ + P (gcd{αI})ℓ(2ℓ+1 − 1)

)
− 1

2

∑
I={i1,i2}⊆n

(
gcd{αI}ℓ + P (gcd{αI})ℓ(2ℓ+1 − 1)

)
+

1− (−1)d

2

n∑
i=1

αℓ
i ,
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and for ℓ ≥ 2,

χFℓ

(
O(2)⋉ VR

)
= 2ℓ−2(2ℓ + 1) +

1− (−1)d

2

n∑
i=1

αi

+
∑

∅̸=I⊆n

(−2)|I|−2
(
(2P (gcd{αI}))ℓ + P (gcd{αI}) gcd{αI}ℓ−1(2ℓ − 1) + gcd{αI}ℓ

)
− 1

2

∑
I={i1,i2}⊆n

(
(2P (gcd{αI}))ℓ + P (gcd{αI}) gcd{αI}ℓ−1(2ℓ − 1) + gcd{αI}ℓ

)
.

6. Computations for linear symplectic quotients

In this section, we compute χΓ(G) in the case that G is the translation groupoid representing
the real linear symplectic quotient associated to a unitary representation of an arbitrary compact
Lie group G. In contrast to many of the other cases considered in this paper, we demonstrate
that χΓ(G) only depends on the group G and not on the representation.

LetG be a compact Lie group and ρ : G → GL(V ) a finite-dimensional linearG-representation.
Equip V with a G-invariant hermitian inner product, and then the imaginary part of the her-
mitian product is a symplectic form on the underlying real vector space of V . The G-action on
V is Hamiltonian, admitting a unique homogeneous quadratic moment map µ : V → g∗ where
g denotes the Lie algebra of G and g∗ its dual. Specifically, identifying g∗ with Rℓ by choosing
a basis, the component functions of µ have bi-degree (1, 1), i.e., are sums of terms of the form
xixj where (x1, . . . , xn) are complex coordinates for V . The set µ−1(0), called the shell, is G-
invariant and real algebraic, hence definable. The real linear symplectic quotient at level 0 is the
quotient G\µ−1(0). Note that if G is finite, the moment map is zero so that µ−1(0) = V and
the symplectic quotient is the usual quotient G\V . See [1, 27, 16] for more information.

Theorem 6.1. Let G be a compact Lie group, ρ : G → GL(V ) a finite-dimensional linear G-
representation, and Γ a finitely presented discrete group. Equip V with a G-invariant hermitian
inner product and let µ : V → g∗ denote the homogeneous quadratic moment map so that the real
symplectic quotient at level 0 is the orbit space |G⋉ µ−1(0)| of the groupoid G⋉ µ−1(0). Then

(6.1) χΓ

(
G⋉ µ−1(0)

)
= χ

(
G\Hom(Γ, G)

)
= χΓ(G⋉ {pt}).

Proof. Let
µ−1(0) = X1 ⊔X2 ⊔ · · · ⊔Xs

denote the partition of µ−1(0) into orbit types, let Hi be the isotropy group of some point in Xi

for each i, and let Yi = (Xi)Hi = XHi denote the points in X with isotropy equal to Hi. Order
the Xi so that H1 = G, i.e., X1 = Y1 = µ−1(0)G is the element of the partition that contains the

origin. As in Section 3, let D = {e
√
−1 θI ∈ GL(V ) : θ ∈ R} ≃ S1. Recall that as D commutes

with the action of G, each Yi is D-invariant, and D|Yi
denotes the subgroup of Homeo(Yi) given

by the restriction of D. Fixing j > 1, we claim that D|Yj
∩ ρ
(
NG(Hj)

)
|Yj

is finite; this is of

course clear if G is finite.
Suppose for contradiction that D|Yj

∩ ρ
(
NG(Hj)

)
|Yj

is infinite. As D|Yj
∩ ρ
(
NG(Hj)

)
|Yj

is a

closed subgroup of D|Yj
≃ S1, it follows that D|Yj

∩ ρ
(
NG(Hj)

)
|Yj

= D|Yj
so that

D|Yj
≤ ρ
(
NG(Hj)

)
|Yj

.

