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CHARACTERIZATION OF GENERIC PARAMETER FAMILIES OF

CONSTRAINT MAPPINGS IN OPTIMIZATION

NAOKI HAMADA, KENTA HAYANO AND HIROSHI TERAMOTO

Abstract. The purpose of this paper is to understand generic behavior of constraint functions

in optimization problems relying on singularity theory of smooth mappings. To this end, we

will focus on a subgroup of the Mather’s contact group, whose action to constraint map-germs
preserves the corresponding feasible set-germs (i.e. the set consisting of points satisfying the

constraints). We will classify map-germs with small stratum extended-codimensions with

respect to the subgroup we introduce, and calculate the codimensions of the orbits by the
subgroup of jets represented by germs in the classification lists and those of the complements

of these orbits. Applying these results and a variant of the transversality theorem, we will show

that families of constraint mappings whose germ at any point in the corresponding feasible
set is equivalent to one of the normal forms in the classification list compose a residual set in

the entire space of constraint mappings with at most four parameters. These results enable us
to quantify genericity of given constraint mappings, and thus evaluate to what extent known

test suites are generic.

1. Introduction

Constrained optimization is a problem of minimizing objective function(s) within the feasible
set that is described by the system of equalities and inequalities of constraint functions. This
problem appears in a wide range of academic and industrial tasks, including planning, scheduling,
design, development, and operation [2]. Although there is an elegant and powerful theory for
restricted cases (e.g. for linear objective/constraint functions [9, 8] and convex ones [4, 27]), it is in
general difficult to establish a theory for solving such problems. Solvers for general optimization
problems, such as Bayesian optimization [28, 34] and evolutionary computation [11, 35], are
developed primarily through empirical performance evaluation using a set of artificially designed
optimization problems, which is called a test suite. A good test suite should represent typical
classes of real-world problems and will facilitate the development of good solvers.

Since errors are inherent in observations and modeling processes of real-world problems, we
would like to focus on properties that any problem possesses after a small perturbation and
that are preserved by perturbations, that is, generic properties. Therefore, in order to develop a
well-designed test suite, it is necessary to quantify and estimate genericity of a given constrained
optimization problem. A well-known constrained test suite is the C-DTLZ [22], which adds
artificially designed constraint functions to the DTLZ [36], the de facto standard in unconstrained
optimization. Contrary to their fame, DTLZ and C-DTLZ have been criticized for dealing with
exceptional functions that rarely occur in practice [20]. It would be nice to examine whether or
not the functions given in existing test suites are generic. (We will indeed show in Example 2.1
that the constraint map-germ at a solution of C1-DTLZ1 is far from generic, that is, one cannot
expect that it appears in real-world problems.)

The main purpose of this paper is to explore generic properties of smooth inequality/equality
constraints on manifolds. Our main result, Theorem 5.2, establishes that the set of b ≤ 4-
parameter families satisfying specific conditions is residual in the space of smooth parameter
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families of constraint mappings. This theorem implies not only that a generic b ≤ 4-parameter
family of constraint mappings satisfy the conditions in the theorem, but also that one can make
any (not necessarily generic) parameter family of constraint mappings satisfy the conditions by a
small perturbation. In particular, the main theorem provides a comprehensive understanding of
generic behavior of constraint mappings, highlighting typical properties that can be expected in
a generic (and thus real-world) setting. Note that the main theorem is described in terms of the
key concept, reduction of constraint map-germs, that is, the operation eliminating unnecessary
inequality constraints and restricting to a submanifold satisfying equality constraints. (See
Section 3 for detail.)

In order to obtain the main theorem, we will focus on the subgroup K[G] ⊂ K defined in
Section 2. This subgroup was originally introduced by Tougeron [32] for a linear Lie group G.
Its basic properties were investigated by Gervais [13, 14, 15] and further studied by Izumiya
et al. [21], who provided many interesting examples. For a suitable Lie group G (given in
Section 2), the group K[G] acts on constraint map-germs in a sensible way; the action of K[G]
indeed preserves the corresponding feasible set-germs, and thus it is suitable for our purpose
(i.e. examining behavior of generic constraint mappings). In Theorem 5.1, we will classify map-
germs with small K[G]e-codimensions, and calculate the codimensions of the K[G]-orbits of jets
represented by germs in the classification lists and those of the complements of these orbits.
The main result then follows from this theorem together with a variant of the transversality
theorem. Note that part of the classification in Theorem 5.1 has already been given in [30, 10].
See Remark 5.2 for detail.

The classification and generic properties obtained in the manuscript is the first step toward
creating good test suites with various desired properties and assessing known test suites properly.
By perturbing constraints in our classification lists (Tables 1, 2 and 3), we can create various
constraint mappings, which can be expected to appear in a generic setting. Since K[G] is
geometric in the sense of Damon [6], it is enough to consider a versal unfolding of constraints
as a perturbation. For understanding which types of constraints appear in a versal unfolding
of each constraint (i.e. obtaining a bifurcation diagram of a versal unfolding), we have to deal
with the recognition problem for each map-germ in the classification lists (with respect to K[G]-
equivalence, cf. [12]). Note that the solutions of the recognition problems are also useful to
assess existing test suites. In a forthcoming paper, we will solve the recognition problems and
give the bifurcation diagrams of versal unfoldings for map-germs in the lists with (stratum)
K[G]e-codimension at most 3.

Throughout the manuscript, we will examine only constraint mappings, and not deal with
objective functions. On the one hand, it is reported [33] that real-world problems often have
a larger number of constraint functions than objective functions, and that many constraint
functions will be active at the same time. Thus, constraint functions themselves are important
objects and have been studied from various perspectives in relevant references [31]. On the other
hand, in order to determine generic behavior of objective functions and constraints following the
same scheme, we will have to focus on another subgroup of K instead of K[G], preserving not only
feasible set-germs but also natural ordering for objective functions, called the Pareto ordering
(cf. [26]). Since such a subgroup is not necessarily geometric in the sense of Damon [6], it might
be much more difficult to understand the action of this group to map-germs than that of K[G].
We will study objective functions (possibly with constraints) in a future project.

This paper is organized as follows: after reviewing basic notions (e.g. K[G]-equivalence and
(extended) intrinsic derivatives) in Section 2, we will define a reduction of a constraint map-
germ in Section 3, which can be obtained from the original map-germ by removing inactive
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inequality constraints and composing an embedding to a submanifold-germ determined from
equality constraints. In Section 4, we will then discuss transversality of (parameter families
of) constraint map-germs and their reductions. Section 5 is devoted to the classification of
jets appearing as (full) reductions of generic b(≤ 4)-parameter families of constraint mappings
(Theorem 5.1). We will give the main theorem in full detail (Theorem 5.2) after the proof of
Theorem 5.1.

2. Preliminaries

Let N be a manifold, q, r ∈ N ∪ {0} and g : N → Rq, and h : N → Rr be C∞-mappings. The
set

M (g, h) =

{
x ∈ N

∣∣∣∣gi (x) ≤ 0 (i ∈ {1, . . . , q})
hj (x) = 0 (j ∈ {1, . . . , r})

}
is called the feasible set determined from the inequality and equality constraint mappings g and
h, respectively, where g(x) = (g1(x), . . . , gq(x)) and h(x) = (h1(x), . . . , hr(x)). In this paper, we
write g (x) ≤ 0 ⇔ ∀i ∈ {1, . . . , q} , gi (x) ≤ 0.

Let En be the set of function-germs on (Rn, 0), whose element is denoted by f : (Rn, 0) → R
or f : (Rn, 0) → (R, f(0)). The set En is a local ring with addition and multiplication induced
from those on R, and the maximal ideal Mn = {f ∈ En | f(0) = 0}. One can regard the product
Epn(= (En)p) as the En-module of map-germs from (Rn, 0) → Rp in the obvious way. We denote
by e1, . . . , ep the standard generators of Rp, and these are regarded as constant map-germs, in
particular elements of Epn. For map-germs g ∈ Eqn and h ∈ MnErn, we define a subset-germ
M(g, h) of Rn at 0 in the same way as above. Note that M(g, h) = ∅ if gi(0) > 0 for some

i ∈ {1, . . . , q}, and M(g, h) = M(ĝ, h), where ĝ ∈ Eq′n is obtained from g by removing the
components with negative values at 0.

2.1. K[G]-equivalence. Let Gd ⊂ GL(q,R) be the group of diagonal matrices with positive
diagonal entries, Ggp be the semidirect product of Gd and the group of q × q permutation
matrices Pq, and

G =

{(
C B

Or,q A

)∣∣∣∣∣C ∈ Ggp, B ∈Mq,r (R) , A ∈ GL (r,R)

}
,

where Mq,r (R) is the set of q× r real matrices, and Or,q is the r× q zero matrix. We define the
group K[G] as follows:

K[G] =

{
(Φ,Ψ)

∣∣∣∣ Φ : (Rn, 0) → (Rn, 0) : diffeomorphism-germ
Ψ : (Rn, 0) → G : smooth map-germ

}
.

Note that K[G] is a subgroup of K, and contains the group R, where R and K are groups
introduced in [24], in particular K[G] acts on the set Mn(Eqn × Ern) ∼= MnEq+rn as follows:(

Φ(x),

(
C(x) B(x)
O A(x)

))
· (g(x), h(x))

=
(
C(x)g(Φ−1(x)) +B(x)h(Φ−1(x)), A(x)h(Φ−1(x))

)
.

Two map-germs (g, h), (g′, h′) ∈ MnEq+rn are said to be K[G]-equivalent if (g, h) is contained in
the K[G]-orbit of (g′, h′) (cf. [21]). It is easy to see that if (g, h) is equal to (Φ,Ψ) · (g′, h′) for
(Φ,Ψ) ∈ K[G], then M(g, h) is equal to Φ(M(g′, h′)).
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For a map-germ (g, h) : (Rn, 0) → (Rq+r, 0), the formal tangent space and the extended
tangent space of the K [G]-equivalence class are

TK [G] (g, h) = Mn

〈
∂ (g, h)

∂x1
, . . . ,

∂ (g, h)

∂xn

〉
En

+ TC [G] (g, h) ,

TK [G]e (g, h) =

〈
∂ (g, h)

∂x1
, . . . ,

∂ (g, h)

∂xn

〉
En

+ TC [G] (g, h) ,

where TC [G] (g, h) = ⟨g (g, h)⟩En
is the tangent space generated by vectors (g, h) multiplied by

the Lie algebra g of G. Specifically, it is

TC [G] (g, h) = ⟨g (g, h)⟩En
= (⟨g1e1, . . . , gqeq⟩En

+ ⟨h1, . . . , hr⟩En
Eqn)⊕ ⟨h1, . . . , hr⟩En

Ern.

The K[G]-codimension and K[G]e-codimension of (g, h) ∈ MnEq+rn are defined as the dimensions
(as real vector spaces) of MnEq+rn /TK[G](g, h) and Eq+rn /TK[G]e(g, h), respectively. In this
manuscript, we will also deal with map-germs (g, h) : (N, x) → (Rq+r, (y, 0)) for a manifold N ,
x ∈ N , and y ∈ Rq with yj ≤ 0. Its K[G]- and K[G]e-codimensions are defined to be those of
(ĝ, h) ◦ φ−1, where φ : U → Rn is a chart around x and ĝ = (gk1 , . . . , gks) for

{k1, . . . , ks} = {k ∈ {1, . . . , q} | yk = 0}.

Example 2.1 (C1-DTLZ1 [23]). C1-DTLZ1 is a benchmark problem for evolutionary many-
objective optimization algorithms proposed by H. Jain and K. Deb [23]. Let k be a positive
integer and M be an integer greater than 1. The problem has the following objective function
f : RM−1+k → RM−1 along with a function g : RM−1+k → R involving an inequality constraint.
For (y, z) ∈ RM−1 × Rk, let

f1(y, z) = 0.5
(
1 + f̃(z)

)M−1∏
i=1

yi

fm(y, z) = 0.5
(
1 + f̃(z)

)M−m∏
i=1

yi (1− yM−m+1) (2 ≤ m ≤M)

g(y, z) = 1− fM (y, z)

0.6
−
M−1∑
i=1

fi(y, z)

0.5

where f̃(z) = 100
{
k +

∑k
i=1

(
(zi − 0.5)

2 − cos (20π (zi − 0.5))
)}

. By using the functions, C1-

DTLZ1 is formulated as the minimization problem of f = (f1, . . . , fM ) subject to g ≥ 0 and
yi, zj ∈ [0, 1] for i ∈ {1, . . . ,M − 1} and j ∈ {1, . . . , k}.

The function g can be rewritten as g = 1 − 5
6

(
1 + f̃

) (
1 + y1

5

)
. The inequality constraint

g ≥ 0 is active if y1 = 1 and zi = 1/2 for all i = {1, . . . , k}. For y′ = (y2, . . . , yM−1) ∈ (0, 1)M−2,
we put x(y′) = (1, y′, 1/2, . . . , 1/2) ∈ RM−1+k. There are two active inequality constraints g
and y1 at x(y′). One can easily check d (y1)x(y′) = (1, 0, . . . , 0) and d (g)x(y′) =

(
− 1

6 , 0, . . . , 0
)
.

Thus the map-germ (g, y1) at x(y
′) has non-isolated singularity, in particular its K-codimension

is infinity. Therefore, its K [G]-codimension is infinity as well.

Example 2.2 (C2-DTLZ2 [23]). C2-DTLZ2 is also a benchmark problem given in [23]. We take
k and M as in Example 2.1. Let r be a real number. The problem has the following objective
function f : RM−1+k → RM−1 along with a function g : RM−1+k → R involving an inequality
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constraint. For (y, z) ∈ RM−1+k, let

f1(y, z) =
(
1 + f̃(z)

)M−1∏
i=1

cos
(yiπ

2

)
fm(y, z) =

(
1 + f̃(z)

)(M−m∏
i=1

cos
(yiπ

2

))
sin
(yM−m+1π

2

)
(2 ≤ m ≤M)

g(y, z) =

M∑
i=1

(fi(y, z)− λ(y, z))
2 − r2

where f̃(z) =
∑k
i=1 (zi − 0.5)

2
and λ(y, z) = 1

M

∑M
i=1 fi(y, z). By using the functions, C2-

DTLZ2 is formulated as the minimization problem of f = (f1, . . . , fM ) subject to g ≥ 0 and
yi, zj ∈ [0, 1] for i ∈ {1, . . . ,m} and j ∈ {1, . . . , k}.

By putting ζi = fi/(1 + f̃) for i = 1, . . . ,M ,
∑M
i=1 ζ

2
i = 1 holds and thus the variable

ζ = (ζ1, . . . , ζM ) ∈ RM is constrained on the unit sphere. This makes it possible to reformulate

the problem in terms of ζ and z with the additional equality constraint
∑M
i=1 ζ

2
i = 1 as follows:

Minimize f with respect to z and ζ subject to g =
(
1 + f̃

)2∑M
i=1

(
ζi − 1

M

∑M
i=1 ζi

)2
− r2 ≥ 0,∑M

i=1 ζ
2
i = 1, and zi, ζj ∈ [0, 1] for all i ∈ {1, . . . , k} and j ∈ {1, . . . ,M}. Note that the original

problem is a reduction of the reformulated problem in the sense introduced in Section 3.
Let zi = 1/2 for all i ∈ {1, . . . , k}. Let ℓ ∈ {1, . . . ,M} and ζi =

1√
ℓ
for i ∈ {1, . . . , ℓ} and

ζi = 0 otherwise. Suppose r =
√
1− ℓ/M , then, the set of active inequality constraints are

ζℓ+1, . . . , ζM and g. In this case, the map-germ of
(
ζℓ+1, . . . , ζM , g,

∑M
i=1 ζ

2
i − 1

)
at

(ζ1, . . . , ζℓ, ζℓ+1, . . . , ζM , z1, . . . , zk) =

(
1√
ℓ
, . . . ,

1√
ℓ
, 0, . . . , 0, 1/2, . . . , 1/2

)
has K [G]e-codimension 1. This can be shown as follows: Let (g, h) be the map-germ. Then, the
standard basis of TK [G]e (g, h) with respect to the monomial ordering in Appendix A.1 consists
of

e1 −
2a

ℓ
eM−ℓ+2, . . . , eM−ℓ −

2a

ℓ
eM−ℓ+2, eM−ℓ+1 −

M − ℓ+ 2

ℓ
eM−ℓ+2,

ζ1eM−ℓ+2, . . . , ζMeM−ℓ+2, z1eM−ℓ+2, . . . , zkeM−ℓ+2.

By using Theorem A.1, the quotient space EM−ℓ+2
M+k /TK [G]e (g, h) is isomorphic to

⟨eM−ℓ+2⟩R ⊂ R[[ζ1, . . . , ζM , z1, . . . , zk]]M−ℓ+2.

Lemma 3.3 implies that the K [G]e-codimension of the original reduced problem is equal to or
less than 1. Since the rank of the differential of the inequality constraint of the reduced problem
is at most that of the problem before reduction, the K [G]e-codimension of the original reduced
problem is equal to 1. In this case, the set of constraints with a parameter r exhibits a generic
behavior.

For manifolds N,P , let Jm(N,P ) be the m-jet bundle from N to P , and π : Jm(N,P ) → N
be the source mapping. We denote the m-jet represented by f : (N, x) → P by jmf(x). We put
Jm(n, p) = {jmf(0) ∈ Jm(Rn,Rp) | f ∈ Epn} and Jm(n, p)0 = {jmf(0) ∈ Jm(n, p) | f(0) = 0}.
It is easy to check that the projection from Epn to Jm(n, p) induces the isomorphism between
Jm(n, p) (resp. Jm(n, p)0) and Epn/Mm+1

n Epn (resp. MnEpn/Mm+1
n Epn). Furthermore, we can con-

sider the group of m-jets of elements in K[G], denoted by K[G]m and its action on Jm(n, q + r)0.
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Two m-jets are said to be K[G]m-equivalent if these are contained in the same K[G]m-orbit.
Let

πm : Eq+rn → Eq+rn /Mm+1
n Eq+rn

∼= Jm(n, q + r)

and

πmm′ : Jm (n, q + r) → Jm
′
(n, q + r)

be the natural projections. The tangent space of the K[G]m-orbit of an m-jet

σ = jm(g, h)(0) ∈ Jm(n, q + r)

is equal to πm(TK[G](g, h)) ⊂ Jm(n, q+r)0, in particular the latter subspace does not depend on
the choice of a representative (g, h) of σ. We denote this subspace by TK[G]m(σ). The K[G]m-
codimension of an m-jet σ ∈ MnEq+rn is defined as the dimension (as a real vector space) of a
quotient space Jm(n, q+r)0/TK[G]m(σ). A map-germ (g, h) ∈ MnEq+rn or its m-jet jm(g, h)(0)
is said to be m-determined relative to K[G] if any germ (g′, h′) ∈ (πm)−1(jm(g, h)(0)) is K[G]-
equivalent to (g, h), and (g, h) is finitely determined relative to K[G] if it is m-determined for
some m.

Proposition 2.1. Let (g, h) ∈ MnEq+rn .

(1) (Corollary 4.5 in [21]) The map-germ (g, h) (or its m-jet jm(g, h)(0)) is m-determined if
Mm

n Eq+rn is contained in TK[G](g, h). (Note that this condition is equivalent to the condition
that Mm

n Eq+rn is contained in TK[G](g, h) +Mm+1
n Eq+rn , which depends only on the m-jet

jm(g, h)(0).)
(2) ([21]) The map-germ (g, h) is finitely determined relative to K[G] if and only if it has finite

K[G]-codimension.

Remark 2.1. Full details of the proof of Proposition 2.1 will be announced in [21]. For the
sake of completness, we provide a remark so that the reader can reproduce the results. For a Lie
group G ⊂ GL (q + r,R), K [G] is a geometric subgroup in the sense of Damon as commented in
p. 54 in [7]. Then, Proposition 2.1 (2) follows from Theorem 10.2 and Corollary 10.13 in [6]. The
similar estimates of the orders of determinacy to Proposition 2.1 (1) for K-equivalence among
map-germs is given in [24] and the proof of it is similar to that. The detail is left to the reader.

