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COMPARISON OF THE TWO NOTIONS OF CHARACTERISTIC CYCLES

ANKIT RAI

Abstract. Given a constructible sheaf F on a complex manifold, Kashiwara-Schapira defined
the notion of singular support and characteristic cycle of F . On the other hand for a Zariski
constructible étale sheaf F on an algebraic variety X, Beilinson defined the notion of singular

support of F and Saito defined the notion of characteristic cycle of F . In this article we
compare these notions and prove that they agree in a suitable sense. In the appendix we
discuss extension of the notions of singular support and characteristic cycles developed by
Umezaki-Yang-Zhao and Barrett.

1. Introduction

The comparison theorems between the classical and the modern geometry are of interest for
multiple reasons. On one hand it allows the use of powerful algebro-geometric methods to prove
theorems in classical geometry, and on the other hand it provides a much needed testing ground
for the intuitions behind developing new notions in modern geometry.

In the next paragraph we discuss the necessary notation to state the main theorem of this
article. Let X be a separated smooth scheme of finite type over the field of complex numbers
C and Xan denotes the associated complex analytic space X(C). Let Λ be a finite local ring
and Db

ctf (X
an,Λ) (respectively Db

ctf (Xét,Λ)) denote the bounded derived category of tor-finite

complexes F of sheaves (respectively the étale sheaves) with coefficients in finite Λ-modules,
such that the cohomology sheaves Hi(F ) are Zariski constructible and are of finite tor-dimension.
Kashiwara-Schapira refined1 the notion of the support of F ∈ Db

ctf (X
an,Λ) to that of the singular

support. The singular support of F ∈ Db
ctf (X

an,Λ) is a closed complex analytic conical subset of

(T ∗X)(C) which we denote by SSKS(F ). In [Bei17], Beilinson defines the notion of the singular
support of F ∈ Db

ctf (Xét,Λ) as a Zariski closed conical subset of T ∗X denoted in this article by

SSB(F ). The notion of the singular support in the sense of Beilinson has been extended to any
F ∈ Db

c(Xét,Λ) for Λ ∈ {Zℓ,Qℓ} (See §3.2). We denote this by SSBUYZ(F ). In this article, we
prove the following

Theorem 1.1 (Corollary 4.2, §5). Let F ∈ Db
c(Xét,Λ), where Λ ∈ {Qℓ,Qℓ}. Then

SSKS(F ) = SSBUYZ(F ).

The notion of the singular support can be upgraded to a cycle supported on the singular support.
This has been achieved by Kashiwara-Schapira in the analytic setting, and by Saito in the
algebraic setting. The characteristic cycle defined by Kashiwara-Schapira is defined only for
F ∈ Db

c(X
an,Λ), where Λ is a field of characteristic 0. We denote this cycle by CCKS(F ). The

characteristic cycle defined by Saito, a priori, only makes sense for F ∈ Db
ctf (Xét,Λ), where Λ is

a finite local ring. This notion has also been extended to any F ∈ Db
c(Xét,Λ) for Λ ∈ {Zℓ,Qℓ}

(See [UYZ20, Def. 5.3.2]). We denote it by CCSUYZ(F ). The two notions are compared in the
following

1Let π : T ∗X → X be the cotangent bundle then π(SSKS(F )) = the support of F ∈ Db
ctf (X,Λ) and this

justifies the claim that singular support refines the notion of the support of a sheaf.
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Theorem 1.2 (Theorem 4.1, §5). Let F ∈ Db
c(Xét,Λ), where Λ ∈ {Qℓ,Qℓ}. Then

CCKS(F ) = CCSUYZ(F ).

The statements of the above theorem are probably well known to the experts. This article serves
to fill in the gap in the written literature by providing a proof of the above theorems.

Organization of the paper and the strategy of the proof. In §2 we lay down the assump-
tions made in this article and discuss some basic terminology which will be needed in the later
sections. In §3.1 we recall the definition of the singular support and the characteristic cycle of
a complex of sheaves on a complex algebraic variety. We have taken the liberty of stating a
theorem of Kashiwara-Schapira as the definition of the singular support. Section 3.2 recalls the
definition of the weak singular support given by Beilinson and the definition of the characteristic
cycle given by Saito. The extension of these notions to complexes of sheaves with coefficients in
Zℓ or Qℓ is also discussed there.