Let W be the complex linear subspace of V spanned by Yj , and then W ⊆ V Hj . By linearity, it
follows thatD|W ⊆ ρ

(
NG(Hj)

)
|W . Let nj denote the Lie algebra ofNG(Hj) and let µW : W → n∗j

denote the moment map for the NG(Hj)-action on W . Choose a basis for n∗j that contains an

element dual to the Lie algebra of the subgroup D|W ≤ NG(Hj) and let µD
W : W → R denote the

component of µW corresponding to this element. Note that µW is the restriction to W of the
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moment map of the NG(Hj)-action on V so that for w ∈ W , µ(w) = 0 implies µW (w) = 0. In
complex coordinates (w1, . . . , wk) for W , the moment map of D|W is given by a scalar multiple

of |w1|2 + |w2|2 + · · · + |wk|2, see [11, Ex. 2.1], [14, Sec. 2], or [7, pp. 5]. Therefore, Yj consists
only of the origin, a contradiction. Hence, for each j > 1, D acts on Xj with finite isotropy. By
Corollary 3.5, it follows that

χΓ

(
G⋉ µ−1(0)

)
= χ(G\X1)χ

(
G\Hom(Γ, G)

)
.

As G acts trivially on V G, we have µ|V G = 0 so that V G ⊆ µ−1(0). Therefore,

X1 = µ−1(0)G = V G

is a complex vector space and hence has Euler characteristic 1, completing the proof. □

Remark 6.2. If ρ : G → GL(V ) is a finite-dimensional linear representation of a compact Lie
group G, then the proof of Theorem 6.1 applies as well with µ−1(0) replaced by other G- and
D-invariant definable subsets X ⊆ V . Letting Hi, i = 1, . . . , s be a choice of isotropy group from
each conjugacy class, we require that if NG(Hi) contains a subgroup isomorphic to S1 that acts
on V Hi as scalar multiplication (up to a finite kernel), then X ∩ VHi

= ∅. If this holds, then
Equation (6.1) does as well with µ−1(0) replaced with X. When G = S1 acts on V ≃ Cn with
weight vector (a1, . . . , an), a subset X ⊆ V defined by an equation of the form

n∑
i=1

bi|xi|pi = 0

with each pi ∈ Z positive satisfies this hypothesis provided that the bi are nonzero and, if
ai1 = ai2 = · · · aik for some subset {i1, . . . , ik} ⊆ n, then the signs of the bij , j = 1, . . . , k,
coincide. The hypothesis about the signs of the bi can as well be removed using the argument
of Theorem 4.1, replacing D with a circle acting in the coordinates (xi1 , . . . , xik) with positive
and negative weights so that its intersection with the G-action is finite.

Let us illustrate Theorem 6.1 with the following.

Example 6.3. Let G = S1 and V ≃ C3 with weight vector (−6, 2, 3). In coordinates (x1, x2, x3)
for V , a generating set of the real invariants of the action is given by m1 = |x1|2, m2 = |x2|2, and
m3 = |x3|2, along with the real and imaginary parts of p1 = x1x

2
3, p2 = x1x

3
2, and p3 = x3

2x3
2.

We have

µ−1(0) = {(x1, x2, x3) ∈ C3 : 6m1 = 2m2 + 3m3}
so that m1 is redundant on the shell. The symplectic quotient can be identified with the image
of the Hilbert embedding H : µ−1(0) → R8 given by

H(x1, x2, x3) =
(
m2,m3,Re(p1), Im(p1),Re(p2), Im(p2),Re(p3), Im(p3)

)
.

On the shell, the invariants satisfy relations generated by the following, which we express in
complex coordinates for brevity:

2m2m
2
3 + 3m3

3 − 6p1p1, 6p1p2 − 2m2p3 − 3m3p3, m3
2p1 − p2p3

6p1p2 − 2m2p3 − 3m3p3, m2
3p2 − p1p3, m2

3p2 − p1p3,

2m4
2 + 3m3

2m3 − 6p2p2, m3
2p1 − p2p3,

27m5
3 − 24m2

2p1p1 + 36m2m3p1p1 − 54m2
3p1p1 + 8p3p3.

These relations define the Zariski closure of the image of the Hilbert embedding in R8. The
Jacobian of the relations has rank 8 at points where all coordinates xi, and hence all invariants,
are nonzero.
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Define the sets

X1 = {0}, X2 = {(x1, x2, 0) ∈ µ−1(0) : x1, x2 ̸= 0},
X3 = {(x1, 0, x3) ∈ µ−1(0) : x1, x3 ̸= 0},
X4 = {(x1, x2, x3) ∈ µ−1(0) : x1, x2, x3 ̸= 0}.