The K[G]e-codimension and the K[G]-codimension are related as follows.

Proposition 2.2. Suppose that (g, h) ∈ MnEq+rn is not a submersion and has finite K[G]-
codimension. The basis of the kernel of the natural projection

Eq+rn

t(g, h)(MnEnn ) + TC[G](g, h)
→ Eq+rn

t(g, h)(Enn ) + TC[G](g, h)
=

Eq+rn

TK[G]e(g, h)

is [t(g, h)(e1)], . . . , [t(g, h)(en)]. In particular, the K[G]e-codimension of (g, h) is equal to the
sum of the K[G]-codimension of (g, h) and −n+ (q + r).

Proof. Suppose that [t(g, h)(e1)], . . . , [t(g, h)(en)] is not linearly independent. There exists
ξ ∈ Enn \MnEnn such that t(g, h)(ξ) is contained in TC[G](g, h) ⊂ TC(g, h). However, as shown
in the proof of [25, Theorem 2.5], this fact contradicts finite K-determinacy of (g, h). The latter
statement follows from the dimension formula. □

Using the above proposition, one can also obtain a generating set of the quotient space
Eq+rn /TK[G]e(g, h) from that of MnEq+rn /TK[G](g, h).

In order to obtain normal forms of constraint map-germs, we will use the (K[G] version of)
complete transversal theorem [5] explained below. Let K [G]l be the normal subgroup of K [G]
consisting of those germs whose l-jet is equal to that of the identity for l ∈ N. We also define a
subgroup K[G]ml ⊂ K[G]m in the same way.
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Theorem 2.1 ([5]). Let m ≥ 2 and T be an R-vector subspace of Mm
n Eq+rn such that

Mm
n Eq+rn ⊂ T + TK [G]1 (g, h) +Mm+1

n Eq+rn

holds. Then, for any map-germ (g′, h′) such that jm−1(g′, h′) = jm−1(g, h) holds, there exists
t ∈ T such that jm(g′, h′) is K [G]

m
1 -equivalent to jm ((g, h) + t).

2.2. Extended intrinsic derivative. Let f : (Rn, 0) → (Rq, 0) be a map-germ with
rank df0 = q − 1. In this subsection we will extend the intrinsic derivative of f to a larger
subspace, including Ker df0, which is the source of the original intrinsic derivative.

We take a vector µf ∈ (Im df0)
⊥ \ {0} and define a subspace Wf ⊂ T0Rn as follows:

Wf =
⋂

1 ≤ j ≤ q
(µf )j ̸= 0

Ker(dfj)0,

where (µf )j and fj are the j-th component of µf and f , respectively. This subspace is a

generalization of that considered in [19] (T̃ in the equation (2.5.11) in p. 43). Since the dimension
of (Im df0)

⊥ is equal to 1, Wf do not depend on the choice of µf . We consider the germ
df : (Rn, 0) → Hom(TRn, f∗TRq) of a section of Hom(TRn, f∗TRq) and its differential

d(df)0 : T0Rn → Tdf0 Hom(TRn, f∗TRq).

The tangent space Tdf0 Hom(TRn, f∗TRq) can be identified with Rn × Hom(T0Rn, T0Rq) by
taking the canonical trivializations of the bundles TRn and f∗TRq. Let

p2 : Rn ×Hom(T0Rn, T0Rq) → Hom(T0Rn, T0Rq)

be the projection and define a linear mapping D̃2f :Wf ⊗Wf → Coker(df0) as follows:

D̃2f(v1 ⊗ v2) = [p2 (d(df)0(v1)) (v2)] ,

where [v] ∈ Coker(df0) for v ∈ T0Rq is a vector represented by v. We call D̃2f the extended

intrinsic derivative of f . Note that the restriction D̃2f |Ker df0⊗Ker df0 is the usual intrinsic deriv-
ative, which we denote by D2f .

Theorem 2.2. Let ϕ : (Rn, 0) → (Rn, 0) be a diffeomorphism germ, ψ : (Rn, 0) → Ggp be a
germ, and g := ψ · (f ◦ ϕ). The following diagram commutes:

Wf ⊗Wf
D̃2f−−−−→ Coker(df0)

(dϕ0)
−1⊗(dϕ0)

−1

y yψ(0)
Wg ⊗Wg

D̃2g−−−−→ Coker(dg0).

In other words, the extended intrinsic derivative is K[G]-invariant for corank-1 inequality con-
straint map-germs.

We need the following lemma to show Theorem 2.2:

Lemma 2.1. Let ϕ : (Rn, 0) → (Rn, 0) be a diffeomorphism germ, ψ : (Rn, 0) → GL(q,R) be a
germ, and g := ψ · (f ◦ ϕ). The following diagram commutes:

Ker(df0)⊗Ker(df0)
D2f−−−−→ Coker(df0)

(dϕ0)
−1⊗(dϕ0)

−1

y yψ(0)
Ker(dg0)⊗Ker(dg0)

D2g−−−−→ Coker(dg0).

In other words, the intrinsic derivative is K-invariant.
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Proof. In what follows, we represent germs and their representatives by the same symbols.
We identify Hom(TRn, f∗TRq) with Rn × Hom(Rn,Rq) in the obvious way, and the second
component is further identified with the set of q × n matrices. The second component of the
differential dg can be calculated as follows:

p2(dg) = p2(d(ψ · (f ◦ ϕ)))

=

(
∂

∂xj

∑
k

ψik · (fk ◦ ϕ)

)
i,j

=

(∑
k

∂ψik
∂xj

· (fk ◦ ϕ)

)
i,j

+

(∑
k

ψik ·
∂(fk ◦ ϕ)
∂xj

)
i,j

=

(∑
k

∂ψik
∂xj

· (fk ◦ ϕ)

)
i,j

+ ψ · df ◦ dϕ.

Here, (xi,j)i,j represent a matrix whose (i, j)-entry is xi,j . For v ∈ Ker(dg0) ⊂ T0Rn, the
value p2(d(dg)0(v)), which is identified with a q × n matrix, can be calculated as follows: By
fk ◦ ϕ(0) = 0, v(fk ◦ ϕ) = 0,

p2(d(dg)0(v))

=

(∑
k

v

(
∂ψik
∂xj

)
· (fk ◦ ϕ(0)) +

∂ψik
∂xj

(0) · v(fk ◦ ϕ)

)
i,j

+ v(ψ) · df0 ◦ dϕ0 + ψ(0) · (dϕ0(v))(df) ◦ dϕ0 + ψ(0) · df0 ◦ v(dϕ)
=v(ψ) · df0 ◦ dϕ0 + ψ(0) · (dϕ0(v))(df) ◦ dϕ0 + ψ(0) · df0 ◦ v(dϕ).

Thus, for v1, v2 ∈ Ker(dg0), the value D2g(v1 ⊗ v2) can be calculated as follows:

D2g(v1 ⊗ v2)

=[p2(d(dg)0(v1))(v2)]

=[v1(ψ) · df0 ◦ dϕ0(v2) + ψ(0) · (dϕ0(v1))(df) ◦ dϕ0(v2) + ψ(0) · df0 ◦ v1(dϕ)(v2)]
=[ψ(0) · (dϕ0(v1))(df) ◦ dϕ0(v2)] = ψ(0) ·D2f(dϕ0(v1)⊗ dϕ0(v2)).

This completes the proof of the lemma. □

Proof of Theorem 2.2. As we calculated, the following equality holds:

p2(dg) =

(∑
k

∂ψik
∂xj

· (fk ◦ ϕ)

)
i,j

+ ψ · df ◦ dϕ =

(
∂ψi,σ−1(i)

∂xj
· (fσ−1(i) ◦ ϕ)

)
i,j

+ ψ · df ◦ dϕ,

where ρ : Ggp → Pq is the projection and σ = ρ(ψ(0)). Since f ◦ ϕ(0) = 0, the differential dg0 is
equal to ψ(0) · df0 ◦ dϕ0.

Suppose first that the image of ψ is contained in Gd = Ker(ρ). Since ψ(0)ej = kej for some
k > 0 and (µf )j = 0 if and only if ej ∈ Im df0, (µf )j = 0 if and only if (µg)j = 0. The following
equality thus holds:

Wg =
⋂

1 ≤ j ≤ q
(µg)j ̸= 0

Ker(dgj)0

=
⋂

1 ≤ j ≤ q
(µf )j ̸= 0

Ker (ψjj(0) · (dfj)0 ◦ dϕ0) = dϕ−1
0

 ⋂
1 ≤ j ≤ q
(µf )j ̸= 0

Ker(dfj)0

 = dϕ−1
0 (Wf ).
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One can assume (µf )1 = · · · = (µf )r = 0 without loss of generality. Let π : Rq → Rq−r be
the projection to the latter components. The subspace Wf is equal to Ker(d(π ◦ f)0). Since
dπ0(Im df0) is equal to Im d(π ◦ f)0, dπ0 induces a well-defined homomorphism

dπ0 : Coker(df0) → Coker(d(π ◦ f)0).

For any v ∈ T0Rq with [v] ∈ Ker dπ0, there exists w ∈ T0Rq with dπ0(v) = d(π ◦ f)0(w),
in particular v − df0(w) is contained in Ker dπ0, which is further contained in Im df0 by the
assumption. Thus, v is contained in Im df0 and dπ0 is an isomorphism. Under the identification
by dπ0, D̃

2f coincides with the (usual) intrinsic derivative of π ◦ f . Since π ◦ f and π ◦ g are
K-equivalent and, by Lemma 2.1, the intrinsic derivative is invariant under K-equivalence, the
diagram in Theorem 2.2 commutes provided that the image of ψ is in Gd.

For a general ψ, one can regard it as a composition of a permutation of entries of Rq and a
mapping whose image is contained in Gd. Since the diagram in Theorem 2.2 commutes if ϕ = id
and ψ is a permutation, the diagram for general ϕ and ψ also commutes. □

Note that one can deduce as a corollary of the proof that D̃2f is symmetric.

3. Reductions of constraint map-germs and their jets

In this section, we will introduce a reduction procedure, which changes a map-germ (or its
jet) keeping the corresponding feasible set-germ fixed up to diffeomorphisms. After explaining
its definition, we will discuss various properties of it, especially relating with codimensions.

Let N be an n-manifold without boundary, g = (g1, . . . , gq) : (N, x) → (Rq, y) and

h = (h1, . . . , hr) : (N, x) → (Rr, 0)

be map-germs such that M(g, h) ̸= ∅ (i.e. yk ≤ 0 for any k ∈ {1, . . . , q}), (i) := (i1, . . . , ir−l)
and (k) := (k1, . . . , kq−s) be systems of indices such that rank d(hi1 , . . . , hir−l

)x = r − l and

gk1(x), . . . , gkq−s
(x) ̸= 0. Take an immersion-germ ι(i) : (Rn−r+l, 0) → (N, x) so that the set-

germ ι(i)(Rn−r+l) is equal (hi1 , . . . , hir−l
)−1(0). We define a map-germ

(g, h)ι(i),(k) : (R
n−r+l, 0) → (Rs+l, 0),

called a reduction of (g, h) as follows:

(g, h)ι(i),(k) := (gι(i),(k), hι(i)) :=
(
g1 ◦ ι(i), k̂. . ., gq ◦ ι(i), h1 ◦ ι(i), î. . ., hr ◦ ι(i)

)
,

where k̂ and î mean that the components with indices k1, . . . , kq−s, i1, . . . , ir−l removed. It is
easy to see that the feasible set-germ defined by (g, h) is diffeomorphic to that defined by its
reduction.

The rank of the differential (dgι(i),(k))0 is at most rank d(g1, k̂. . ., gq)x, and possibly less than

rank d(g1, k̂. . ., gq)x. As for rank(dhι(i))0, the following holds:

Lemma 3.1. The rank of the differential (dhι(i))0 is equal to rank dhx − r + l.

Proof. We first observe that (dhι(i))0 is the composition of the injection (dι(i))0 and the restric-

tion dhx|Ker d(hi1
,...,hir−l

)x . Since Ker dhx is contained in Ker d(hi1 , . . . , hir−l
)x, we obtain

rank(dhι(i))0 = (n− r + l)− dimKer(dhx|Ker d(hi1
,...,hir−l

)x)

= (n− r + l)− dimKer dhx

= (n− r + l)− (n− rank dhx) = rank dhx − r + l.

This completes the proof of the lemma. □
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We call a reduction (g, h)ι(i),(k) with g1 ◦ ι(i) (0) = 0, k̂. . ., gq ◦ ι(i) (0) = 0 and (dhι(i))0 = 0 a

full reduction of (g, h). By Lemma 3.1, a full reduction of (g, h) necessarily has r − rank(dhx)
equality constraints. Note that if gk(x) < 0 for any k ∈ {1, . . . , q} (that is, (k) = (1, . . . , q))
and dhx is surjective, a full reduction of (g, h) : (N, x) → (Rq+r, (y, 0)) is the constant germ
c : (Rn−r, 0) → {0} = R0.

Lemma 3.2. The R-equivalence class of (g, h)ι(i),(k) is determined from the R-equivalence class

of (g, h) and the choice of indices (i), (k). In particular it does not depend on the choice of an
immersion-germ ι(i).

Proof. We first show that the R-equivalence class of (g, h)ι(i),(k) does not depend on the choice

of ι(i). Let η(i) be another immersion-germ from (Rn−r+l, 0) to (N, x) such that η(i)(Rn−r+l) is
equal to (hi1 , . . . , hir−l

)−1(0). One can define a diffeomorphism-germ

Φ : (Rn−r+l, 0)
ι(i)−−→ ((hi1 , . . . , hir−l

)−1(0), x)
η−1
(i)−−→ (Rn−r+l, 0),

and it is easy to check that (g, h)ι(i),(k) is equal to (g, h)η(i),(k) ◦ Φ.
Let ϕ : (N, x) → (N, x) be a diffeomorphism-germ. It is easy to see that the rank of

d((hi1 , . . . , hir−l
) ◦ ϕ)x is also equal to r − l, and ϕ−1 ◦ ι(i) is an immersion-germ to

((hi1 , . . . , hir−l
) ◦ ϕ)−1(0).

The following equalities then hold:

(g ◦ ϕ, h ◦ ϕ)ϕ−1◦ι(i),(k)

=
(
(g1 ◦ ϕ) ◦ (ϕ−1 ◦ ι(i)), k̂. . ., (gq ◦ ϕ) ◦ (ϕ−1 ◦ ι(i)),

(h1 ◦ ϕ) ◦ (ϕ−1 ◦ ι(i)), î. . ., (hr ◦ ϕ) ◦ (ϕ−1 ◦ ι(i))
)

=(g, h)ι(i),(k).

This completes the proof of Lemma 3.2. □

Lemma 3.3. The K[G]-codimension of (g, h)ι(i),(k) is less than or equal to that of (g, h), and

the same is true for the K[G]e-codimension.

Proof. If (g, h) is a submersion, the K[G]-codimensions and K[G]e-codimensions of (g, h) and
its reduction are all equal to 0, in particular the statement holds. In what follows, we assume
that (g, h) is not a submersion. The K[G]e-codimension is the sum of the K[G]-codimension
and −n + q + r by Proposition 2.2 and −n + q + r is invariant under reduction. (Note that
n, q, r are respectively the number of variables, active inequality constraints, and active equality
constraints.) It is thus enough to show the statement for the K[G]e-codimension.

We can take a diffeomorphism-germ ϕ : (Rn, 0) → (N, x) so that hij ◦ ϕ(x) = xj for any
j ∈ {1, . . . , r − l}. By Lemma 3.2, the K[G]e-codimension of the reduction of (g, h) is equal to
that of (g ◦ ϕ, h ◦ ϕ). Furthermore, the K[G]e-codimension is invariant under permutation of
components of equality constraints, and those of inequality constraints. One can thus put the
following assumptions without loss of generality:

• (N, x) = (Rn, 0),
• (i1, . . . , ir−l) = (1, . . . , r − l) and (k1, . . . , kq−s) = (s+ 1, . . . , q),

• h = (x1, . . . , xr−l, hr−l+1, . . . , hr) =: (x1, . . . , xr−l, ĥ(x)),
• ι(i)(y) = (0, y) ∈ (Rr−l × Rn−r+l, (0, 0)) for y ∈ (Rn−r+l, 0).

The germ (g(x), h(x)) = (g(x), x1, . . . , xr−l, ĥ(x)) is K[G]-equivalent to the following germ:

(g(0, x′), x1, . . . , xr−l, ĥ(0, x
′)),
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where x′ = (xr−l+1, . . . , xn) ∈ Rn−r+l. Since the reduction of this germ (by ι(i) given in the

assumption above) is equal to that of (g, h), we can further assume that g and ĥ are contained in
Eqn−r+l and E ln−r+l, respectively (i.e. the values of these germs do not depend on x1, . . . , xr−l).

Let ψ : Eq+rn → Es+ln−r+l be a homomorphism defined by

ψ(ξ1, . . . , ξq, η1, . . . , ηr) =(ξ1 ◦ ι, . . . , ξs ◦ ι, ηr−l+1 ◦ ι, . . . , ηr ◦ ι)
=(ξ1(0, y), . . . , ξs(0, y), ηr−l+1(0, y), . . . , ηr(0, y)).

It is easy to see that ψ is surjective. Since the K[G]e-codimension of (g, h) (resp. (g, h)ι(i),(k)) is

the dimension of the quotient space Eq+rn /TK[G]e(g, h) (resp. Es+ln−r+l/TK[G]e(g, h)ι(i),(k)), it is

enough to show that the image ψ(TK[G]e(g, h)) is contained in TK[G]e(g, h)ι(i),(k).

By the definition, the tangent space TK[G]e(g, h) is equal to

t(g, h)(Enn ) + h∗MrEq+rn + ⟨g1e1, . . . , gqeq⟩En
.

The image t(g, h)(Enn ) has the following generating set as an En-module:{(
q∑
i=1

∂gi
∂xj

ei +

r∑
i=1

∂hi
∂xj

ei+q

) ∣∣∣∣∣ j = 1, . . . , n

}
.

The image of a generator by ψ is calculated as follows:

ψ

((
q∑
i=1

∂gi
∂xj

ei +

r∑
i=1

∂hi
∂xj

ei+q

))
=

s∑
i=1

∂gi
∂xj

(0, y)ei +

r∑
i=r−l+1

∂ĥi−r+l
∂xj

(0, y)ei+q.

This germ is equal to zero if j ≤ r − l since g (resp. ĥ) is contained in Eqn−r+l (resp. E ln−r+l).
If j ≥ r − l + 1, the germ above is contained in t(g, h)ι(i),(k)(E

n−r+l
n−r+l ), which is further con-

tained in TK[G]e(g, h)ι(i),(k). The set {hiej | i = 1, . . . , r, j = 1, . . . , q + r} is a generat-

ing set of h∗MrEq+rn as an En-module. The image ψ(hiej) is equal to zero if i ≤ r − l or
q + 1 ≤ j ≤ q + r − l. Suppose that i is larger than r − l. The image ψ(hiej) is equal to

ĥi−r+l(0, y)ej (resp. ĥi−r+l(0, y)ej−q+s−r+l) if j ≤ q (resp. j ≥ q + r − l), which is contained

in h∗ι(i)Mn−r+lEq+sn−r+l ⊂ TK[G]e(g, h)ι(i),(k). One can also show that ψ(⟨g1e1, . . . , gqeq⟩En
) is

contained in TK[G]e(g, h)ι(i),(k) by direct calculation, completing the proof of Lemma 3.3. □

For a system (j) = (j1, . . . , jn−r+l) of indices in {1, . . . , n}, together with systems (i) and (k)
as above, we define

Γm(n, q + r) = {jm(g, h)(0) ∈ Jm(n, q + r) | h(0) = 0} , and

Γm(i),(k)(n, q + r) =

{
jm(g, h)(0) ∈ Γm(n, q + r)

∣∣∣∣ gk1(0), . . . , gkq−s(0) ̸= 0
rank d(hi1 , . . . , hir−l

)0 = r − l

}
,

One can easily check that Γm(i),(k)(n, q + r) is a semi-algebraic submanifold of Jm(n, q + r) with

codimension r. For an Rm-invariant subset Σ ⊂ Γm(n− r + l, s+ l), we define

Σ̃(i),(k) ⊂ Γm(i),(k)(n, q + r) and Σ̃ ⊂ Γm(n, q + r)

as follows:

Σ̃(i),(k) :=
{
jm(g, h)(0) ∈ Γm(i),(k)(n, q + r)

∣∣∣ jm(g, h)ι(i),(k)(0) ∈ Σ for ∃ι(i)
}
,

Σ̃ :=
⋃

(i),(k)

Σ̃(i),(k).