A few (perhaps well known) statements whose proofs we were unable to find in the literature
are needed in the sequel. The statements along with their proofs are stated as Lemma 3.5, 3.6
and 3.8 in §3.3. In §3.4 we summarise various properties of the singular supports and of the
characteristic cycles that are to be used in the proofs of Theorems 1.1 and 1.2. The proofs of
Theorem 1.1 and Theorem 1.2 are completed in §4. The strategy of the proof of these theorems
is to recursively use properties 1 and 2 from §3.4 in order to reduce to the case of irreducible
perverse sheaves. Further Hironaka’s resolution of singularities and the decomposition theorem
with respect to support for perverse sheaves (Step 3 of proof of Theorem 4.1) are used to reduce
to the case of irreducible perverse sheaves of the form j!L, where L is a simple local system on
U , and j : U ↪→ X is an open subset whose complement is a strict normal crossing divisor. The
theorem is achieved thereafter by an explicit computation (See §4, Step 4).

Finally Appendix A discusses the dependence of the characteristic cycle CCKS on the coefficient
system and Appendix B compares the two ways of extending of the notion of singular support
developed by Umezaki-Yang-Zhao and Barrett.

Acknowledgements. The author thanks K. V. Shuddhodan for suggesting the question and for
numerous discussions, and Najmuddin Fakhruddin for directing them to the relevant reference in
Fulton and for the accompanied explanation which forms the proof of Lemma 2.3. The author
thanks the referee for several helpful comments, in particular for pointing out that some of the
arguments from [KS] when used in the setting of complex manifolds requires clarification (see
§3.1) and that the arguments of this article can be extended to Qℓ-sheaves (see §5). This work
was supported was supported by postdoctoral fellowships from Indian Institute of Technology
Bombay and Chennai Mathematical Institute.

2. Basics

2.1. Assumptions in this article. In this article an algebraic variety will mean a separated
smooth scheme of finite type over the field C of complex numbers. Any morphism of algebraic
varieties that appear will automatically be of finite type. By Xan we will mean the complex points
of an algebraic variety, and any morphism will be assumed to be one induced by a morphism of
algebraic varieties. To keep matters simple and the exposition lucid we restrict ourselves to the
case of Λ ∈ {Z/ℓnZ,Zℓ,Qℓ} until §4, and deal with Λ = Qℓ-sheaves in §5.

2.2. Constructible sheaves. Notion of a constructible sheaf depends on the stratification of
a space and the fundamental groups of these strata. Since the latter two notions differ in the
settings of algebraic varieties and complex analytic varieties, the notion of a constructible sheaf
differs as well. We recall the basics of constructible sheaves which also serves the purpose of



COMPARISON OF THE TWO NOTIONS OF CHARACTERISTIC CYCLES 41

introducing the relevant notation.

Let Λ be a noetherian ring. A sheaf F valued in finitely generated Λ-modules on Xan is called
constructible if there exists finitely many Zariski locally closed subsets Xan

i ⊂ Xan such that, (1)
Xan = ⊔

i
Xan

i , (2) the Zariski closure Xan
i of each Xan

i is a union of finitely many of the Xan
j , and

(3) F |Xan
i

is a local system valued in finite Λ-modules. We can furthermore choose Xan
i to be

complex submanifolds of Xan(See [KS, Prop. 8.5.4]). Let Db(Xan,Λ) be the bounded derived cat-
egory of sheaves on Xan valued in Λ-modules. The full subcategory Db

ctf (X
an,Λ) ⊂ Db(Xan,Λ)

is then defined by declaring that F ∈ Ob(Db(Xan,Λ)) belongs to Db
ctf (X

an,Λ) if Hi(F ) is a

constructible sheaf, and Hq(F ⊗L Q) ̸= 0 for finitely many q and any finite Λ-module Q. The
assumptions on the ring Λ ensure that the conditions on F in order to belong to the subcat-
egory Db

ctf (X
an,Λ) is equivalent to the condition that Fx, the stalk of F at any x ∈ X(C), is

a perfect complex of Λ-modules (thanks to the standard results [Sta, Lemma 066E, Lemma 0658]).