Points in X2 have isotropy R(2) and satisfy m3 = p1 = p3 = 0. These points are singular, as
the Jacobian of the relations at these points has rank 5. The image under H of X2 consists of
points

(
m2, 0, 0, 0,Re(p2), Im(p2), 0, 0

)
∈ R8, such that m2 ≥ 0 and 3(Re(p2)

2 + Im(p2)
2) = m4

2;

hence S1\X2 is homeomorphic to C∖ {0}.
Points in X3, have isotropy R(3) and satisfy m2 = p2 = p3 = 0. These points are as well

singular, as the Jacobian of the relations at these points has rank 6. The image under H of X3

consists of points
(
0,m3,Re(p1), Im(p1), 0, 0, 0, 0

)
∈ R8 with m1 ≥ 0 and

2(Re(p2)
2 + Im(p2)

2) = m3
1,

as well homeomorphic to C ∖ {0}. Points in X4 have trivial isotropy, and their image under H
is the collection of nonsingular points in S1\µ−1(0), homeomorphic to (C∖{0})2. Hence, in this
case, one can verify from this description that χΓ

(
S1 ⋉ µ−1(0)

)
= χ

(
S1\Hom(Γ,S1)

)
for each

finitely presented Γ.

Many low-dimensional examples of linear symplectic quotients by a positive-dimensional com-
pact Lie groupG admit homeomorphisms to symplectic orbifolds that preserve the decomposition
into orbit types and many other structures; see [10, 20, 7]. By the results of [16], this phenomenon
does not occur for larger representations; see also [17]. However, because the Γ-Euler character-
istics depend on the isotropy groups, they distinguish between the G-symplectic quotient and
the symplectic orbifold in many cases. We illustrate this with the following example; see [16,
Prop. 5.3 and 5.5].

Example 6.4. Let G = SU(2), let Rd denote the (d+1)-dimensional irreducible representation
of SU(2) on binary forms of degree d, and let µRd

denote the moment map of Rd. Then
by [16, Prop. 5.3 and 5.5], the symplectic quotient corresponding to R3 is homeomorphic to
the quotient of W3 = C by ⟨i⟩ ≃ Z/4Z acting as scalar multiplication, and the symplectic
quotient corresponding to R4 is homeomorphic to the quotient of W4 = C2 by the symmetric
group S3 acting diagonally on two copies of the standard representation on C ≃ R2. Each of
these homeomorphisms is shown to in fact be a graded regular symplectomorphism, see the
reference for the definition, and hence preserves the partition into orbit types. Therefore, in
the case of R3, the orbit space of SU(2) ⋉ µ−1

R3
(0) is partitioned into the origin and a space

homeomorphic to C ∖ {0}, while in the case of R4, |SU(2) ⋉ µ−1
Rr

(0)| is partitioned into the

origin, a space homeomorphic to C∖ {0}, and a space finitely covered by C2 with three complex
1-dimensional subspaces removed. Except for the origin, each of these orbit types has vanishing
Euler characteristic so that for any finitely presented Γ, we confirm the result of Theorem 6.1
that

χΓ

(
SU(2)⋉ µ−1

R3
(0)
)
= χΓ

(
SU(2)⋉ µ−1

R4
(0)
)
= χ

(
SU(2)\Hom(Γ,SU(2))

)
.

In the same way, this description and Theorem 6.1 yield

χΓ

(
⟨i⟩⋉W3

)
= χ

(
(Z/4Z)\Hom(Γ,Z/4Z)

)
,

and

χΓ

(
S3 ⋉W4

)
= χ

(
S3\Hom(Γ,S3)

)
.

It is clear that the χΓ of the orbifolds differ from those of the corresponding SU(2)-symplectic
quotients; when Γ = Z, we have χ

(
SU(2)\Hom(Z,SU(2))

)
= 1, χ

(
Z/4Z\Hom(Z,Z/4Z)

)
= 4,

and χ
(
S3\Hom(Z,S3)

)
= 3.
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Example 6.5. For an example with G = SU(2) that is not graded regularly symplectomorphic
to an orbifold, let V = 2R2 using the notation of Example 6.4; see the proof of [16, Prop. 5.1]
and [3, Sec. 2, 6.2]. The kernel of the action is {±1}, and V can be identified with 4R3 where
SU(2)/{±1} ≃ SO(3) acts as the defining representation on each copy of R3. Using coordinates
(x1,x2,x3,x4) for V where each xi ∈ R3, the invariants are given by uij = ⟨xi,xj⟩ for i ≤ j.
The shell is given by

µ−1
2R2

(0) =
{
(x1,x2,x3,x4) ∈ 4R4 : x1 ∧ x2 + x3 ∧ x4 = 0}.