Proposition 3.1. The sets Σ̃(i),(k) and Σ̃ are Rm-invariant. Moreover, the following hold:

• If Σ is a semi-algebraic subset of Γm(n− r + l, s+ l), Σ̃(i),(k) and Σ̃ are semi-algebraic
subsets of Γm(n, q + r).
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• If Σ is a submanifold of Γm(n− r + l, s+ l), Σ̃(i),(k) is a submanifold of Γm(i),(k)(n, q + r).

In each case, the following holds.

codim(Σ̃, Jm(n, q + r)) = codim(Σ̃(i),(k), J
m(n, q + r))

= codim(Σ,Γm(n− r + l, s+ l)) + r,

where codim(Y,X) = dimX − dimY for Y ⊂ X.

Proof. It is enough to show the statements for Σ̃(i),(k) for a fixed (i), (k).

Let jm(g, h)(0) ∈ Σ̃(i),(k) and ϕ : (Rn, 0) → (Rn, 0) be a diffeomorphism-germ. Since Σ is Rm-
invariant, it follows from (the proof of) Lemma 3.2 that jm((g, h) ◦ ϕ)ϕ−1◦ι(i),(k)(0) is contained

in Σ and thus jm((g, h) ◦ ϕ)(0) ∈ Σ̃(i),(k).
For a system (j) = (j1, . . . , jn−r+l) of indices in {1, . . . , n}, we put

χ(i),(j)(h) = (hi1 , . . . , hir−l
, xj1 , . . . , xjn−r+l

) : (Rn, 0) → (Rn, 0)
and

Γm(i),(j),(k)(n, q + r) =
{
jm(g, h)(0) ∈ Γm(i),(k)(n, q + r)

∣∣ rank d (χ(i),(j)(h)
)
0
= n

}
.

Note that it is a Zariski-open subset of Γm(i),(k)(n, q + r), and Γm(i),(k)(n, q + r) is equal to⋃
(j)

Γm(i),(j),(k)(n, q + r).

We define Φ(i),(j),(k) : Γ
m
(i),(j),(k)(n, q + r) → Jm(n, n)0 by

Φ(i),(j),(k)(j
m(g, h)(0)) := jm

(
χ(i),(j)(h)

−1
)
(0).

One can check that Φ(i),(j),(k) is a Nash mapping (i.e., semi-algebraic C∞-mapping). Let
ρ ∈ Jm(n− r + l, n)0 be the m-jet represented by ρ(y) = (0, y). We obtain a Nash mapping
Ψ(i),(j),(k) : Γ

m
(i),(j),(k)(n, q + r) → Γm(n− r + l, s+ l) as follows:

Ψ(i),(j),(k)(j
m(g, h)(0)) = jm

(
g1, k̂. . ., gq, h1, î. . ., hr

)
(0) · Φ(i),(j),(k)(j

m(g, h)(0)) · ρ,

where · in the right-hand side means composition of representatives. Since Σ isRm-invariant, the
intersection Σ̃(i),(k)∩Γm(i),(j),(k)(n, q + r) is equal to Ψ−1

(i),(j),(k)(Σ). As Ψ(i),(j),(k) is semi-algebraic

mapping and Γm(i),(j),(k)(n, q + r) is a semi-algebraic subset of Jm(n, q + r), we can conclude that

Σ̃(i),(k) is semi-algebraic subset of Jm(n, q + r) if Σ ⊂ Jm(n− r + l, s+ l) is semi-algebraic.
For σ = jm(g, h)(0) ∈ Γm(i),(j),(k)(n, q + r), we define

Θσ : Γm(n− r + l, s+ l) → Γm(i),(j),(k)(n, q + r)

as follows: Let π : (Rn, 0) → (Rn, 0) and π : (Rn, 0) → (Rn−r+l, 0) be the map-germs defined by
π(x) = (0, . . . , 0, xj1 , . . . , xjn−r+l

) and π(x) = (xj1 , . . . , xjn−r+l
), respectively. We take indices

î1, . . . , îl ∈ {1, . . . , r} so that îj < îj+1 and {i1, . . . , ir−l, î1, . . . , îl} = {1, . . . , r}. We also take

indices k̂1, . . . , k̂s ∈ {1, . . . , q} in the same manner. Since the rank of d
(
χ(i),(j)(h)

)
0
is equal to n,

we can take map-germs g̃k : (Rn, 0) → Rq and h̃k : (Rn, 0) → Rr (k = 1, . . . , r− l) so that g and

h are respectively equal to g◦χ(i),(j)(h)
−1◦π+

∑r−l
k=1 hik g̃k and h◦χ(i),(j)(h)

−1◦π+
∑r−l
k=1 hik h̃k.

For jm(g′, h′)(0) ∈ Γm(n− r + l, s+ l), we put Θσ(j
m(g′, h′)(0)) = jm(g′′, h′′)(0), where

g′′
k̂i

= g′i ◦ π +

r−l∑
k=1

hik(g̃k)k̂i

for i = 1, . . . , s, g′′ki = gki for i = 1, . . . , q − s, h′′
îj
= h′j ◦ π +

∑r−l
k=1 hik(h̃k)îj for j = 1, . . . , l, and

h′′ij = hij for j = 1, . . . , r−l. It is then easy to see that Θσ is smooth, Θσ ◦Ψ(i),(j),(k)(σ) = σ, and
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Ψ(i),(j),(k) ◦Θσ = idΓm(n−r+l,s+l). In particular, (dΨ(i),(j),(k))σ is surjective, and thus Ψ(i),(j),(k)

is a submersion.
Since Ψ−1

(i),(j),(k)(Σ) = Σ̃(i),(k) ∩ Γm(i),(j),(k)(n, q + r) is an open subset of Σ̃(i),(k), Σ̃(i),(k) is a

submanifold if Σ is. Furthermore, in each case that Σ is a semi-algebraic subset or a subman-
ifold, codim(Ψ−1

(i),(j),(k)(Σ),Γ
m
(i),(j),(k)(n, q + r)) is equal to codim(Σ,Γm(n− r + l, s+ l)). We

eventually obtain

codim(Σ̃(i),(k), J
m(n, q + r))

= codim(Ψ−1
(i),(j),(k)(Σ),Γ

m
(i),(j),(k)(n, q + r)) + codim(Γm(i),(j),(k)(n, q + r), Jm(n, q + r))

= codim(Σ,Γm(n− r + l, s+ l)) + r.

This completes the proof of Proposition 3.1. □

By Proposition 3.1 and observations in the next section, the following value is important when
analyzing local behavior of generic parameter families of constraint maps.

Definition 3.1. For a submanifold or a semi-algebraic subset Σ ⊂ Γm(n, q + r), the value

codim(Σ,Γm(n, q + r))− n+ r = codim(Σ, Jm(n, q + r))− n

is called the extended codimension of Σ and denoted by de(Σ).

Indeed, one can deduce from Proposition 3.1 that codim(Σ̃, Jm(n, q + r)) is equal to
de(Σ) + n. Note that for σ ∈ Jm(n, q + r)0 the extended codimension de(K[G]m · σ) and
the K[G]m-codimension of σ, which is equal to codim(K[G]m · σ, Jm(n, q + r)0), are related as
follows:

(3.1) de(K[G]m · σ) = codim(K[G]m · σ, Jm(n, q + r)0)− n+ q + r.

Thus, one can deduce from Proposition 2.2 that the K[G]e-codimension of an m-determined
non-submersion map-germ (g, h) : (Rn, 0) → (Rq+r, 0) is equal to de(K[G]m · jm(g, h)(0)). Note

also that de(Σ) is equal to de((π
m
m′)−1(Σ)) for a semi-algebraic subset Σ ⊂ Γm

′
(n, q + r) since

πmm′ : Γm(n, q + r) → Γm
′
(n, q + r) is a submersion.

4. Transversality for parameter families of constraint mappings

In this section, we will briefly review a result on transversality for parameter families of
mappings, and show that transversality of (parameter families of) constraint mappings imply
that of their reductions.

Let π : Jm(N,Rq+r) → N be the source mapping, which is a fiber bundle with fiber
Jm(n, q + r) and structure group Rm. For an Rm-invariant submanifold (resp. semi-algebraic
subset) Σ ⊂ Γm(n− r + l, s+ l), one can define Rm-invariant submanifolds (resp. fiberwise

semi-algebraic subsets) Σ̃(i),(k),N and Σ̃N in Jm(N,Rq+r) so that their intersections with a fiber

of the projection π : Jm(N,Rq+r) → N are Σ̃(i),(k) and Σ̃, respectively. Let b ≥ 0 be an integer

and U ⊂ Rb be an open set. We endow C∞(N × U,Rq+r) with the Whitney C∞-topology.
We regard (g, h) ∈ C∞(N × U,Rq+r) as a b-parameter family of constraint mappings and put
(gu(x), hu(x)) = (g(x, u), h(x, u)) for u ∈ U . We define jm1 (g, h) : N × U → Jm(N,Rq+r) by
jm1 (g, h)(x, u) = jm(gu, hu)(x). By the parametric transversality theorem ([Wall Lemma 2.1])
and Proposition 3.1, we can show the following:

Theorem 4.1. Let Σ ⊂ Γm(n− r + l, s+ l) be an Rm-invariant submanifold. Then, the set of

mappings (g, h) ∈ C∞(N × U,Rq+r) with jm1 (g, h) ⋔ Σ̃(i),(k),N is a residual (and thus dense)

subset of C∞(N × U,Rq+r).

Since a semi-algebraic set with codimension d can be decomposed into a finite union of subman-
ifolds with codimension greater than or equal to d, we obtain
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Corollary 4.1. Let Σ ⊂ Γm(n− r + l, s+ l) be an Rm-invariant submanifold or semi-algebraic
subset with de(Σ) > b. The set of mappings (g, h) ∈ C∞(N × U,Rq+r) with

jm1 (g, h)(N × U) ∩ Σ̃N = ∅
is a residual (and thus dense) subset of C∞(N × U,Rq+r).

Let (g, h) : (N×U, (x, u)) → (Rq+r, (y, 0)) be a map-germ with gki(x, u) ≤ 0 for i = 1, . . . , q−s
and

rank d((hi1)u, . . . , (hir−l
)u)x = r − l.

One can take a diffeomorphism germ λ(i) : (Rb, 0) → (U, u) and a map-germ

ι(i) : (Rn−r+l × Rb, (0, 0)) → (N, x)

so that ι(i),v : (Rn−r+l, 0) → N×{λ(i)(v)} (defined by ι(i),v(y) = ι(i)(y, v)) is an immersion-germ

to ((hi1)λ(i)(v), . . . , (hir−l
)λ(i)(v))

−1(0) for v ∈ Rb (sufficiently close to 0). We define a map-germ

(g, h)ι(i),λ(i),(k) : (R
n−r+l × Rb, (0, 0)) → (Rs+l, 0), called a reduction of (g, h) as follows:

(g, h)ι(i),λ(i),(k) =
(
g1 ◦ (ι(i), λ(i)), k̂. . ., gq ◦ (ι(i), λ(i)), h1 ◦ (ι(i), λ(i)), î. . ., hr ◦ (ι(i), λ(i))

)
.

We define a full reduction in the same way as the non-parametric case. We need the follow-
ing proposition in order to analyze local behavior of generic parameter families of constraint
functions.

Proposition 4.1. Let (g, h) : (N×U, (x, u)) → (Rq+r, y) be as above and Σ be an Rm-invariant
submanifold of Γm(n− r + l, s+ l). Let Σ be the submanifold in Jm(Rn−r+l,Rs+l) whose in-
tersection with a fiber of the projection π : Jm(Rn−r+l,Rs+l) → Rn−r+l is Σ. If jm1 (g, h) is

transverse to Σ̃(i),(k),N at (x, u), then jm1 (g, h)ι(i),λ(i),(k) is transverse to Σ at (0, 0).

Proof. Since the proposition concerns local property around (x, u) ∈ N × U , we can assume
that N = Rn, U = Rb, x = 0, and u = 0 without loss of generality. We take a system
(j) = (j1, . . . , jn−r+l) of indices in {1, . . . , n} so that jm(g0, h0)(0) is contained in
Γm(i),(j),(k)(n, q + r). One can show that (parametric) Rm-equivalence class of (g, h)ι(i),λ(i),(k)

does not depend on the choice of ι(i) and λ(i). Thus, one can further assume that λ(i) = idRb

and
ι(i)(y, v) = ((hi1)v, . . . , (hir−l

)v, xj1 , . . . , xjn−r+l
)−1(0, y).

Put

Jm(i),(j)(R
n,Rq+r)

=
{
jm(g, h)(y) ∈ Jm(Rn,Rq+r)

∣∣ rank d(hi1 , . . . , hir−l
, xj1 , . . . , xjn−r+l

)y = n
}

and define Ψ̃(i),(j),(k) : J
m
(i),(j)(R

n,Rq+r) → Jm(Rn−r+l,Rs+l) as follows:

Ψ̃(i),(j),(k)(j
m(g, h)(x)) = jm

(
(g1, k̂. . ., gq, h1, î. . ., hr) ◦ ρ(j),x

)
(π(j)(x)),

where ρ(j),x : Rn−r+l → Rn is defined as follows:

The k-th component of ρ(j),x(y) =

{
yk′ (k = jk′ for some k′ ∈ {1, . . . , n− r + l}),
xk (otherwise).

As in the proof of Proposition 3.1, we can show that Ψ̃(i),(j),(k) is a submersion. Furthermore,
it is easy to see that the following equality holds:

jm1 (g, h)ι(i),λ(i),k = Ψ̃(i),(j),(k) ◦ jm1 (g, h) ◦ (ι(i), λ(i)).
By the assumption on transversality, we have the following equality:

Tjm1 (g,h)(0,0)J
m(Rn,Rq+r) = Tjm1 (g,h)(0,0)Σ̃(i),(k),N + d(jm1 (g, h))(0,0)(T(0,0)Rn × Rb).
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We take indices î1, . . . , îl ∈ {1, . . . , r} and ĵ1, . . . , ĵr−l ∈ {1 . . . , n} so that

{i1, . . . , ir−l, î1, . . . , îl} = {1, . . . , r} and {j1, . . . , jn−r+l, ĵ1, . . . , ĵr−l} = {1, . . . , n},
and put

W = T(0,0)(Rn × Rb),

W1 =

〈(
∂

∂xĵ1

)
, . . . ,

(
∂

∂xĵr−l

)〉
⊂W,

W2 = Im d(ι(i), λ(i))(0,0) = Ker d(hi1 , . . . , hir−l
)0 ⊂W,

V = Tjm1 (g,h)(0,0)J
m(Rn,Rq+r) ∼= T0Rn ⊕ T0Rq ⊕ T0Rr ⊕ Tjm1 (g,h)(0,0)J

m(Rn,Rq+r)(0,0),

V1 =

〈(
∂

∂Xi1

)
, . . . ,

(
∂

∂Xir−l

)〉
⊂ T0Rr ⊂ V,

V2 = T0Rn ⊕ T0Rq ⊕

〈(
∂

∂Xî1

)
, . . . ,

(
∂

∂Xîl

)〉
⊕ Tjm1 (g,h)(0,0)J

m(Rn,Rq+r)(0,0) ⊂ V.

It is easy to see that

• V1 ⊕ V2 = Tjm1 (g,h)(0,0)Σ̃(i),(k),N + djm1 (g, h)(0,0)(W1 ⊕W2),

• Tjm1 (g,h)(0,0)Σ̃(i),(k),N and djm1 (g, h)0(W2) are contained in V2.
• p1 ◦ (djm1 (g, h)(0,0))|W1

: W1 → V1 is an isomorphism, where p1 : V1 ⊕ V2 → V1 is the
projection.

By these conditions, we can deduce V2 = Tjm1 (g,h)(0,0)Σ̃(i),(k),N + djm1 (g, h)(0,0)(W2). Since V1 is

contained in Ker(dΨ̃(i),(j),(k))jm1 (g,h)(0,0) and Σ̃(i),(k),N∩Jm(i),(j)(R
n,Rq+r) is equal to Ψ̃−1

(i),(j),(k)(Σ),

we obtain

Tjm1 (g,h)ι(i),λ(i),(k)(0,0)J
m(Rn−r+l,Rs+l)

=Tjm1 (g,h)ι(i),λ(i),(k)(0,0)Σ+ d(Ψ̃(i),(j),(k) ◦ jm1 (g, h))(0,0)(W2)

=Tjm1 (g,h)ι(i),λ(i),(k)(0,0)Σ+ (d(jm1 (g, h)ι(i),λ(i),k))(0,0)(T(0,0)(R
n−r+l × Rb)).

This completes the proof of the proposition. □

Suppose that Σ is a K[G]m-orbit of an m-determined jet jm(g0, h0)(0) ∈ Γm(n− r+ l, s+ l).
Since the group K[G] is geometric in the sense of Damon [6], transversality of jm1 (g, h)ι(i),λ(i),(k)

to Σ is equivalent to versality of (g, h)ι(i),λ(i),(k) as an unfolding. Thus, by the proposition

above, transversality of jm1 (g, h) to Σ̃(i),(k),N implies that the reduction (g, h)ι(i),λ(i),(k) is a versal

unfolding of (g0, h0), which is K[G]-equivalent to (g0, h0) +
∑b
i=1 uiξi, where ξ1, . . . , ξb ∈ Es+ln−r+l

are representatives of generators of Es+ln−r+l/TK[G]e(g0, h0).

5. Structure of jet spaces relative to K[G]-actions

In this section, we will completely classify jets appearing as full reductions of generic b-
parameter families of constraint mappings with b ≤ 4 (Theorem 5.1), and then give the main
theorem in full detail (Theorem 5.2). In the context of multi-objective optimization, usually, n
is much larger than q + r. In what follows, we assume that is always the case.

Let Wm
n,q,r ⊂ Jm(n, q + r)0 be the set of jets jm(g, h)(0) with rank dh0 = 0. Since a full

reduction of any map-germ is contained in Wm
n,q,r for some n, q, r, it is enough to examine jets

in this subset.
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Theorem 5.1.

(1) The extended codimension de(W
m
n,q,r) is equal to q + r + n(r − 1). In particular it is

greater than 4 if either r ≥ 2 or r = 1 ∧ q ≥ 4. (Note that we assume n≫ q + r.)

(2) Let A1,k and A2 ⊂ W 5
n,0,1 be respectively the set of 5-jets K[G]5-equivalent to those of

type (1, k) and (2) (with any possible signs) in Table 1. The extended codimensions
de(A1,k) and de(A2) are respectively equal to k − 1 and 4. Furthermore, the extended
codimension of

W 5
n,0,1 \

(
5⊔
k=2

Ak1 ⊔A2

)
is equal to 5.

(3) Let B0 be the set of 5-jets represented by submersions, and Bi,k and Bj be respectively
the sets of 5-jets K[G]5-equivalent to those of type (i, k) and (j) (with any possible signs
and parameters) in Table 2 (i = 1, 3, 4, j = 2, 5, . . . , 10). Then de(B0) is equal to q − n,
and de(Bi,k) and de(Bj) are as shown in the far right column of Table 2. Furthermore,
the extended codimension of

J5(n, q)0 \

B0 ⊔

⊔
i,k

Bi,k

 ⊔

⊔
j

Bj


is equal to 5.

(4) Let Ci,k and Cj be respectively the sets of jets K[G]m-equivalent to those of type (i, k)
and (j) (with any possible signs and parameters) in Table 3 (i = 1, 3, j = 2, 4, . . . , 8, and
m depends on the type). Then de(Ci,k) and de(Cj) are as shown in the far right column
of Table 3. Furthermore, the extended codimensions of

W 4
n,1,1 \

⊔
i,k

(Ci,k) ⊔ C2

 , W 3
n,2,1 \

 7⊔
j=4

Cj

 , W 3
n,3,1 \ C8

are equal to 5.

For each map-germ (g, h) in Tables 1, 2 and 3, one can take representatives of generators of the
quotient space Eq+rn /TK[G]e(g, h) as shown in Table 4.

type jet range K-determinacy ex. cod.
(1, k) xk1 ± x22 ± · · · ± x2n 2 ≤ k ≤ 5 k k − 1
(2) x31 ± x1x

2
2 + x23 ± · · · ± x2n 3 4

Table 1. 5-jets in W 5
n,0,1 appearing as a full reduction of a generic b ≤ 4-

parameter family of constraint mappings.
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type h q range K[G]-
det.

ex. cod.

(1, k) xk1 +
∑n
j=2 ±x2j 2 ≤ k ≤ 4 k k

(2) x32 ± x21 +
∑n
j=3 ±x2j 1 3 4

(3, k) xk2 ± x1x2 +
∑n
j=3 ±x2j 3 ≤ k ≤ 4 k k

(4) δ1x
2
1 + δ2x

2
2 + αx1x2 +

∑n
j=3 ±x2j

2

α ∈ R, δj = ±1, (∗) 2 3

(5) x31 ± x22 ± x1x2 +
∑n
j=3 ±x2j 3 4

(6) (x1 ± x2)
2 ± x32 +

∑n
j=3 ±x2j 3 4

(7) x33 ± x1x3 ± x2x3 ± x1x2 +
∑n
j=4 ±x2j 3 4

(8)

∑3
j=1 δjx

2
j +

∑
1≤i<j≤3 αijxixj

±x1x2x3 +
∑n
j=4 ±x2j

3 αij ∈ R, δj = ±1, (∗∗) 3 4

Table 3. Normal forms (g1(x), . . . , gq(x), h(x)) = (x1, . . . , xq, h(x)) of jets in
W 4
n,1,1,W

3
n,2,1 and W 3

n,3,1 appearing as a full reduction of a generic b ≤ 4-
parameter family of constraint mappings, where (∗) and (∗∗) are the same
conditions as those in Table 2. Note that the extended codimensions in the
table are not necessarily equal to the K[G]e-codimensions of the corresponding
map-germs (especially for types (4) and (8)).

Remark 5.1. The stratum K[G]e-codimension of a germ of type in the tables is defined to be
the extended codimension of the corresponding semi-algebraic set Atype, Btype or Ctype. If the
semi-algebraic set does not contain an uncountable family of K[G]m-orbits (i.e. the type is not
(6), (10) in Table 2 or (4), (10) in Table 3), the stratum K[G]e-codimension coincides with the
usual K[G]e-codimension.

Remark 5.2. The results in Table 1 are not new. We reproduce the table for the sake of com-
pleteness. The classification lists of function-germs on boundaries, corners due to Siersma [30]
are similar to those in Table 2 and Table 3 but he considers an equivalence relation different from
K [G]-equivalence. In the paper of Dimca [10], the classification lists of simple complex analytic
function-germs corresponding to the case q = 1 are shown. Type (1) in Table 3 corresponds to
C2 for k = 2 and Bk for k ≥ 3 in Table 1 in [10]. Types (2) and (3) in Table 3 correspond to F4

and Ck+1, respectively. This implies that K [G]-classes up to stratum K [G]e-codimension 4 are
simple. However, in the case of q ≥ 2, that is no longer the case and moduli families appear in
the very beginning of the classification table. Types (4) and (7) are such moduli families in the
case of q = 2 and q = 3, respectively.

Proof of Theorem 5.1. We can easily calculate the extended codimension of Wm
n,q,r as follows:

de(W
m
n,q,r) = codim(Wm

n,q,r, J
m(n, q + r))− n = (q + r + rn)− n = q + r + n(r − 1).

This shows (1) of Theorem 5.1.

Classification of jets in Wm
n,0,1. In what follows, we will show (2) of Theorem 5.1. The group

K[G] is equal to K for the case q = 0, in particular the extended codimension of the K[G]m-
orbit of an m-jet with the trivial 1-jet is equal to its Kme -codimension. Function-germs with
small Re-codimensions have been classified in [1]. Although necessary analysis for proving (2) of
Theorem 5.1 have already been done implicitly in [1], we will give the full proof below both for
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q r type generators

0 1
(1, k) 1, x1, . . . , x

k−2
1

(2) 1, x1, x2, x
2
1

0

(1, k) eq, xqeq, . . . , x
k−2
q eq

(2) eq, xqeq, xq+1eq, x
2
qeq

(3, k) eq, xq−1eq, . . . , x
k−1
q−1eq

(4, k) eq, xqeq, . . . , x
k−1
q eq

(5) eq, xq−1eq, xqeq, xq−1xqeq

(6) eq, xq−2eq, xq−1eq, xq−2xq−1eq

(7) eq, xq−2eq, xq−1eq, x
2
q−1eq

(8) eq, xq−2eq, xq−1eq, x
2
q−1eq

(9) eq, xq−2eq, xq−1eq, xqeq

(10) eq, xq−3eq, xq−2eq, xq−1eq, xq−3xq−2eq, xq−3xq−1eq, xq−2xq−1eq

1

1

(1, k) e2, x1e2, . . . , x
k−1
1 e2

(2) e2, x1e2, x2e2, x1x2e2

(3, k) e2, x2e2, . . . , x
k−1
2 e2

2

(4) e3, x1e3, x2e3, x1x2e3

(5) e3, x1e3, x2e3, x
2
1e3

(6) e3, x1e3, x2e3, x
2
2e3

(7) e3, x1e3, x2e3, x3e3

3 (8) e4, x1e4, x2e4, x3e4, x1x2e4, x1x3e4, x2x3e4

Table 4. Representatives of generators of the quotient space
Eq+rn /TK[G]e(g, h). Here, e1, . . . , eq+r ∈ Eq+rn consist of the standard ba-
sis.

the sake of completeness of this manuscript, and as a preparation for the proof of the other parts
of Theorem 5.1. (Note that we need not only to classify jets with small Km-codimensions, but
also to show that the extended codimension of the complement of the union of the Km-orbits of
the jets in the classification list is greater than 4.)

Let Qs ⊂ Wn,0,1 be the set of 2-jets which is K-equivalent to
∑n
j=s±x2j (with some signs).

We can deduce from the Morse lemma that Qs is a finite union of K-orbits. The extended
codimension of Qs (and thus that of (πm2 )−1(Qs) for any m ≥ 3) is equal to 1 + s(s− 1)/2 [16].
In particular, the extended codimension of

⊔
s≥4Qs is greater than 4. For this reason, we will

only focus on jets in (πm2 )−1(Qs) for s ≤ 3 and suitable orders m below.

Jets in Q1(= (π2
2)

−1(Q1)). A jet in Q1 is K2-equivalent to
∑n
j=1 ±x2j . It follows from the

Morse Lemma that it is 2-determined relative to R (and thus K). In particular, the preimage
(π5

2)
−1(Q1) is equal to A1,2.

Jets in (π5
2)

−1(Q2). A jet in Q2 is K2-equivalent to the 2-jet represented by f1 =
∑n
j=2 ±x2j .

For any m ≥ 3, any m-jet f ∈ (πm2 )
−1

(f1) is Rm-equivalent to
∑m
i=3 cix

i
1 + f1 [16] for some

ci (i = 3, . . . ,m). Therefore, we can deduce that an m-jet σ ∈ Jm(n, 1)0 with
πmm−1(σ) = jm−1f1(0) is Km-equivalent to either the m-jet of the germ of type (1,m) in Table 1
or jmf1(0) for m ≥ 3. The germ of type (1,m) in Table 1 is m-determined relative to K [29],
and thus any jet in (π5

2)
−1(Q2) is K-equivalent to either the jet of type (1,m) for m = 3, 4, 5
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or the jet j5f1(0) (with some signs). The K5-codimension of the germ of type (1,m) is equal
to n − 2 + m [29]. On the other hand, in the same way as that in Appendix A.1, one can

show that J5 (n, 1)0 /TK5
(
j5f1 (0)

)
is isomorphic to

〈 n︷ ︸︸ ︷
x1, . . . , xn,

4︷ ︸︸ ︷
x21, x

3
1, x

4
1, x

5
1

〉
R ⊂ R[[x]], in

particular the K5-codimension of j5f1(0) is equal to n + 4. We can thus deduce from the rela-
tion (3.1) that the extended codimension of A1,m is equal to m− 1, and that of the complement

(π5
2)

−1(Q2) \
(⊔

3≤m≤5A1,m

)
is equal to 5.

Jets in (π3
2)

−1(Q3). A jet in Q3 is K2-equivalent to the 2-jet represented by f2 =
∑n
j=3 ±x2j . By

using the result in [16], a 3-jet σ ∈ J3(n, 1)0 with (π3
2)(σ) = j2f2(0) is K3-equivalent to one of the

3-jets x31±x1x22+
∑n
j=3 ±x2j (the jet represented by the germ of type (2)), σ1 = x21x2+

∑n
j=3 ±x2j ,

σ2 = x31 +
∑n
j=3 ±x2j , and j3f2(0) =

∑n
j=3 ±x2j . The germ of type (2) is 3-determined and has

codimension n+ 3 as shown in [29]. On the other hand, one can show the following in the same
way as that in Appendix A.1:

• J3(n, 1)0/TK3(σ1) is isomorphic to
〈 n︷ ︸︸ ︷
x1, . . . , xn,

4︷ ︸︸ ︷
x21, x1x2, x

2
2, x

3
2

〉
⊂ R[[x]], in particular

the K3-codimension of σ1 is n+ 4,

• J3(n, 1)0/TK3(σ2) is isomorphic to
〈 n︷ ︸︸ ︷
x1, . . . , xn,

5︷ ︸︸ ︷
x21, x1x2, x

2
2, x1x

2
2, x

3
2

〉
R ⊂ R[[x]], in par-

ticular the K3-codimension of σ2 is n+ 5,

• J3(n, 1)0/TK3(j3f2(0)) is isomorphic to
〈 n︷ ︸︸ ︷
x1, . . . , xn,

7︷ ︸︸ ︷
x21, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2

〉
R

⊂ R[[x]], in particular the K3-codimension of j3f2(0) is n+ 7,

We can eventually conclude that any jet in (π3
2)

−1(Q3) is K3-equivalent to that represented by
the germ of type (2), the jets σ1, σ2 or j3f2(0). The germ of type (2) is 3-determined relative to
K [29], and thus, the preimage by π5

3 of the union of the K3-orbits of the germs of type (2) (with
all possible signs) is equal to A2. Furthermore, the calculations of K3-codimensions we have
done above imply that the extended codimensions of A2 and the complement (π5

2)
−1(Q3) \ A2

are equal to 4 and 5, respectively.
In summary, we have shown the following equality:

W 5
n,0,1 \

(
5⊔
k=2

A1,k ⊔A2

)

=(π5
2)

−1

⊔
s≥4

Qs

 ⊔

 ⊔
all signs
in f1

K5 · j5f1(0)



⊔

(π5
3)

−1


 ⊔

all signs
in σ1

K3 · σ1

 ⊔

 ⊔
all signs
in σ2

K3 · σ2

 ⊔

 ⊔
all signs
in f2

K3 · j3f2(0)



 .

We have also shown that the extended codimension of this complement is equal to 5. This
completes the proof of (2) of Theorem 5.1.

Classification of jets in Wm
n,q,0 for q > 0. In what follows, we will show (3) of Theorem 5.1.

Let Σk ⊂ J1(n, q)0 be the set of 1-jets j1f(0) with corank(df)0 ≥ k, which is an algebraic subset
with codimension k(n− q+ k) in J1(n, q)0. (Note that we assume n≫ q.) It is easy to see that
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B0 is equal to (π5
1)

−1(Σ0 \ Σ1), and its extended codimension is calculated as follows:

de(B0) = codim((π5
1)

−1(Σ0 \ Σ1), J
5(n, q))− n

= codim(Σ0 \ Σ1, J
1(n, q))− n = q − n.

Furthermore, the extended codimension of (π5
1)

−1(Σ2), which is the set of 5-jets j5g(0) with
corank(dg)0 ≥ 2, is equal to codim(Σ2, J

1(n, q))−n = 2(n− q+2)+ q−n, which is much larger
than 4. For this reason, we will consider 5-jets j5g(0) with corank(dg)0 = 1 below.

Lemma 5.1. For l ∈ {0, . . . , q − 1}, let Λl be the set of 1-jets K[G]1-equivalent tox1, . . . , xq−1,

l1∑
j=1

xj −
l∑

j=l1+1

xj


for some l1 ∈

{
0, 1, . . . , ⌈ l2⌉

}
. Then, Λ0, . . . ,Λq−1 are mutually distinct submanifolds in Σ1 \Σ2.

Furthermore, the following equality holds:

• Σ1 \ Σ2 =
⊔q−1
l=0 Λl,

• codim(Λl,Σ1 \ Σ2) = q − 1− l.

In particular, the extended codimension of Λl is equal to q− l (and thus de((π
5
1)

−1(Λl)) = q− l).

Proof of Lemma 5.1. It is easy to see that a 1-jet in Σ1 \Σ2 is K[G]1-equivalent to the following
jet for some l ∈ {1, . . . , q − 1} and δj = ±1:

(5.1)

x1, . . . , xq−1,

l∑
j=1

δjxj

 .

If there exists at least one j ∈ {1, . . . , l} for which δj = 1 (say δ1 = 1), this 1-jet can be
transformed to the following form.

(5.2)

x′1, . . . , x′q−1, x
′
1 −

l∑
j=2

δjx
′
j

 .

Indeed, the 1-jet in Eq. (5.1) can be transformed tox′1 − l∑
j=2

δjx
′
j , x

′
2, . . . , x

′
q−1, x

′
1

 ,

by the coordinate transformation

(x1, . . . , xn) 7→

x1 + l∑
j=2

δjxj , x2, . . . , xn

 .

By permuting the 1-st and the q-th components of the 1-jet, we get the 1-jet in Eq. (5.2). In
summary, one can flip the signs of δj (j ∈ {2, . . . , l}) simultaneously by using the K[G]1-action

provided δ1 = 1. This shows that Σ1 \ Σ2 is equal to
⋃q−1
l=0 Λl.

The subset Λl is equal to the union of the K[G]1-orbits of the 1-jets in Lemma 5.1 (with
l1 ∈

{
0, 1, . . . , ⌈ l2⌉

}
), which is a submanifold of Σ1 \ Σ2. The K[G]1-codimension of the 1-jet in

Lemma 5.1 is n − l since J1(n, q)0/TK1(gl) is isomorphic to
〈 n−l︷ ︸︸ ︷
xl+1eq, . . . , xneq

〉
R

⊂ R[[x]]q.
Since this K[G]1-codimension is equal to codim(Λl, J

1(n, q)0), the codimension of Λl in
Σ1 \ Σ2 is equal to q − 1 − l and Λl ∩ Λl′ = ∅ for l ̸= l′. The last statement follows from
the relation (3.1). □
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By this lemma, the extended codimension of
⊔
l≤q−5 Λl is equal to 5. For this reason, we will

only focus on jets in (πm1 )−1 (Λl) for l ≥ q − 4 below.

Lemma 5.2. Any 2-jet in (π2
1)

−1 (Λl) is K[G]2-equivalent to

(5.3)

x1, . . . , xq−1,

l∑
j=1

±xj +
q−1∑

j1=l+1

s−1∑
j2=l+1

aj1j2xj1xj2 +

n∑
j=s

±x2j


for some s ∈ {q, . . . , n} and aj1j2 ∈ R.

Proof of Lemma 5.2. It is easy to see that a representative of a 2-jet in (π2
1)

−1(Λl) is K[G]-
equivalent to the following germ:x1, . . . , xq−1,

l∑
j=1

±xj + g̃ (x1, . . . , xn)

 ,

where g̃ ∈ M2
n. By using the Taylor theorem (Lemma 3.3 in p. 60 in [17]), g̃ can be written as

follows:

g̃ (x1, . . . , xn) = g̃0 (xl+1, . . . , xn) +

l∑
j=1

xj g̃j (x1, . . . , xn) ,

where j1g̃0 = 0 and j0g̃j = 0 for all j ∈ {1, . . . , l}. By plugging this expression, we obtainx1, · · · , xq−1,

l∑
j=1

±xj (1∓ g̃j (x)) + g̃0 (xl+1, . . . , xn)

 .

By changing coordinates

(x1, . . . , xn) 7→ (x1 (1∓ g̃1 (x)) , . . . , xl (1∓ g̃l (x)) , xl+1, . . . , xn) ,

along with multiplying positive factors 1/ (1∓ g̃j (x)) to the j-th component of the map-germ
above, we obtain the following map-germ:x1, . . . , xq−1,

l∑
j=1

±xj + g̃0 (xl+1, . . . , xn)

 .

The 2-jet of the germ above is equal to that of the following germ:x1, . . . , xq−1,

l∑
j=1

±xj +
q−1∑

j1=l+1

n∑
j2=l+1

αj1j2xj1xj2 +
∑

j1,j2≥q

βj1j2xj1xj2


where αj1j2 , βj1j2 ∈ R. We can change the last term

∑
j1,j2≥q βj1,j2xj1xj2 to

∑n
j=s±x2j by

changing coordinates (x1, . . . , xn) preserving (x1, . . . , xq−1). This coordinate transformation
changes the 2-jet above to the following jet:x1, . . . , xq−1,

l∑
j=1

±xj +
q−1∑

j1=l+1

n∑
j2=l+1

α̃j1j2xj1xj2 +

n∑
j=s

±x2j


By completing the square, we can further change this jet to that in (5.3) by a coordinate
transformation preserving (x1, . . . , xq−1). □

Let Λl,s ⊂ (π2
1)

−1(Λl) be the set of 2-jets K[G]2-equivalent to that in (5.3) for some signs and
aj1j2 ∈ R.
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Lemma 5.3. Λl,s is a submanifold of J2(n, q)0 and its extended codimension is equal to

q − l + (s− q + 1)(s− q)/2.

Proof of Lemma 5.3. Let Qs ⊂ (π2
1)

−1(Σ1 \ Σ2) be the set of 2-jets K-equivalent to the 2-jet

represented by fs =
(
x1, . . . , xq−1,

∑n
j=s±x2j

)
(with some signs). It is easy to see that Λl,s is

contained in (π2
1)

−1(Λl)∩Qs = (π2
1 |Qs

)−1(Λl), and the proof of Lemma 5.2 implies the opposite
inclusion (π2

1 |Qs
)−1(Λl) ⊂ Λl,s. For any σ ∈ Qs, Qs is equal to the K2-orbit of σ (especially a

submanifold of J2(n, q)0), and Σ1 \Σ2 is the K1-orbit of π2
1(σ). Moreover, the following diagram

commutes:
K2 aσ−−−−→ Qs

π2
1

y yπ2
1 |Qs

K1
a
π2
1(σ)

−−−−→ Σ1 \ Σ2,

where aσ(τ) = τ · σ for τ ∈ K2 and aπ2
1(σ)

is defined in the same way. Since (dπ2
1)1K2 and

(daπ2
1(σ)

)1K1 are both surjective, (dπ2
1 |Qs

)σ is also surjective. In particular, Λl,s = (π2
1 |Qs

)−1(Λl)
is a submanifold of Qs.