The Hilbert embedding H : µ−1
2R2

(0) → R10 is given by

H(x1,x2,x3,x4) = (u11, u12, u13, u14, u22, u23, u24, u33, u34, u44),

and the Zariski closure of the image of H is defined by the 9 relations

u14u23 − u13u24 + u2
34 − u33u44, u14u22 − u12u24 + u24u34 − u23u44,

u13u22 − u12u23 + u24u33 − u23u34, u12u14 − u11u24 + u14u34 − u13u44,

u12u13 − u11u23 + u14u33 − u13u34, u2
12 − u11u22 − u2

34 + u33u44,

u2
24u33 − 2u23u24u34 + u22u

2
34 + u2

23u44 − u22u33u44,

u14u24u33 − 2u13u24u34 + u12u
2
34 + u3

34 + u13u23u44 − u12u33u44 − u33u34u44,

u2
14u33 − 2u13u14u34 + u11u

2
34 + u2

13u44 − u11u33u44.

The orbit types are given by X1 = {0,0,0,0} with isotropy SU(2), the set X2 of (x1,x2,x3,x4)
such that the xi are parallel and not all 0 fixed by subgroups isomorphic to S1, and the remainder
X3 of the shell with isotropy {±1}. The rank of the Jacobian of the relations is 9 generically,
but 3 on X2 so that X2 consists of singular points.

Example 6.6. Let G = S1, let ρ : S1 → U(V ) be a unitary S1-representation, and let µV denote
the corresponding moment map. Using the notation of Section 4, let (x1, . . . , xn) be coordinates
for V with respect to a basis on which the action is diagonal, and let (a1, . . . , an) ∈ Zn be the
corresponding weight vector.

Then the shell µ−1
V (0) is the set of points such that

∑n
i=1 ai|xi|2 = 0, which satisfies the

hypotheses of Corollary 4.6. The set of fixed points µ−1(0)S
1

= V S1 is a complex vector space
with Euler characteristic 1, and for each i such that ai ̸= 0, we have µ−1(0) ∩ V{i} = ∅. Hence
Corollary 4.6 yields Theorem 6.1 in this case.

Example 6.7. Let G = O(2), let ρ : O(2) → U(V ) be a unitary O(2)-representation with
V O(2) = {0} as in (5.1), and let µV denote the corresponding moment map. Using the description
in the proof of Theorem 5.1, one may similarly describe a direct computation of

χΓ

(
O(2)⋉ µ−1

V (0)
)
.

In the coordinates used in Theorem 5.1, the shell is given by

µ−1
V (0) =

{
v ∈ V :

n∑
i=1

αi(|xi,1| − |xi,2|) = 0

}
.

The setsXi andX×
I do not intersect the shell, and the setsX∗

I and Y J are completely contained
in the shell so that the argument of Theorem 5.1 applies. Similarly, the intersections of the sets
XI and XI,J with the shell are invariant under the action of the circle by scalar multiplication
so that the same argument demonstrates that these sets have orbit spaces with vanishing Euler
characteristic. One may also describe the X∗

I , Y J , XI , and XI,J explicitly; there are several
cases to consider, but the orbit space of each admits a description with either C ∖ {0} or S1 as
a factor, and hence has vanishing Euler characteristic.
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To conclude, let us briefly recall how real linear symplectic quotients form local models for
symplectic quotients of manifolds; see [15, Sec. 6] and [27, Sec. 2]. Suppose (M,ω) is a symplectic
manifold equipped with the Hamiltonian action of a compact Lie group G with moment map
µM : M → g∗. If x ∈ M such that µM (x) = 0, then by the local normal form theorem for the
moment map [12, 21], a G-invariant neighborhood U of the G-orbit of x in M is G-equivariantly
symplectomorphic to Y = G×Gx (m

∗×V ) where m is a complement to the Lie algebra gx of Gx in
g as Gx-representations and V is the symplectic slice at x, a subspace of the slice representation
at x for the G-action on M . Then V can be equipped with a compatible complex structure
with respect to which it is a unitary Gx-representation as above. Let µV : V → g∗x denote the
moment map for V and µY : Y → g∗ the moment map for Y . Using the results of [27, pp.384–7],
the embedding of µ−1

V (0) into µ−1
Y (0) induces a weak equivalence Gx ⋉ µ−1

V (0) → G ⋉ µ−1
Y (0),

see [8, Sec. 2.1]. It follows that the translation groupoid Gx ⋉ µ−1
V (0) presenting the real linear

symplectic quotient at level 0 associated to V is Morita equivalent as a topological groupoid to
the translation groupoid G ⋉

(
U ∩ µ−1

M (0)
)
presenting a neighborhood of the orbit of x in the

symplectic quotient µ−1
M (0)/G. In particular, χΓ

(
G ⋉

(
U ∩ µ−1

M (0)
))

= χΓ

(
Gx ⋉ µ−1

V (0)
)
, and

the latter can be computed using Theorem 6.1. See [22, Def. 58, Rem. 59] for the definition of
Morita equivalence and [8, Cor. 4.15].
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