One can easily show that {[xjeq] | q ≤ j ≤ n} ∪ {[xj1xj2eq] | q ≤ j1 ≤ j2 ≤ s − 1} is a basis
of the quotient space MnEqn/(TKfs +M3

nEqn). In particular, the K-codimension of fs is equal
to n− q+ 1+ (s− q+ 1)(s− q)/2, which is further equal to the codimension of Qs in J

2(n, q)0.
We thus obtain:

de(Λl,s) = codim((π2
1 |Qs

)−1(Λl), J
2(n, q))− n

=codim(Qs, J
2(n, q)) + codim(Λl,Σ1 \ Σ2)− n

=n− q + 1 + (s− q + 1)(s− q)/2 + q + (q − 1− l)− n

=q − l + (s− q + 1)(s− q)/2.

This completes the proof of Lemma 5.3. □

By this lemma, the extended codimensions of
⊔
s≥q+3 Λq−1,s,

⊔
s≥q+2 Λl,s for l = q − 2, q − 3,

and
⊔
s≥q+1 Λq−4,s are greater than 4. For this reason, in what follows, we will only analyze jets

in (πm2 )−1(Λl,s) for

(l, s) =(q − 1, q), (q − 1, q + 1), (q − 1, q + 2), (q − 2, q),

(q − 2, q + 1), (q − 3, q), (q − 3, q + 1), (q − 4, q)

with suitable orders m one by one.

Jets in Λq−1,q(= (π2
2)

−1(Λq−1,q)). A jet in Λq−1,q is K[G]2-equivalent tox1, . . . , xq−1,

q−1∑
j=1

±xj +
n∑
j=q

±x2j

 .

As is shown in Appendix A.1, this 2-jet is 2-determined and its K[G]2-codimension is n− q+ 1.
In particular, (π5

2)
−1(Λq−1,q) is equal to B1,2, and the extended codimension of B1,2 is 1.

Jets in (π3
2)

−1(Λq−1,q+1). A jet in Λq−1,q+1 is K[G]2-equivalent to the 2-jet represented by

f =

x1, . . . , xq−1,

q−1∑
j=1

δjxj +

n∑
j=q+1

δjx
2
j

 .

The followings then hold (where α is a multi-index with |α| > 1):

2δsxsxαeq = tf(xαes) ∈ TK[G]1(f) (s ≥ q + 1),
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δjxjxαeq = tf(xαej)− f∗Xjej ∈ TK[G]1(f) (j ≤ q − 1),

xα(ej + δjeq) = tf(xαej) ∈ TK[G]1(f) (j ≤ q − 1).

We can thus deduce the following inclusion for m ≥ 3:

Mm
n Eqn ⊂

〈
xmq eq

〉
R + TK[G]1(f) +Mm+1

n Eqn.

Therefore, using Theorem 2.1, we can deduce that an m-jet σ ∈ Jm(n, q)0 with

πmm−1(σ) = jm−1f(0)

is K[G]m-equivalent to either the m-jet of the germ of type (1,m) in Table 2 or jmf(0) for
m ≥ 3. As shown in Appendix A.1, the m-jet represented by the germ of type (1,m) is m-
determined and its K[G]m-codimension is n− q +m− 1. We can thus conclude that any jet in
(π5

2)
−1(Λq−1,q+1) is K[G]5-equivalent to either the jet represented by the germ of type (1,m) for

m = 3, 4, 5, or the jet j5f(0) (with some signs), and the extended codimension of B1,m is equal
to m− 1, whereas that of the complement (π5

2)
−1(Λq−1,q+1) \ (

⊔
mB1,m) is equal to 5.

Jets in (π3
2)

−1(Λq−1,q+2). A jet in Γq−1,q+2 is K[G]2-equivalent to the 2-jet represented by

f =

x1, . . . , xq−1,

q−1∑
j=1

±xj +
n∑

j=q+2

±x2j

 .

We can deduce the following inclusion in the same way as that for jets in (π5
2)

−1(Λq−1,q+1):

M3
nEqn ⊂

〈
x3qeq, x

2
qxq+1eq, xqx

2
q+1eq, x

3
q+1eq

〉
R + TK[G]1(f) +M4

nEqn.

By Theorem 2.1, a 3-jet σ ∈ J3(n, q)0 with (π3
2)(σ) = j2f(0) is K[G]3-equivalent to the following

3-jet for some α0, . . . , α3 ∈ R:

(5.4)

x1, . . . , xq−1,

q−1∑
j=1

±xj + α0x
3
q + α1x

2
qxq+1 + α2xqx

2
q+1 + α3x

3
q+1 +

n∑
j=q+2

±x2j

 .

In the same way as that in [16], one can show that an appropriate linear transformation in

(xq, xq+1) brings the 3-jet to one of those in Table 5. The K [G]
3
-codimension of the 3-jets in

# normal form K[G]3-cod.

1
(
x1, . . . , xq−1,

∑q−1
j=1 ±xj + x3q ± xqx

2
q+1 +

∑n
j=q+2 ±x2j

)
n− q + 4

2
(
x1, . . . , xq−1,

∑q−1
j=1 ±xj + xqx

2
q+1 +

∑n
j=q+2 ±x2j

)
n− q + 5

3
(
x1, . . . , xq−1,

∑q−1
j=1 ±xj + x3q +

∑n
j=q+2 ±x2j

)
n− q + 6

4
(
x1, . . . , xq−1,

∑q−1
j=1 ±xj +

∑n
j=q+2 ±x2j

)
n− q + 8

Table 5. List of the normal forms and their K[G]3-codimension of the 3-jet
(5.4).

Table 5 can be computed as follows. Let g#i be the corresponding 3-jet for i = 1, . . . , 4.

# 1: The quotient space J (n, q)0 /TK [G]
3
(g#1) is isomorphic to

〈 n−q+1︷ ︸︸ ︷
xqeq, . . . , xneq,

3︷ ︸︸ ︷
x2qeq, xqxq+1eq, x

2
q+1eq

〉
R ⊂ R[[x]]q.
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# 2: The quotient space J (n, q)0 /TK [G]
3
(g#2) is isomorphic to

〈 n−q+1︷ ︸︸ ︷
xqeq, . . . , xneq,

4︷ ︸︸ ︷
x2qeq, xqxq+1eq, x

2
q+1eq, x

3
qeq
〉
R ⊂ R[[x]]q.

# 3: The quotient space J (n, q)0 /TK [G]
3
(g#3) is isomorphic to

〈 n−q+1︷ ︸︸ ︷
xqeq, . . . , xneq,

5︷ ︸︸ ︷
x2qeq, xqxq+1eq, x

2
q+1eq, xqx

2
q+1eq, x

3
q+1eq

〉
R ⊂ R[[x]]q.

# 4: The quotient space J (n, q)0 /TK [G]
3
(g#4) is isomorphic to

〈 n−q+1︷ ︸︸ ︷
xqeq, . . . , xneq,

7︷ ︸︸ ︷
x2qeq, xqxq+1eq, x

2
q+1eq, x

3
qeq, x

2
qxq+1eq, xqx

2
q+1eq, x

3
q+1eq

〉
R ⊂ R[[x]]q.

We can eventually conclude that any jet in (π3
2)

−1(Λq−1,q+2) is K[G]3-equivalent to the 3-jets
in Table 5. The jet g#1 is 3-determined since M3

nEqn ⊂ TK [G] (g)+M4
nEqn holds for any germ g

representing g#1 (cf. Appendix A.1). The germs of type (2) is one of the germ representing g#1.
Therefore, the preimage by π5

3 of the union of the K[G]3-orbits of the germs of type (2) (with all
possible signs) is equal to B2. Furthermore, the calculations of K[G]3-codimensions we have done
above imply that the extended codimensions of B2 and the complement (π5

2)
−1(Λq−1,q+2) \ B2

are equal to 4 and 5, respectively.

Jets in (π4
2)

−1(Λq−2,q). A jet in Λq−2,q is K[G]2-equivalent tox1, . . . , xq−1,

q−2∑
j=1

±xj + ax2q−1 +

n∑
j=q

±x2j


for some a ∈ R. This 2-jet is further K[G]2-equivalent to the jet represented by either the germ
of type (3, 2) in Table 2 or the following germ:

f =

x1, . . . , xq−1,

q−2∑
j=1

±xj +
n∑
j=q

±x2j

 .

We can deduce the following inclusion for m ≥ 3 in the same way as that for jets in
(π5

2)
−1(Λq−1,q+1):

Mm
n Eqn ⊂

〈
xmq−1eq

〉
R + TK[G]1(f) +Mm+1

n Eqn.

Therefore, using Theorem 2.1, we can deduce that an m-jet σ ∈ Jm(n, q)0 with
πmm−1(σ) = jm−1f(0) is K[G]m-equivalent to either the m-jet of the germ of type (3,m) in
Table 2 or jmf(0) for m = 3, 4. The germ of type (3,m), denoted by g3,m, is m-determined
relative to K[G] since Mm

n Eqn ⊂ TK [G] (g3,m) holds and thus Proposition 2.1 implies the claim.
The K [G]-codimension of g3,m is n− q +m since MnEqn/TK [G] (g3,m) is isomorphic to

〈 n−q+2︷ ︸︸ ︷
xq−1eq, . . . , xneq,

m−2︷ ︸︸ ︷
x2q−1eq, . . . , x

m−1
q−1 eq

〉
R ⊂ R[[x]]q.

We can thus conclude that any jet in (π4
2)

−1(Λq−2,q) is K[G]4-equivalent to either the jet
represented by the germ of type (3,m) for m = 3, 4, or the jet j4f(0) (with some signs), and
that the preimage by π5

4 of the union of the K[G]4-orbits of the 4-jets of the germ of type (3,m)
(with all possible signs) is equal to B3,m. The K[G]4-codimensions of the germ of type (3,m)
is equal to n − q +m. On the other hand, the K[G]4-codimension of the jet j4f(0) is equal to
n− q + 5 since J4 (n, q)0 /TK4 [G]

(
j4f(0)

)
is isomorphic to

〈 n−q+2︷ ︸︸ ︷
xq−1eq, . . . , xneq,

3︷ ︸︸ ︷
x2q−1eq, x

3
q−1eq, x

4
q−1eq

〉
R ⊂ R[[x]]q.
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We can thus deduce from the relation (3.1) that the extended codimension of B3,m is equal to
m, whereas that of the complement (π5

2)
−1(Λq−2,q) \ (

⊔
mB3,m) is equal to 5.

Jets in (π4
2)

−1(Λq−2,q+1). A jet in Λq−2,q+1 is K[G]2-equivalent to

(5.5)

x1, . . . , xq−1,

q−2∑
j=1

±xj + a1x
2
q−1 + a2xq−1xq +

n∑
j=q+1

±x2j


for some a1, a2 ∈ R. If a2 ̸= 0, one can change this jet to that represented by the following germ
by a coordinate transformation preserving (x1, . . . , xq−1, xq+1, . . . , xn):

f1 =

x1, . . . , xq−1,

q−2∑
j=1

±xj + xq−1xq +

n∑
j=q+1

±x2j


If a2 = 0 and a1 ̸= 0, the jet (5.5) is K[G]2-equivalent to that represented by

f2 =

x1, . . . , xq−1,

q−2∑
j=1

±xj ± x2q−1 +

n∑
j=q+1

±x2j

 .

If a1 = a2 = 0, the quotient space J2 (n, q)0 /TK [G]
2
(g) for the jet g in (5.5) is isomorphic to〈 n−q+2︷ ︸︸ ︷

xq−1eq, . . . , xneq,

3︷ ︸︸ ︷
x2q−1eq, xq−1xqeq, x

2
qeq
〉
R ⊂ R[[x]]q. In particular, the K[G]2-codimension of

the jet (5.5) is equal to n− q + 5.
Since xq−1xαeq = tf1(xαeq) ∈ TK[G]1(f1) for any multi-index α with |α| > 1, we can deduce

the following inclusion for m ≥ 3 in the same way as that for jets in (π5
2)

−1(Λq−1,q+1):

Mm
n Eqn ⊂

〈
xmq eq

〉
R + TK[G]1(f1) +Mm+1

n Eqn.

Therefore, using Theorem 2.1, we can deduce that an m-jet σ ∈ Jm(n, q)0 with

πmm−1(σ) = jm−1f1(0)

is K[G]m-equivalent to either the m-jet of the germ of type (4,m) in Table 2 or jmf1(0) for
m = 3, 4. We denote the germ of type (4,m) by g4,m. In the same way as before, one
can show that Mm

n Eqn is contained in TK [G] (g4,m) and MnEqn/TK [G] (g4,m) is isomorphic to〈
xq−1eq, . . . , xneq, x

2
qeq, . . . , x

m−1
q eq

〉
R ⊂ R[[x]]q. In particular g4,m is m-determined and has

the K[G]m-codimension n − q + m. Thus, the union of the K[G]4-orbits of the germs of type
(4,m) (with all possible signs) is equal to B4,m and its extended codimension is m. On the other

hand, the K[G]4-codimension of j4f1(0) is equal to n− q + 5 since J4 (n, q)q /TK [G]
4 (
j4f1 (0)

)
is isomorphic to

〈
xq−1eq, . . . , xneq, x

2
qeq, x

3
qeq, x

4
qeq
〉
R ⊂ R[[x]]q.

Since ±2xq−1xαeq = tf2(xαeq−1)− f∗2Xq−1xαeq−1 ∈ TK[G]1(f2) for any multi-index α with
|α| > 1, we can deduce the following inclusion in the same way as before:

M3
nEqn ⊂

〈
x3qeq

〉
R + TK[G]1(f2) +M4

nEqn.

Therefore, using Theorem 2.1, we can deduce that an 3-jet σ ∈ J3(n, q)0 with π3
2(σ) = j2f2(0)

is K[G]3-equivalent to either the 3-jet of the germ of type (5) in Table 2 or j3f2(0). We denote
the germ of type (5) by g. In the same way as before, one can show that M3

nEqn is contained in
TK [G] (g) and MnEqn/TK [G] (g) is isomorphic to

〈
xq−1eq, . . . , xneq, x

2
qeq, xq−1xqeq

〉
R ⊂ R[[x]]q.

In particular g is 3-determined and its K[G]-codimension is n − q + 4. Thus, the union of the
K[G]4-orbits of the germs of type (5) (with all possible signs) is equal to B5 and its extended
codimension is 4. On the other hand, the K[G]3-codimension of j3f2(0) is n − q + 6 since

J3 (n, q)0 /TK [G]
3 (
j3f2(0)

)
is isomorphic to〈

xq−1eq, . . . , xneq, xq−1xqeq, x
2
qeq, xq−1x

2
qeq, x

3
qeq
〉
R ⊂ R[[x]]q.
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The complement of B4,3 ⊔B4,4 ⊔B5 in (π5
2)

−1(Λq−2,q+1) is the following union:

(π5
4)

−1

( ⊔
all signs
in f1

K[G]4 · j4f1(0)
)
⊔ (π5

3)
−1

( ⊔
all signs
in f2

(K[G]3 · j3f2(0))
)

The extended codimension of the union is equal to 5 since the K[G]4- (resp. K[G]3-) codimension
of j4f1(0) (resp. j

3f2(0)) is equal to n− q + 5.

A digression on extended intrinsic derivatives for jets in Λl,q. Before proceeding with the proof of
Theorem 5.1, we will give invariants of jets in Λl,q under the K[G]2-action. For σ = j2f(0) ∈ Λl,q,
the number of zero entries of µf is q − l − 1. We take indices k1, . . . , kq−l−1 ∈ {1, . . . , q} so
that ki < ki+1 and (µf )ki = 0 (for the definition of µf , see Subsection 2.2). We take vectors
v1(f), . . . , vq−l−1(f) ∈Wf satisfying the following conditions:

• D̃2f(vi(f)⊗ w) = 0 for any w ∈ Ker df0,
• d(fki)0(vj(f)) = δij .

Since D2f is non-degenerate and D̃2f depends only on the 2-jet j2f(0), the vector
v1(f), . . . ,
vq−l−1(f) satisfying the conditions above are uniquely determined from σ = j2f(0). For this
reason, we denote vi(f) by vi(σ).

Lemma 5.4. The subset Ω0 = {σ = j2f(0) ∈ Λl,q | D̃2f(vi(σ)⊗ vj(σ)) = 0 for any i ≤ j} is a

submanifold of Λl,q with codimension l̃ := (q − l − 1)(q − l)/2.

Proof of Lemma 5.4. For subsets of indices

L = {l1, . . . , lq−1} ⊂ {1, . . . , q},
M = {m1, . . . ,mq−1} ⊂ {1, . . . , n}, and
K = {k1, . . . , kq−l−1} ⊂ L,

we define UL,M,K ⊂ Λl,q as follows:

UL,M,K =

{
σ = j2f(0) ∈ Λl,q

∣∣∣∣∣ det
(
∂fli
∂xmj

(0)
)
1≤i,j≤q−1

̸= 0

(µf )k1 = · · · = (µf )kq−l−1
= 0

}
.

The family {UL,M,K}L,M,K is an open cover of Λl,q. Thus, it is enough to show that the

intersection Ω0 ∩ UL,M,K is a submanifold of UK,L,M with codimension l̃. For simplicity, we
assume L =M = {1, . . . , q−1} and K = {l+1, . . . , q−1}. (One can deal with the other subsets
of indices in the same way.)

For a map-germ f ∈ MnEqn with j2f(0) ∈ UL,M,K , we denote the diffeomorphism-germ
(f1, . . . , fq−1, xq, . . . , xn) by Φ(f). Since the i-th component (f ◦ Φ(f)−1)i is equal to xi for
1 ≤ i ≤ q − 1, Ker df0 is generated by

wq(f) := (dΦ(f)0)
−1(∂q), . . . , wn(f) := (dΦ(f)0)

−1(∂n) ∈ T0Rn,

where ∂1, . . . , ∂n are the canonical basis of T0Rn. Moreover, [∂q] ∈ Coker df0 is a basis of

Coker df0. We put bij(f) =
∂2(f◦Φ(f)−1)q

∂xi∂xj
(0). Since (bij(f))q≤i,j≤n is a representation matrix

of the intrinsic derivative D2f with respect to the bases above, this matrix is regular and thus
there exists ckj(f) ∈ R (k = 1, . . . , q− l−1, j = q, . . . , n) such that the following linear equations
hold:

n∑
j=q

ckj(f)bij(f) +
∂2(f ◦ Φ(f)−1)q

∂xi∂xl+k
(0) = 0 (i = q, . . . , n).
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By a direct calculation, one can obtain the following equality:

vk(σ) = (dΦ(f)0)
−1

∂l+k + n∑
j=q

ckj(f)∂j

 .

Since (dΦ(f)0)
−1 and ckj(f) depends smoothly on j2f(0), the map AL,M,K : UL,M,K → Rl̃

defined by AL,M,K(σ) = (. . . , D̃2f(vi(σ) ⊗ vj(σ)), . . .) (under the identification Coker df0 ∼= R
by the basis [∂q] ∈ Coker df0) is smooth. (Here the coordinates of Rl̃ are labeled by i, j with
1 ≤ i ≤ j ≤ q − l − 1.)

Let σ = j2f0(0) ∈ UL,M,K . In what follows, we will show that (dAL,M,K)σ is surjective (and
thus AL,M,K is a submersion). Since

Φ(f0)
−1 = (f ′1, . . . , f

′
q−1, xq, . . . , xn)

for some f ′1, . . . , f
′
q−1 ∈ Mn, one can deduce by direct calculation that the left action by

(j2Φ(f0)(0), I) ∈ K[G]2 (where I is the unit matrix) preserves the subset UL,M,K ⊂ Λl,q. Let
ℓσ : UL,M,K → UL,M,K be the diffeomorphism defined by this action. It is easy to check that
the following diagram commutes:

UL,M,K
ℓσ //

AL,M,K %%

UL,M,K

AL,M,K

��
Rl̃.

Hence, one can assume f0 = (x1, . . . , xq−1, h) for some h ∈ Mn without loss of generality. We

define a map s : Rl̃ → UL,M,K by s(d) = j2f̃d(0), where

f̃d := (x1, . . . , xq−1, h̃(d)) :=

x1, . . . , xq−1, h+
∑
i<j

dijxl+ixl+j +
1

2

∑
i

diix
2
l+i


for d = (dij) ∈ Rl̃. By direct calculation, one can easily check that bij(f0) = bij(f̃d) for

q ≤ i, j ≤ n, ∂2h
∂xi∂xl+k

(0) = ∂2h̃d

∂xi∂xl+k
(0) for k = 1, . . . , q − l − 1 and i = q, . . . , n, and thus

vk(s(d)) = vk(σ) = ∂l+k +
∑n
j=q ckj(f0)∂j . The following equalities thus hold:

AL,M,K ◦ s(d) =
(
. . . , D̃2f̃d(vi(s(d))⊗ vj(s(d))), . . .

)
=
(
. . . , D̃2f0(vi(σ)⊗ vj(σ)) + dij , . . .

)
= AL,M,K(σ) + d.

In particular, the differential d(AL,M,K ◦ s)0 = (dAL,M,K)σ ◦ ds0 is the identity map, and thus
(dAL,M,K)σ is surjective.

The intersection Ω0 ∩ UL,M,K is equal to A−1
L,M,K(0), which is a submanifold of UL,M,K with

codimension l̃ since AL,M,K is a submersion. □

Let Pl̃−1 be the (l̃ − 1)-dimensional real projective space, whose homogeneous coordinates
are labeled by i, j with 1 ≤ i ≤ j ≤ q − l − 1. Taking an isomorphism Coker(df0) ∼= R, we
regard D̃2f(vi(f) ⊗ vj(f)) as a real value, which we denote by αij(f) or αij(σ). We define

A : Λl,q \ Ω0 → Pl̃−1 by A(σ) = [· · · : αij(σ) : · · · ]. Note that this map does not depend on the
choice of an isomorphism Coker(df0) ∼= R.

Proposition 5.1. The map A is a submersion.

Proof of Proposition 5.1. The statement follows from the fact that A|UL,M,K\Ω0
is equal to

π ◦AL,M,K , where π : Rl̃ \ {0} → Pl̃−1 is the projection. □
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Jets in (π3
2)

−1(Λq−3,q). A jet in Λq−3,q is K[G]2-equivalent to

(5.6)

x1, . . . , xq−1,

q−3∑
j=1

±xj + α11x
2
q−2 + α12xq−2xq−1 + α22x

2
q−1 +

n∑
j=q

±x2j


for some αij ∈ R. The K [G]

2
-codimension of j2gα(0) is as shown in Table 6 (see Appendix A.2).

It is easy to see that the set of 2-jets K[G]2-equivalent to that of the class 2 or 3, denoted by

class # αij ’s K[G]2-cod.
1 α11α22 ̸= 0 or α11α12 ̸= 0 or α22α12 ̸= 0 n− q + 4
2 (α11 = α12 = 0 and α22 ̸= 0) n− q + 5

or (α22 = α12 = 0 and α11 ̸= 0)
or (α11 = α22 = 0 and α12 ̸= 0)

3 α11 = α12 = α22 = 0 n− q + 6

Table 6. The K[G]2-codimension of the 2-jet (5.6).

Ω23 ⊂ Λq−3,q, is equal to Ω0 ∪ A−1({[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]}). By Lemma 5.4 and
Proposition 5.1, the codimension of Ω0 in Λq−3,q is equal to 3, while that of

A−1({[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]})

is equal to 2. Thus, the extended codimension of Ω23 is equal to 2 + de(Λq−3,q) = 5. In what
follows, we consider the jet of class 1 in Table 6.
Case α11α22 ̸= 0 : In this case, the 2-jet (5.6) can be normalized to

(5.7)

x1, . . . , xq−1,

q−3∑
j=1

±xj + δ1x
2
q−1 + αxq−1xq−2 + δ2x

2
q−2 +

n∑
j=q

±x2j

 ,

by an appropriate scaling transformation, where α ∈ R and δi = ±1.
Let V ⊂ Λq−3,q be the following subset:

K[G]2 ·


x1, . . . , xq−1,

q−3∑
j=1

±xj + δ1x
2
q−1 + αxq−1xq−2 + δ2x

2
q−2 +

n∑
j=q

±x2j


α ∈ R, 4δ1δ2 − α2 ̸= 0

}
.

It is easy to see that V is equal to A−1(W ), where

W = {[α11 : α12 : α22] ∈ P2 | α11, α22 ̸= 0, 4α11α22 − α2
12 ̸= 0}.

Since W is an open subset of P2, V is also an open subset of Λq−3,q by Proposition 5.1. In
particular the extended codimension of V is equal to de(Λq−3,q) = 3.

Let g ∈ MnEqn be a map-germ representing the 2-jet (5.7). If 4δ1δ2 − α2 ̸= 0 holds,
M3

nEqn ⊂ TK [G]1 (g) +M4
nEqn holds by the similar argument. We can thus deduce from Propo-

sition 2.1 that g is 3-determined, and further deduce from Theorem 2.1 that g is 2-determined.
Note that B6 = (π5

2)
−1(V ) is an open subset (and thus a submanifold) of (π5

2)
−1(Λq−3,q).

Remark 5.3. Using the extended intrinsic derivative D̃2f (in particular considering the value

D̃2f(v1(f)⊗ v2(f))), one can also show that two 2-jets of the form (5.7) with distinct α are not
K[G]2-equivalent.
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If 4δ1δ2 − α2 = 0, the 2-jet (5.7) is K[G]2-equivalent to the jet represented by

f3 =

x1, . . . , xq−1,

q−3∑
j=1

±xj + δ′ (xq−2 + δ′′xq−1)
2
+

n∑
j=q

±x2j

 .

Since 2δ′(xq−2 + δ′′xq−1)xq−2xαeq = tf3(xq−2xαeq−2) − (f∗3Xq−2)xαeq−2 ∈ TK[G]1(f3) and
2δ′δ′′(xq−2 + δ′′xq−1)xq−1xαeq = tf3(xq−1xαeq−1)− (f∗3Xq−1)xαeq−1 ∈ TK[G]1(f3) for a multi-
index α with |α| > 0, we can deduce the following inclusion in the same way as that for jets in
(π5

2)
−1(Λq−1,q+1):

M3
nEqn ⊂

〈
x3q−1

〉
R + TK[G]1(f3) +M4

nEqn.

By Theorem 2.1, there exists β ∈ R such that j3f3(0) is K [G]
3
-equivalent tox1, . . . , xq−1,

q−3∑
j=1

±xj + δ′ (xq−2 + δ′′xq−1)
2
+ βx3q−1 +

n∑
j=q

±x2j

 .

If β ̸= 0 holds, the K [G]-codimension of the jet above is n − q + 4 since MnEqn/TK [G] (g) is
isomorphic to

〈
xq−2eq, . . . , xneq, x

2
q−1eq

〉
R ⊂ R[[x]]q for a germ g representing the jet above.

Furthermore, M3
nEqn is contained in TK [G] (g) and thus g is 3-determined relative to K [G] by

Proposition 2.1. An appropriate scaling of the coordinate brings the jet above to the normal form
of type (7) in Table 2. If β = 0, the 3-jet above is equal to j3f3(0) and it has K [G]

3
-codimension

n− q + 5 since J3 (n, q)0 /TK [G]
3 (
j3f3(0)

)
is isomorphic to〈

xq−2eq, . . . , xneq, x
2
q−1eq, x

3
q−1eq

〉
R ⊂ R[[x]]q.

Case (α11α12 ̸= 0 ∧ α22 = 0) or (α22α12 ̸= 0 ∧ α11 = 0) : In this case, the 2-jet (5.6) is
K[G]2-equivalent to that represented by

f4 =

x1, . . . , xq−1,

q−3∑
j=1

±xj + δq−2x
2
q−2 + δq−2,q−1xq−2xq−1 +

n∑
j=q

±x2j

 .

Since (2δq−2x
2
q−2 + δq−2,q−1xq−2xq−1)xαeq is equal to

tf4(xq−2xαeq−2)− (f∗4Xq−2)xαeq−2 ∈ TK[G]1(f4)

for a multi-index α with |α| > 0, we can deduce the following inclusion in the same way as
before:

M3
nEqn ⊂

〈
x3q−2

〉
R + TK[G]1(f4) +M4

nEqn.

By Theorem 2.1, there exists β ∈ R such that j3f4(0) is K [G]
3
-equivalent tox1, . . . , xq−1,

q−3∑
j=1

±xj + βx3q−2 + δq−2x
2
q−2 + δq−2,q−1xq−2xq−1 +

n∑
j=q

±x2j

 .

If β ̸= 0 holds, the K [G]-codimension of the jet above is n − q + 4 by the similar argument.
Furthermore, M3

nEqn is contained in TK [G] (g) +M4
nEqn, and thus the jet above is 3-determined

relative to K[G] by Proposition 2.1. An appropriate scaling of the coordinate brings the map-
germ to the normal form of type (8) in Table 2. If β = 0, the 3-jet above is equal to j3f4(0) and
it has K[G]3-codimension n− q + 5 by the similar argument.

We can eventually conclude that the extended codimensions of B6, B7 and B8 are equal to
3, 4 and 4, respectively, the complement of the union of them in (π5

2)
−1(Λq−3,q) is equal to

(π5
2)

−1(Ω23) ⊔ (π5
3)

−1

(( ⊔
all signs
in f3

(
K[G]3 · j3f3(0)

))
⊔
( ⊔

all signs
in f4

(K[G]3 · j3f4(0))
))

,
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and its extended codimension is 5.

Jets in (π3
2)

−1(Λq−3,q+1). In this case, by using Lemma 5.2, a jet in Λq−3,q+1 is K[G]2-equivalent
to the 2-jet represented by

(5.8) ga =

x1, . . . , xq−1,

q−3∑
j=1

±xj +
q−1∑

j1=q−2

q∑
j2=j1

aj1j2xj1xj2 +

n∑
j=q+1

±x2j


for a = (aq−2,q−2, aq−2,q−1, aq−2,q, aq−1,q−1, aq−1,q) ∈ R5. In the same manner as in Appen-
dix A.2, one can take a basis of the quotient space MnEqn/(TK[G](ga)+M3

nEqn) for each a ∈ R5

as shown in Appendix A.3. We investigate each case in what follows.

# aij ’s K[G]2-cod.
1 P (a) ̸= 0 n− q + 4
2 P (a) = 0 and (aq−2,qaq−1,q ̸= 0 n− q + 5

or aq−2,q−2aq−1,q ̸= 0 or aq−2,q−2aq−1,q−1 ̸= 0)
3 (aq−2,q−2 = aq−2,q = 0 and aq−1,q ̸= 0) n− q + 6

(aq−1,q−1 = aq−1,q = 0 and aq−2,q ̸= 0)
4 aq−2,q = aq−1,q = 0 and (aq−2,q−1aq−1,q−1 ̸= 0 or n− q + 7

aq−2,q−2aq−1,q−1 ̸= 0 or aq−2,q−2aq−2,q−1 ̸= 0)
5 aq−2,q = aq−1,q = aq−2,q−2 = aq−2,q−1 = 0, aq−1,q−1 ̸= 0 n− q + 8

or aq−2,q = aq−1,q = aq−2,q−2 = aq−1,q−1 = 0, aq−2,q−1 ̸= 0
or aq−2,q = aq−1,q = aq−2,q−1 = aq−1,q−1 = 0, aq−2,q−2 ̸= 0

6 aq−2,q−2 = aq−2,q−1 = aq−2,q = aq−1,q−1 = aq−1,q = 0 n− q + 9

Table 7. The K[G]2-codimension of the 2-jet (5.8), where P (a) is given in
(5.9).

Let ι : R5 → Λq−3,q+1 be a map defined as ι (a) = j2ga for a ∈ R5. The mapping ι is a smooth
embedding and thus ι

(
R5
)
is a smooth submanifold in Λq−3,q+1.

Case #1: Let A1 = {a ∈ R5 | P (a) ̸= 0} for

(5.9) P (a) = aq−2,qaq−1,q

(
a2q−2,qaq−1,q−1 − aq−2,q−1aq−2,qaq−1,q + aq−2,q−2a

2
q−1,q

)
.

The set is an open subset of the parameter space R5 and thus ι(A1) is a smooth manifold

in Λq−3,q+1. In addition,
∂j2ga (0)

∂aj1j2
∈ TK [G]

2 (
j2ga (0)

)
holds for all j1 ∈ {q − 2, q − 1} and

j2 ∈ {q − 2, . . . , q} , j2 ≥ j1, which can be checked in the same manner as in Appendix A.2.

Therefore, each connected component of ι(A1) is contained in a single K [G]
2
-orbit by Mather’s

lemma ([25, Lemma 3.1]). We can choose a representative from each connected component of
A1 as (aq−2,q−1, aq−2,q, aq−1,q) = (±1,±1,±1) and aq−2,q−2 = aq−1,q−1 = 0. The corresponding
germ representing it is

f =

x1, . . . , xq−1,

q−3∑
j=1

±xj ± xq−2xq−1 ± xq−2xq ± xq−1xq +

n∑
j=q+1

±x2j

 .

In the same manner as before, we can deduce the following inclusion:

M3
nEqn ⊂ ⟨x3q⟩R + TK [G]1 (g) +M4

nEqn.
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Therefore, using Theorem 2.1, there exists β ∈ R such that j3f (0) is K [G]
3
-equivalent tox1, . . . , xq−1,

q−3∑
j=1

±xj ± xq−2xq−1 ± xq−2xq ± xq−1xq + βx3q +

n∑
j=q+1

±x2j

 .

If β ̸= 0, it is 3-determined relative to K [G] and its K [G]
3
-codimension is n − q + 4 by the

similar argument before. An appropriate scaling brings the 3-jet to that represented by type (9)

in Table 2. If β = 0, it has K [G]
3
-codimension n− q + 5 by the similar argument before.

Case #2: For the polynomial P (a) given in (5.9), the singular locus of the algebraic set in R5

defined by P = 0 is contained in

VR

(〈
P,

∂P

∂aq−2,q−2
,

∂P

∂aq−2,q−1
,

∂P

∂aq−2,q
,

∂P

∂aq−1,q−1
,

∂P

∂aq−1,q

〉
R[a]

)
where VR (I) =

{
a ∈ R5

∣∣∀f ∈ I, f (a) = 0
}
. It is easy to check that the radical ideal of I is√

I = ⟨aq−2,qaq−1,q, aq−2,q−2aq−1,q, aq−2,q−2aq−1,q−1⟩R[a] (see e.g. [3]), and thus the singular
locus is contained in the set defined by aq−2,qaq−1,q = aq−2,q−2aq−1,q = aq−2,q−2aq−1,q−1 = 0.
This proves that the set A2 in R5 defined by the condition of Case #2 is a smooth manifold.
The tangent space of the A2 at a is ⟨v1, v2, v3, v4⟩R where

v1 = aq−2,q
∂

∂aq−2,q−2
+ aq−1,q

∂

∂aq−2,q−1
,

v2 = aq−2,q
∂

∂aq−2,q−1
+ aq−1,q

∂

∂aq−1,q−1
,

v3 = 4aq−2,q−1
∂

∂aq−2,q−1
− 3aq−2,q

∂

∂aq−2,q
+ 8aq−1,q−1

∂

∂aq−1,q−1
+ aq−1,q

∂

∂aq−1,q−1
,

v4 = 3aq−2,q−2
∂

∂aq−2,q−2
+ 2aq−2,q−1

∂

∂aq−2,q−1
+ aq−1,q−1

∂

∂aq−1,q−1
− aq−1,q

∂

∂aq−1,q
.

The subset ι(A2) ⊂ Λq−3,q+1 is also a smooth manifold and whose tangent space at j2ga (0) is

spanned by dιa (vi) for i ∈ {1, . . . , 4}. dιa (vi) ∈ TK [G]
2 (
j2ga (0)

)
holds for all a ∈ A2 and

i ∈ {1, . . . , 4}. (This can be checked by computing standard basis of TK [G] (ga (0)) + M3
nEqn

for each parameter value of a and dividing a polynomial representing dιa (vi) by the standard
basis.) Finally, by applying Mather’s lemma, we can conclude that each connected component
of ι(A2) is contained in the single orbit. This specifically means that jets satisfying the condition

consists of finite number of K [G]
2
-orbits with K [G]

2
-codimension n− q + 5.

Case #3: In this case, an appropriate coordinate transformation brings the 2-jet tox1, . . . , xq−1,

q−3∑
j=1

±xj + xq−1xq +

n∑
j=q+1

±x2j

 .

In this case, the corresponding set in the 2-jet space consists of a finite number of orbits and
thus their K [G]

2
-codimensions are n− q + 6.

Case #4: In this case, an appropriate coordinate transformation brings the 2-jet to eitherx1, . . . , xq−1,

q−3∑
j=1

±xj ± x2q−2 ± x2q−1 +

n∑
j=q+1

±x2j


or x1, . . . , xq−1,

q−3∑
j=1

±xj ± x2q−2 ± xq−2xq−1 +

n∑
j=q+1

±x2j

 .
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In this case, the corresponding set in the 2-jet space consists of a finite number of orbits and
thus their K [G]

2
-codimensions are n− q + 7.

Case #5: In this case, an appropriate coordinate transformation brings the 2-jet to eitherx1, . . . , xq−1,

q−3∑
j=1

±xj ± x2q−2 +

n∑
j=q+1

±x2j


or x1, . . . , xq−1,

q−3∑
j=1

±xj ± xq−2xq−1 +

n∑
j=q+1

±x2j

 .

In this case, the corresponding set in the 2-jet space consists of a finite number of orbits and
thus their K [G]

2
-codimensions are n− q + 8.

Case #6: In this case, the corresponding set in the 2-jet space consists of a finite number of
orbits of j2g0 (0) and its K2 [G] codimension is n− q + 9.

Let Ω1c be the union of K [G]
2
-orbits of the classes except for #1 in Table 7. As we have

shown, the set Ω1c is a finite union of the K[G]2-orbits in Λq−3,q+1 whose extended codimension

is 5. The complement of B9 in
(
π5
2

)−1
(Λq−3,q+1) is the union

(π5
2)

−1(Ω1c) ⊔ (π5
3)

−1

(( ⊔
all signs

in f

(
K[G]3 · j3f(0)

))

whose extended codimension is 5.

Jets in (π3
2)

−1(Λq−4,q). A jet in Λq−4,q is K[G]2-equivalent to that represented by

(5.10) fα =

x1, . . . , xq−1,

q−4∑
j=1

±xj +
∑

1≤i≤j≤3

αijxq−ixq−j +

n∑
j=q

±x2j


for some α = (αij)i,j ∈ R6. Take subsets W1,W2,W3 ⊂ P5 as follows:

W1 ={[· · · : αij : · · · ] ∈ P5 | α11α22α33 = 0},
W2 ={[· · · : αij : · · · ] ∈ P5 | (α11α22 − α2

12)(α22α33 − α2
23)(α33α11 − α2

13) = 0},
W3 ={[· · · : αij : · · · ] ∈ P5 | α11α22α33 + 2α12α13α23 − α33α

2
12 − α22α

2
13 − α11α

2
23 = 0}.

These are proper algebraic subsets of P5. In particular, one can decompose them into submani-
folds of P5 with codimension at least one. By Proposition 5.1, the preimage A−1(W1∪W2∪W3)
is a union of submanifolds of Λq−4,q with codimension at least one. We can deduce from the
observation above and Lemma 5.4 that the extended codimension of A−1(W1 ∪W2 ∪W3) ∪ Ω0

is (larger than or) equal to 1 + de(Λq−4,q) = 5.
In what follows, we will consider a 2-jet in the complement Λq−4,q \(A−1(W1∪W2∪W3)∪Ω0),

which is K[G]2-equivalent to j2fα(0) (where fα is given in (5.10)) with

α11 ̸= 0, α22 ̸= 0, α33 ̸= 0,

4α11α22 − α2
12 ̸= 0, 4α11α33 − α2

13 ̸= 0, 4α22α33 − α2
23 ̸= 0,(5.11)

4α11α22α33 + α12α13α23 − α33α
2
12 − α22α

2
13 − α11α

2
23 ̸= 0.

For such a 2-jet, one can check that the inclusion M3
nEqn ⊂ T + TK [G]1 (fα) + M4

nEqn holds
for T = ⟨xq−3xq−2xq−1eq⟩R. By Theorem 2.1, a 3-jet σ ∈ J3(n, q)0 with π3

2(σ) = j2fα(0) is
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K[G]3-equivalent tox1, . . . , xq−1,

q−3∑
j=1

δjxj +

3∑
i,j=1

αijxq−4+ixq−4+j + βxq−3xq−2xq−1 +

n∑
j=q

δjx
2
j

 ,

for some β ∈ R. If β ̸= 0, the K[G]3-codimension of the jet above is n − q + 4 by the similar
argument. Furthermore, M3

nEqn is contained in TK[G](g) +M4
nEqn, and thus the jet above is 3-

determined relative to K[G] by Proposition 2.1. An appropriate scaling of the coordinate brings
the map-germ to the normal form of type (10) in Table 2. If β = 0, the 3-jet above is equal to
j3fα(0) and it has K[G]3-codimension n− q + 5 be the similar argument.

We have shown that the extended codimension of B10 is equal to 4, the complement
(π5

2)
−1(Λq−4,q) \B10 is equal to

(A ◦ π5
2)

−1(W1 ∪W2 ∪W3) ⊔ (π5
3)

−1

(( ⊔
all signs
in fα

(
K[G]3 · j3fα(0)

))
,

and its extended codimension is 5.
We can eventually conclude that the complement

J5(n, q)0 \

B0 ⊔

⊔
i,k

Bi,k

 ⊔

⊔
j

Bj


has extended codimension 5, completing the proof of (3) of Theorem 5.1.

Classification of jets in Wn,q,1 with 1 ≤ q ≤ 3. In what follows, we will show (4) of
Theorem 5.1. Since we are supposing n ≫ q, in particular codim(Σ2, J

1(n, q + 1)0) is large
enough, it suffices to consider the case that corank(d(g, h)0) is equal to 1, which is also equal to

corank(dg0) + 1. By applying an appropriate action of K [G]
1
, one can assume

j1 (g, h) (0) = (x1, . . . , xq, 0)

without loss of generality. By using the similar argument as Lemma 5.2, an appropriate action
of K [G] brings j2 (g, h) (0) to the following form:

(5.12) j2 (g, h) (0) =

x1, . . . , xq, q∑
j1=1

s−1∑
j2=1

aj1j2xj1xj2 +

n∑
j=s

±x2j


for some s ∈ {q + 1, . . . , n} and aj1j2 ∈ R. Let Θq,s be the set of 2-jets K[G]2-equivalent to that
in (5.12) for some signs and aj1j2 ∈ R. It is easy to check that Θq,s is equal to (π2

1 |Qs
)−1(Θ′),

where Θ′ = {j1(g, 0)(0) ∈ Σ1 \ Σ2 | dg0 : regular} and Qs is given in the proof of Lemma 5.3.
Since Θ′ is a submanifold in Σ1 \ Σ2 with codimension q, Θq,s is also a submanifold of Qs and
its extended codimension is equal to q + 1 + (s − q)(s − q − 1)/2. The extended codimensions
of
⊔
s≥4 Θ1,s,

⊔
s≥5 Θ2,s, and

⊔
s≥5 Θ3,s are greater than 4. For this reason, in what follows, we

will only analyze jets in (πm2 )−1(Θ) for Θ = Θ1,2,Θ1,3,Θ2,3,Θ2,4,Θ3,4, with suitable orders m
one by one. As all the calculations needed to obtain determinacies, codimensions, and complete
transversals for various jets/germs are quite similar to those we have done in the proof of (3) of
Theorem 5.1, we will omit them for simplicity of the manuscript.

Jets in (π4
2)

−1(Θ1,2). A jet in Θ1,2 is K [G]
2
-equivalent to the 2-jet represented by

(g, h) =

x1, a11x21 + n∑
j=2

±x2j

 .
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If a11 ̸= 0 holds, an appropriate scaling brings the 2-jet to the normal form of type (1, 2) in
Table 3 which is 2-determined and its extended codimension is 2. If a11 = 0 holds, the following
inclusion holds for m ≥ 3:

Mm
n E2

n ⊂ ⟨xm1 e2⟩R + TK [G]1 ((g, h)) +Mm+1
n E2

n.

Therefore, using Theorem 2.1, we can deduce that an m-jet σ ∈ Jm (n, 2)0 with
πmm−1 (σ) = jm−1 (g, h) (0) is K [G]

m
-equivalent to either the m-jet of the germ of type (1,m) in

Table. 3 or jm (g, h) (0). The m-jet represented by the germ of type (1,m) is m-determined and

its extended codimension is m. We can thus conclude that any jet in
(
π4
2

)−1
(Θ1,2) is K [G]

4
-

equivalent to either the jet represented by the germ of type (1,m) for m = 2, 3, 4, or the jet
j4 (g, h) (0) (with some signs), and the extended codimension of C1,m is equal to m, whereas

that of the complement
(
π4
2

)−1
(Θ1,2) \ (

⊔
m C1,m) is equal to 5.

Jets in (π3
2)

−1(Θ1,3). A jet in Θ1,3 is K [G]
2
-equivalent to the 2-jet represented by

(g, h) =

x1, a11x21 + a12x1x2 +
n∑
j=3

±x2j

 .

If a12 ̸= 0 holds, an appropriate action of K [G]
2
brings the 2-jet to the 2-jet represented by

f1 =

x1, x1x2 + n∑
j=3

±x2j

 .

If a12 = 0 and a11 ̸= 0 holds, an appropriate action of K [G]
2
brings the 2-jet to the 2-jet

represented by

f2 =

x1, x21 + n∑
j=3

±x2j

 .

If a11 = a12 = 0 holds, the quotient space J2 (n, 2)0 /TK [G]
2 (
j2 (g, h) (0)

)
is isomorphic

to
〈
x1e2, . . . , xne2, x

2
1eq, x1x2e2, x

2
2e2
〉
R ⊂ R[[x]]2. In particular, the K [G]

2
-codimension of

j2 (g, h) (0) is equal to n+ 3 and its extended codimension is 5.
An m-jet σ ∈ Jm (n, q)0 with πmm−1 (σ) = jm−1f1 (0) is K [G]

m
-equivalent to either the m-jet

of the germ of type (3,m) in Table 3 or jmf1 (0) for m = 3, 4. The germ of type (3,m) in Table 3

is m-determined and has the K [G]
m
-codimension n − 2 + m. Thus, the union of the K [G]

4
-

orbits of the germs of type (4,m) (with all possible signs) is equal to C3,m and its extended

codimension is m. On the other hand, the K [G]
4
-codimension of j4f1 (0) is equal to n+3 since

J4 (n, 2)0 /TK [G]
4 (
j4f1 (0)

)
is isomorphic to ⟨x1e2, . . . , xne2, x22e2, x32e2, x42e2⟩R ⊂ R [[x]]

2
.

An 3-jet σ ∈ J3 (n, q)0 with π3
2 (σ) = j2f2 (0) is K [G]

3
-equivalent to either the 3-jet of the

germ of type (2) in Table 3 or j3f2 (0). The germ of type (2) in Table 3 is 3-determined and

its K [G]-codimension is n + 2. Thus, the union of the K [G]
4
-orbits of the germs of type (2)

(with all possible signs) is equal to C2 and its extended codimension is 4. On the other hand,

the K [G]
3
-codimension of j3f2 (0) is n+ 4.

The compliment of C3,3

⊔
C3,4

⊔
C2 in

(
π4
2

)−1
(Θ1,3) is the following union:( ⊔

all signs
in f1

K[G]4 · j4f1(0)
)
⊔ (π4

3)
−1

( ⊔
all signs
in f2

(K[G]3 · j3f2(0))
)

The extended codimension of the union is equal to 5 since the K [G]
4
- (reps. K [G]

3
- ) codimension

of j4f1 (0) (resp. j
3f2 (0)) is equal to n+ 3.
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A digression on intrinsic derivatives for jets in Θq,q+1. Before proceeding with the proof of
Theorem 5.1, we will give invariants of jets in Θq,q+1 under the K[G]2-action. For
σ = j2(g, h)(0) ∈ Θq,q+1, we take vectors v′1(σ), . . . , v

′
q(σ) ∈ T0Rn satisfying the following

conditions:

• D2h(v′i(σ)⊗ w) = 0 for any w ∈ Ker dg0,
• d(gj)0(v

′
i(σ)) = δij .

Since D2h is invariant under K[G]2-action (cf. Lemma 2.1) and D2(g, h) = D2h|⊗2 Ker dg0 is non-
degenerate, the vectors v′1(σ), . . . , v

′
q(σ) satisfying the conditions above are uniquely determined

from σ. One can further show the following lemma in the same way as that in the proof of
Lemma 5.4.

Lemma 5.5. The subset

Ω′
0 = {σ = j2(g, h)(0) ∈ Θq,q+1 | D2h(v′i(σ), v

′
j(σ)) = 0 for any i ≤ j}

is a submanifold of Θq,q+1 with codimension q̃ = q(q + 1)/2.

Under the canonical identification Coker dh0 ∼= T0R ∼= R, we put α′
ij(σ) = D2h(v′i(σ) ⊗ v′j(σ))

and define A′ : Θq,q+1 → Pq̃−1 by A′(σ) = [· · · : α′
ij(σ) : · · · ].

Proposition 5.2. The map A′ is a submersion.

The proof of this proposition is quite similar to that of Proposition 5.1 and left for the reader.

Jets in (π3
2)

−1(Θ2,3). A jet in Θ2,3 is K [G]
2
-equivalent to the 2-jet represented by

(g, h) =

x1, x2, α11x
2
1 + α12x1x2 + α22x

2
2 +

n∑
j=3

±x2j

 .

Let Ω′
23 = Ω′

0 ∪ (A′)−1({[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]}) ⊂ Θ2,3. By Lemma 5.5 and
Proposition 5.2, the extended codimension of Ω′

23 is 5. One can further show that Θ2,3 is the

union ofK [G]
3
-orbits of C4, C5, and C6 whose extended codimensions are 3, 4, and 4, respectively,

and

(π3
2)

−1(Ω′
23) ⊔

( ⊔
all signs
in f3

(
K[G]3 · j3f3(0)

))
⊔
( ⊔

all signs
in f4

(K[G]3 · j3f4(0))
)
,

whose extended codimension is 5 where f3 =
(
x1, x2,± (x1 ± x2)

2
+
∑n
j=3 ±x2j

)
and

f4 =
(
x1, x2,±x21 ± x1x2 +

∑n
j=3 ±x2j

)
.

Jets in (π3
2)

−1(Θ2,4). A jet in Θ2,4 is K [G]
2
-equivalent to the 2-jet represented by

(g, h) (0) =

x1, x2, a11x21 + a12x1x2 + a13x1x3 + a22x
2
2 + a23x2x3 +

n∑
j=4

±x2j

 .

Let Ω1c be K [G]
2
-orbit of the set of the 2-jets whose coefficients satisfying

a13a23
(
a213a22 − a12a13a23 + a11a

2
23

)
= 0

and let

f =

x1, x2,±x1x2 ± x1x3 ± x2x3 +

n∑
j=q+1

±x2j

 .
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be a map-germ. In the same manner as before, we can deduce that (π3
2)

−1(Θ2,4) is the union of
C7 whose extended codimension is 4 and

(π3
2)

−1(Ω1c) ⊔
( ⊔

all signs
in f

(
K[G]3 · j3f(0)

))

whose extended codimension is 5.

Jets in (π3
2)

−1(Θ3,4). A jet in Θ3,4 is K[G]2-equivalent to that represented by

(g, hα) =

x1, x2, x3, ∑
1≤i≤j≤3

αijxixj +

n∑
j=4

±x2j


for some α = (αij) ∈ R6. Let W1,W2,W3 ⊂ P5 be the subsets we took when dealing with jets in
Λq−4,q. By Proposition 5.2, the preimage (A′)−1(W1∪W2∪W3) is a union of submanifolds of Θ3,4

with codimension at least one. Thus, the extended codimension of (A′)−1(W1 ∪W2 ∪W3) ∪ Ω′
0

is (larger than or) equal to 1 + de(Θ3,4) = 5.
In what follows, we will consider a 2-jet in the complement Θ3,4\((A′)−1(W1∪W2∪W3)∪Ω′

0),
which is K[G]2-equivalent to j2(g, hα)(0) with α = (αij) satisfying the conditions in (5.11). For
such a 2-jet, one can check that the inclusion M3

nE4
n ⊂ T + TK [G]1 (g, hα) + M4

nE4
n holds for

T = ⟨x1x2x3e4⟩R. By Theorem 2.1, a 3-jet σ ∈ J3(n, 4)0 with π3
2(σ) = j2(g, hα)(0) is K[G]3-

equivalent to x1, x2, x3, 3∑
i,j=1

αijxixj + βx1x2x3 +

n∑
j=4

δjx
2
j

 ,

for some β ∈ R. If β ̸= 0, the K[G]3-codimension of the jet above is n by the similar argument.
Furthermore, M3

nE4
n is contained in TK[G](g, h)+M4

nE4
n, and thus the jet above is 3-determined

relative to K[G] by Proposition 2.1. An appropriate scaling of the coordinate brings the map-
germ to the normal form of type (8) in Table 3. If β = 0, the 3-jet above is equal to j3(g, hα)(0)
and it has K[G]3-codimension n+ 1 be the similar argument.

We have shown that the extended codimension of C8 is equal to 4, the complement
(π3

2)
−1(Θ3,4) \ C8 is equal to

(A′ ◦ π3
2)

−1(W1 ∪W2 ∪W3) ⊔
( ⊔

all signs
in hα

(
K[G]3 · j3(g, hα)(0)

))
,

and its extended codimension is 5. This completes the proof of (4) of Theorem 5.1.
Lastly, we can obtain a basis of the quotient space Eq+rn /TK[G]e(g, h) for each germ (g, h)

in Tables 1–3 either by calculating standard basis of TK[G]e(g, h) in the same way as those in
Appendix A, or by using Proposition 2.2. The details are left to the reader. We eventually
complete the proof of Theorem 5.1. □

The main theorem in full detail. Combining Theorem 5.1 with the results in Section 4, we
eventually obtain the following theorem.

Theorem 5.2. Let N be a manifold without boundary, b ≤ 4, and U ⊂ Rb be an open subset.
The set consisting of constraint mappings (g, h) ∈ C∞(N×U,Rq+r) with the following conditions
is residual in C∞(N × U,Rq+r).

(1) For any u ∈ U and x ∈M(gu, hu), the corank of (dhu)x is at most 1.
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(2) For any u ∈ U and x ∈ M(gu, hu) at which there is no active inequality constraint
(i.e. there is no k ∈ {1, . . . , q} with gk(x, u) = 0), a full reduction of the germ

(g, h) : (N × U, (x, u)) → Rq+r

is K[G]-equivalent to either the trivial family of the constant map-germ, or a versal
unfolding of one of the germs in Table 1 with K[G]e-codimension at most b.

In what follows, we will assume that (gu, hu) has an active inequality constraint at x ∈M(gu, hu).

(3) For any u ∈ U and x ∈ M(gu, hu) with corank((dhu)x) = 0, a full reduction of the
germ (gu, hu) : (N, x) → Rq+r is K[G]-equivalent to either a submersion-germ, or one of
the germs in Table 2 with stratum K[G]e-codimension at most b. Furthermore, if a full
reduction of (gu, hu) is K[G]-equivalent to the germ of neither type (6) nor type (10), a
full reduction of (g, h) : (N × U, (x, u)) → Rq+r is a versal unfolding of (gu, hu).

(4) For any (x, u) ∈ N × U with corank((dhu)x) = 1, a full reduction of the germ
(gu, hu) : (N, x) → Rq+r is K[G]-equivalent to one of the germs in Table 3 with stratum
K[G]e-codimension at most b (in particular the number of active inequality constraints
is at most 3). Furthermore, if a full reduction of (gu, hu) is K[G]-equivalent to the germ
of neither type (4) nor type (8), a full reduction of (g, h) : (N × U, (x, u)) → Rq+r is a
versal unfolding of (gu, hu).

Note that one can obtain a model of a versal unfolding of each germ in the tables from Table 4.
(See the observation at the end of Section 4.)

Appendix A. Standard Basis and Its Applications

In this section, we provide a brief summary of standard basis and its application to mod-
ule membership problems and codimension computation. Let M ⊂ Eqn be an En-module. In

what follows, we assume M has finite codimension, i.e. dimR
Eqn
M

< ∞. This condition is equiv-

alent to the existence of k ∈ N such that Mk
nEqn ⊂ M holds. Let R [[x1, . . . , xn]] be a formal

power series ring with variables x1, . . . , xn. Then,
En
M∞

n

∼= R [[x1, . . . , xn]] holds, where we put

M∞
n =

⋂
k≥0 Mk

n. Since M has finite codimension, M∞
n Eqn ⊂M and thus

Eqn
M

∼=
Eqn/M∞

n Eqn
M/M∞

n Eqn
∼=

R [[x1, . . . , xn]]
q

M̂

holds where M̂ = M/M∞
n Eqn. M̂ can be regarded as an R [[x1, . . . , xn]]-module. Through this

isomorphism, dimR
Eqn
M

= dimR
R [[x1, . . . , xn]]

q

M̂
holds and the computation of the codimension of

M in Eqn can be reduced to that of the codimension of M̂ in R [[x1, . . . , xn]]
q
. The latter compu-

tation is reduced to the computation of standard basis of M̂ since R [[x1, . . . , xn]] is Noetherian.
For the terminology related to the standard basis, see [18].

Let ≺ be a local term order in the set of the monomials in R [[x1, . . . , xn]] and ≺m be the
module order compatible with the term order. Take any f ∈ R [[x1, . . . , xn]]

q \ {0} and suppose
that it can be expanded as

f = cαx
αej + (sum of terms smaller than xαej with respect to ≺m) ,

where α ∈ Zn≥0, cα ∈ R\{0}, xα = xα1
1 xα2

2 · · ·xαn
n . For such an f , we define its leading monomial,

leading term and leading coefficient as LM(f) = xαej , LT (f) = cαx
αej , and LC (f) = cα,

respectively. For a pair of elements f, g ∈ R [[x1, . . . , xn]]
q \ {0} where LT (f) = cαx

αej and
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LT (g) = dα′xα
′
ej′ , we define their symmetric polynomial as

spoly (f, g) =


(

f
cαxα − g

dα′xα′

)∏n
j=1 x

max{αj ,α
′
j}

j (j = j′) ,

0 (j ̸= j′) .

We say f is divisible by S = {f1, . . . , fl} if there exist a1, . . . , al ∈ R [[x1, . . . , xn]] satisfying the
following conditions:

• f =
∑l
j=1 ajfj ,

• LM(f) ≥ LM(ajfj) for all j ∈ {1, . . . , l} with ajfj ̸= 0.

We say S = {f1, . . . , fl} is a standard basis of M̂ if S generates M̂ and spoly (fi, fj) for all i < j
are divisible by S. Note that a generating set consisting of monomials is always a standard basis
since spoly(f, g) = 0 for any monomials f, g ∈ R[[x1, . . . , xn]]q.

Theorem A.1. Let S = {f1, . . . , fl} be a standard basis of M̂ . Then, the following hold:

(1)
R [[x1, . . . , xn]]

q

M̂
is isomorphic to the R-vector subspace in R [[x1, . . . , xn]]

q
spanned by the

monomials that cannot be divisible by any leading monomial of an element of S.

(2) For any f ∈ R [[x1, . . . , xn]]
q
, f ∈ M̂ if and only if f is divisible by S.

In what follows, we will explain two examples of applications of Theorem A.1.

A.1. The K[G]e-codimension and K[G]-determinacy order of the map-germ of type
(1, k) in Table 2. For k ≥ 2, let g be the map-germ of type (1, k) in Table 2, i.e. we put

g (x1, . . . , xn) =

x1, . . . , xq−1,

q−1∑
j=1

δjxj + δqx
k
q +

n∑
j=q+1

δjx
2
j


for δj = ±1. We first calculate the K[G]e-codimension of g. The extended tangent space at g is

TK [G]e (g) = ⟨ ∂g
∂x1

, . . . ,
∂g

∂xn
⟩En

+ ⟨g1e1, . . . , gqeq⟩En
.

In this case, ∂g
∂xj

is calculated as follows:

∂g

∂xj
=


ej + δjeq (j = 1, . . . , q − 1)

kδqx
k−1
q eq (j = q)

2δjxjeq (j = q + 1, . . . , n).

We set the monomial ordering in R [[x1, . . . , xn]] as the negative degree reverse lexicographical
ordering ≺ satisfying xn ≺ xn−1 ≺ · · · ≺ x2 ≺ x1 and the term over position module ordering
≺m satisfying eq ≺m eq−1 ≺m · · · ≺m e2 ≺m e1 compatible with the monomial ordering ≺.

First note that xjeq = (xj (ej + δjeq)− xjej) /δj ∈ ̂K [G]e (g) holds for j ∈ {1, . . . , q − 1}.
We claim that

S =
{
e1 + δ1eq, . . . , eq−1 + δq−1eq, x1eq, . . . , xq−1eq, x

k−1
q eq, xq+1eq, . . . , xneq

}
is a standard basis of ̂TK [G]e (g). First of all, it is obvious that

∂g

∂xi
can be written as an

R [[x]]-linear combination of the elements in S for all i ∈ {1, . . . , n}.
Second, giei = xi (ei + δieq)− δi (xieq) holds for all i ∈ {1, . . . , q − 1} and

gqeq =

q−1∑
j=1

δj × (xjeq) + δqxq ×
(
xk−1
q eq

)
+

n∑
j=q+1

δjxj × (xjeq) .
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Third, it is obvious that all the elements in S are contained in ̂TK [G]e (g). Therefore, the set

S generates ̂TK [G]e (g). Next, we show that spoly (s1, s2) is divisible by S for all s1, s2 ∈ S.
By the definition of spoly, spoly (s, s) = 0 for all s ∈ S, spoly (s1, s2) = 0 for all the monomials
s1, s2 in S, and spoly (s1, s2) = 0 if the components of the leading monomials of s1 and s2 are
different. Regarding this fact, all the symmetric polynomials between the elements in S are zero

and thus they are divisible by S. This proves that S is a standard basis of ̂TK [G]e (g). For
general algorithm to compute standard basis, see [18].

Therefore, R [[x1, . . . , xn]]
q
/ ̂TK [G]e (g) is spanned by the monomials in R [[x1, . . . , xn]] not

divisible by the leading monomials of the elements of G by Theorem A.1 (1). In this case, that is
eq, xqeq, . . . , x

k−2
q eq. This can be shown as follows. First, it is obvious that eq, xqeq, . . . , x

k−2
q eq

are not divisible by any leading monomial of an element in S. The monomial xαei is divisible
by ei (= LM(ei + δieq)) for any α ∈ Zn≥0 and i ∈ {1, . . . , q − 1}. If one of the components of
α ∈ Zn≥0 except for q-th one, say αi, is non-zero, the monomial xαeq is divisible by xieq. The

monomial xlqeq is divisible by xk−1
q eq

(
= LM

(
xk−1
q eq

))
for l ≥ k − 1. By using Theorem A.1

(1), we obtain the claim.

This specifically implies ̂TK [G]e (g) has a finite codimension in R [[x1, . . . , xn]]
q
and thus there

exists l ∈ N such that M̂l
nR [[x1, . . . , xn]]

q ⊂ ̂TK [G]e (g) holds. This implies that

Ml
nEqn ⊂ TK [G]e (g) +M∞

n Eqn
and thus Ml

nEqn ⊂ TK [G]e (g) +Ml+1
n Eqn. By using Nakayama’s lemma, Ml

nEqn ⊂ TK [G]e (g)
holds. Therefore,

Eqn
TK [G]e (g)

∼=
R [[x1, . . . , xn]]

q

̂TK [G]e (g)

holds and thus
Eqn

TK [G]e (g)
∼= ⟨eq, xqeq, . . . , xk−2

q eq⟩R and the K [G]e-codimension of g is k − 1.

We next confirm that the map-germ g is k-determined relative to K [G]. By using Proposi-
tion 2.1, it is enough to confirm that Mk

nEqn ⊂ TK [G] (g) holds. This condition is equivalent to

the condition that M̂k
nR [[x]]

q ⊂ ̂TK [G] (g) holds and thus we confirm the latter condition in
what follows.

First of all, the equality

̂TK [G] (g) = M̂n⟨
∂g

∂x1
, . . . ,

∂g

∂xn
⟩R[[x]] + ⟨g1e1, . . . , gqeq⟩R[[x]]

= M̂n⟨e1 + δ1eq, . . . , eq−1 + δq−1eq, x
k−1
q eq, δq+1xq+1eq, . . . , δnxneq⟩R[[x]]

+

〈
x1e1, x2e2, . . . , xq−1eq−1,

q−1∑
j=1

δjxj + δqx
k
q +

n∑
j=q+1

δjx
2
j

 eq

〉
R[[x]]

holds. Then, xjeq = (xj (ej + δjeq)− xjej) /δj ∈ ̂TK [G] (g) holds for all j ∈ {1, . . . , q − 1} and
thus, one can show that the set

S = {xi (ej + δjeq)|i ∈ {1, . . . , n} , j ∈ {1, . . . , q − 1}}

∪ {x1eq, . . . , xq−1eq} ∪ {xixjeq|i ∈ {q, . . . , n} , j ∈ {q + 1, . . . , n}} ∪
{
xkqeq

}
is a standard basis of ̂TK [G] (g) in the same way as that in the demonstration of Theorem A.1
(1).

Since the module M̂k
nR [[x]]

q
is generated by{

xαej
∣∣α ∈ Zn≥0, |α| = k, j ∈ {1, . . . , q}

}
,
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it is enough to show that all the generators are in ̂TK [G] (g). By Theorem A.1 (2), this condition
is equivalent to the condition that xαej is divisible by S for all α ∈ Zn≥0 with |α| = k and

j ∈ {1, . . . , q}. The latter condition can be shown as follows. For α ∈ Zn≥0 with |α| = k

and j ∈ {1, . . . , q − 1}, the monomial xαej is equal to xα (ej + δjeq) − δjx
αeq. Therefore, it is

enough to show that xαeq is divisible by S. If one of the elements α1, . . . , αq−1 is non-zero, xαeq
is divisible by one of the monomials x1eq, . . . , xq−1eq in S. If α1 = · · · = αq−1 = 0 and one of
the elements αq+1, . . . , αn is non-zero, xαeq is divisible by one of the monomials in

{xixjeq|i ∈ {q, . . . , n} , j ∈ {q + 1, . . . , n}} ⊂ S

In the other case α1 = · · · = αq−1 = αq+1 = · · · = αn = 0, αq = k, xkqeq is divisible by itself,
which is contained in S. Therefore, all the generators are divisible by S. This proves the claim.

A.2. The K [G]
2
-codimension of the 2-jet shown in Table 6. Let gα be a map-germ rep-

resenting (5.6). Then,

K [G] (gα) = Mn⟨e1 + δ1eq, . . . , eq−3 + δq−3eq⟩En

+Mn⟨eq−2 + (2α11xq−2 + α12xq−1) eq, eq−1 + (2α22xq−1 + α12xq−2) eq⟩En

+Mn⟨xqeq, . . . , xneq⟩En
+ ⟨x1e1, . . . , xq−1eq−1,q−3∑

j=1

δjxj + α11x
2
q−2 + α12xq−2xq−1 + α22x

2
q−1 +

n∑
j=q

δjx
2
j

 eq⟩En

holds. In what follows, the elements given after ”:” form a basis of

M̂nR [[x]]
q
/( ̂K [G] (gα) + M̂3

nR [[x]])

for each parameter value (α11, α12, α22) satisfying the equations before ”:”. We can obtain these
results by computing standard basis in the same way as that in the previous subsection (details
are left to the readers).

(1) α12α22 ̸= 0 :

n−q+3︷ ︸︸ ︷
xq−2eq, . . . , xneq,

1︷ ︸︸ ︷
x2q−2eq.

(2) α12 = 0, α11α22 ̸= 0 :

n−q+3︷ ︸︸ ︷
xq−2eq, . . . , xneq,

1︷ ︸︸ ︷
xq−2xq−1eq.

(3) α22 = 0, α11α12 ̸= 0 :

n−q+3︷ ︸︸ ︷
xq−2eq, . . . , xneq,

1︷ ︸︸ ︷
x2q−1eq.

(4) α11 = α22 = 0, α12 ̸= 0 :

n−q+3︷ ︸︸ ︷
xq−2eq, . . . , xneq,

2︷ ︸︸ ︷
x2q−2eq, x

2
q−1eq.

(5) α11 = α12 = 0, α22 ̸= 0 :

n−q+3︷ ︸︸ ︷
xq−2eq, . . . , xneq,

2︷ ︸︸ ︷
x2q−2eq, xq−2xq−1eq.

(6) α12 = α22 = 0, α11 ̸= 0 :

n−q+3︷ ︸︸ ︷
xq−2eq, . . . , xneq,

2︷ ︸︸ ︷
xq−2xq−1eq, x

2
q−1eq.

(7) α11 = α12 = α22 = 0 :

n−q+3︷ ︸︸ ︷
xq−2eq, . . . , xneq,

3︷ ︸︸ ︷
x2q−2eq, xq−2xq−1eq, x

2
q−1eq.

The K [G]
2
-codimension of j2gα (0) is n− q+4 in the cases 1, 2, and 3, n− q+5 in the cases 4,

5 and 6, and n− q + 6 in the case 7. By combining the corresponding semi-algebraic sets in the
list on which j2gα (0) has the same K [G]

2
-codimensions, we obtain Table 6.

A.3. A list of bases for Table 7. The following are the list of bases of the quotient space
MnEqn/

(
TK [G] (ga) +M3

nEqn
)
. In what follows, the elements given after ”:” form a basis of the

quotient space for each a in the algebraic subset of R5 given before ”:”
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(1) VR (⟨aq−1,q, aq−1,q−1, aq−2,q, aq−2,q−1, aq−2,q−2⟩):
xq−2eq, . . . , xneq, x

2
qeq, xq−1xqeq, xq−2xqeq, x

2
q−1eq, xq−2xq−1eq, x

2
q−2eq.

(2) VR (⟨aq−2,q, aq−2,q−2⟩) \ VR
(
⟨aq−2,qa

3
q−1,q, aq−2,q−1a

3
q−1,q, aq−2,q−2a

3
q−1,q,

aq−2,qaq−1,q−1a
2
q−1,q, aq−2,q−1aq−2,qa

2
q−1,q⟩

)
:

xq−2eq, . . . , xneq, x
2
qeq, xq−2xqeq, x

2
q−2eq.

(3) VR (⟨aq−1,q, aq−1,q−1, aq−2,q−1⟩) \ VR (⟨aq−2,q⟩):
xq−2eq, . . . , xneq, x

2
q−1eq, x

2
qeq, xq−1xqeq.

(4) VR (⟨aq−1,q, aq−2,q⟩) \ VR (⟨aq−2,q−1aq−1,q−1aq−1,q, aq−2,q−1aq−2,qaq−1,q−1,
a2q−2,q−1aq−1,q−1, aq−2,q−2aq−2,q−1a

2
q−1,q−1⟩

)
:

xq−2eq, . . . , xneq, x
2
qeq, xq−1xqeq, xq−2xqeq, x

2
q−2eq.

(5) VR (⟨aq−1,q, aq−2,q, aq−1,q−1, aq−2,q−2⟩) \VR (⟨aq−1,q, aq−2,q, aq−2,q−1, aq−2,q−2aq−1,q−1⟩):
xq−2eq, . . . , xneq, x

2
qeq, xq−1xqeq, xq−2xqeq, x

2
q−1eq, x

2
q−2eq.

(6) VR (⟨aq−1,q, aq−1,q−1, aq−2,q, aq−2,q−1⟩) \ VR (⟨aq−2,q−2⟩):
xq−2eq, . . . , xneq, x

2
qeq, xq−1xqeq, x

2
q−1eq, xq−2xqeq, xq−2xq−1eq.

(7) VR (⟨aq−1,q, aq−2,q, aq−1,q−1⟩)
\VR

(
⟨aq−2,q−2aq−1,q, aq−2,q−2aq−2,q, aq−2,q−2aq−2,q−1, a

2
q−2,q−2aq−1,q−1⟩

)
:

xq−2eq, . . . , xneq, x
2
qeq, xq−1xqeq, xq−2xqeq, x

2
q−1eq.

(8) VR (⟨aq−2,q⟩)
\VR

(
⟨aq−2,q−2aq−2,qa

3
q−1,q, aq−2,q−2aq−2,q−1a

3
q−1,q, a

2
q−2,q−2a

3
q−1,q,

aq−2,q−2aq−2,qaq−1,q−1a
2
q−1,q, aq−2,q−2aq−2,q−1aq−2,qa

2
q−1,q⟩

)
:

xq−2eq, . . . , xneq, x
2
qeq, xq−2xqeq.

(9) VR (⟨aq−1,q, aq−2,q, aq−2,q−1⟩)
\VR

(
⟨aq−1,q−1aq−1,q, aq−2,qaq−1,q−1, aq−2,q−1aq−1,q−1, aq−2,q−2a

2
q−1,q−1⟩

)
:

xq−2eq, . . . , xneq, x
2
qeq, xq−1xqeq, xq−2xqeq, xq−2xq−1eq.

(10) VR (⟨aq−1,q, aq−2,q, aq−2,q−1, aq−2,q−2⟩) \ VR (⟨aq−1,q−1⟩):
xq−2eq, . . . , xneq, x

2
qeq, xq−2xqeq, x

2
q−2eq, xq−1xqeq, xq−2xq−1eq.

(11) VR (⟨aq−1,q⟩)
\VR (⟨aq−2,qaq−1,q−1aq−1,q, aq−2,q−1aq−1,q−1aq−1,q,
aq−2,q−2aq−1,q−1aq−1,q, aq−2,qa

2
q−1,q−1, aq−2,q−1aq−2,qaq−1,q−1⟩

)
:

xq−2eq, . . . , xneq, x
2
qeq, xq−1xqeq.

(12) VR (⟨aq−1,q, aq−1,q−1⟩)
\VR (⟨aq−2,qaq−1,q, aq−2,q−1aq−1,q, aq−2,q−2aq−1,q, aq−2,qaq−1,q−1, aq−2,q−1aq−2,q⟩):
xq−2eq, . . . , xneq, x

2
qeq, xq−1xqeq, x

2
q−1eq.

(13) R5 \ VR
(
⟨aq−2,q−2a

2
q−2,qa

4
q−1,q − aq−2,q−1a

3
q−2,qa

3
q−1,q + a4q−2,qaq−1,q−1a

2
q−1,q,

aq−2,q−2aq−2,q−1aq−2,qa
4
q−1,q − a2q−2,q−1a

2
q−2,qa

3
q−1,q + aq−2,q−1a

3
q−2,qaq−1,q−1a

2
q−1,q,

a2q−2,q−2aq−2,qa
4
q−1,q − aq−2,q−2aq−2,q−1a

2
q−2,qa

3
q−1,q + aq−2,q−2a

3
q−2,qaq−1,q−1a

2
q−1,q,

aq−2,q−2a
2
q−2,qaq−1,q−1a

3
q−1,q − aq−2,q−1a

3
q−2,qaq−1,q−1a

2
q−1,q + a4q−2,qa

2
q−1,q−1aq−1,q,

aq−2,q−2aq−2,q−1a
2
q−2,qa

3
q−1,q − a2q−2,q−1a

3
q−2,qa

2
q−1,q + aq−2,q−1a

4
q−2,qaq−1,q−1aq−1,q⟩

)
:

xq−2eq, . . . , xneq, x
2
qeq.

(14) VR
(
⟨aq−2,q−2a

2
q−1,q − aq−2,q−1aq−2,qaq−1,q + a2q−2,qaq−1,q−1⟩

)
\VR

(
⟨a2q−2,qa

2
q−1,q, aq−2,q−1aq−2,qa

2
q−1,q, aq−2,q−2aq−2,qa

2
q−1,q,

a2q−2,qaq−1,q−1aq−1,q, aq−2,q−1a
2
q−2,qaq−1,q⟩

)
:

xq−2eq, . . . , xneq, x
2
qeq, x

2
q−2eq.

(15) VR (⟨aq−2,q, aq−2,q−1, aq−2,q−2⟩) \ VR (⟨aq−1,q⟩):
xq−2eq, . . . , xneq, x

2
qeq, xq−2xqeq, x

2
q−2eq.

In summary, we obtain Table 8. By combining the strata of R5 on which j2ga (0) has the same

K [G]
2
-codimension, we obtain Table 7.
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K [G]
2
-cod. strata numbers

n− q + 4 13
n− q + 5 8, 11, 14
n− q + 6 2, 3, 12, 15
n− q + 7 4, 7, 9
n− q + 8 5, 6, 10
n− q + 9 1

Table 8. K [G]
2
-codimension of j2ga (0) for the parameter a in each stratum.
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[3] T. Becker and V. Weispfenning. Gröbner Bases, A Computational Approach to Commutative Algebra.

Springer, New York, 1993.

[4] S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2014.
[5] J. W. Bruce, N. P. Kirk, and A. A. du Plessis. Complete transversals and the classification of singularities.

Nonlinearity, 10(1):253–275, 1997. DOI: 10.1088/0951-7715/10/1/017

[6] J. Damon. The Unfolding and Determinacy Theorems for Subgroups of A and K. American Mathematical
Society, 1984. DOI: 10.1090/pspum/040.1/713063

[7] J. N. Damon. Topological triviality and versality for subgroups of A and K. Number 389 in Memoirs of the
American Mathematical Society. American Mathematical Society, 1988. DOI: 10.1090/memo/0389

[8] G. B. Dantzig and M. N. Thapa. Linear Programming 2: Theory and Extensions. Springer Series in Opera-

tions Research and Financial Engineering. Springer, 2003.
[9] G. B. Dantzig and M. N. Thapa. Linear Programming 1: Introduction. Springer Series in Operations Research

and Financial Engineering. Springer, New York, 1997.

[10] A. Dimca. Function germs defined on isolated hypersurface singularities. Compositio Math., 53(2):245–258,
1984.

[11] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Springer Publishing Company, In-

corporated, 2nd edition, 2015. DOI: 10.1007/978-3-662-44874-8
[12] T. Gaffney. The structure of TA(f), classification and an application to differential geometry. In Singularities,

Part 1 (Arcata, Calif., 1981), volume 40 of Proc. Sympos. Pure Math., pages 409–427. Amer. Math. Soc.,

Providence, RI, 1983. DOI: 10.1090/pspum/040.1/713081
[13] J.-J. Gervais. Sufficiency of jets. Pacific J. Math., 72(2):419–422, 1977. DOI: 10.2140/pjm.1977.72.419

[14] J.-J. Gervais. G-stability of mappings and stability of bifurcation diagrams. J. London Math. Soc. (2),
25(3):551–563, 1982. DOI: 10.1112/jlms/s2-25.3.551
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