Let Λ be a finite local ring. Let F be a Zariski constructible étale sheaf valued in finite Λ-modules
on the algebraic variety X that is F is an étale sheaf valued in finitely generated Λ-modules and
there exists finitely many locally closed subvarieties Xi ⊂ X such that (1) X = ⊔

i
Xi, (2) the

Zariski closure Xi of each Xi is a union of finitely many of the Xj , and (3) F |Xi is a étale-locally
constant sheaf valued in finite Λ-modules. The Zariski locally closed subvarieties Xi can always be
chosen to be smooth. Let Db(Xét,Λ) denote the bounded derived category of étale sheaves valued
in finite Λ-modules. The full subcategory Db

ctf (Xét,Λ) ⊂ Db(Xét,Λ) is defined by declaring that

F ∈ Ob(Db(Xét,Λ)) belongs to Db
ctf (Xét,Λ) if Hi(F ) is a Zariski constructible étale Λ-sheaf

which is nonzero for atmost finitely many i, and F ⊗L
Λ Q ∈ Db(Xét,Λ) for any finitely generated

module Q over Λ.

For Λ = Zℓ, the derived category Db
ctf (Xét,Zℓ) is defined to be the category 2-limDb

ctf (Xét,Λ/ℓ
n)

whose objects are projective systems F = {Fn}n≥1 with Fn ∈ Db
ctf (Xét,Z/ℓnZ) such the induced

map Fn+1 ⊗L Z/ℓnZ ∼= Fn is an isomorphism, and the morphisms f ∈ homDb
ctf (Xét,Zℓ)

(F,G) is a

collection {fn} of morphisms, where fn ∈ homDb
ctf (Xét,Z/ℓnZ)(Fn, Gn) which renders the following

diagram

Fn+1 ⊗L Z/ℓnZ Gn+1 ⊗L Z/ℓnZ

Fn Gn

∼

fn+1⊗Z/ℓnZ

∼

fn

to be commutative. The ℓ-adic derived category Db
c(Xét,Qℓ) is obtained by inverting the

multiplication by ℓ map on Db
ctf (Xét,Zℓ). The definition of Db

c(X
an,Qℓ) makes sense without any

further qualifications. Over the algebraically closed field C, any étale-locally constant sheaf on
an algebraic variety X over C valued in a finite ring Λ gives a local system on Xan. This allows

us to associate to F ∈ Db
ctf (Xét,Zℓ)

(
resp. F ∈ Db

ctf (Xét,Zℓ)[ℓ
−1]

)
an element in Db

ctf (X
an,Zℓ)

(in Db
c(X

an,Qℓ)) in a canonical manner. The associated object is denoted by ε∗F in §2.4.

2.3. Six functor formalism. Let X and Y be algebraic varieties and f : X → Y be a morphism
of algebraic varieties. Let Λ ∈ {Z/ℓnZ,Zℓ,Qℓ} we may associate to a morphism f : X → Y two
pairs of adjoint functors

(f∗, f∗) : Db
ctf (Xét,Λ) Db

ctf (Yét,Λ), (f!, f
!) : Db

ctf (Yét,Λ) Db
ctf (Xét,Λ)
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and,

(f∗, f∗) : Db
ctf (X

an,Λ) Db
ctf (Y

an,Λ), (f!, f
!) : Db

ctf (Y
an,Λ) Db

ctf (X
an,Λ)

The adjointness of the pair (f!, f
!) is called as the Verdier duality which is a vast generalization

of the Poincaré duality. The existence of the pair of adjoint functors maybe found in [Sch, Cor.
2.2.2, Cor. 2.2.5] and [SGA4 1

2 , Cor. 1.5].

Consider the triple U X Z,
j i where U = X \ Z, j is an open immersion and i is

a closed immersion. It is easy to check from the definitions that i∗ = i!, j
∗ = j! and j∗i∗ = 0.

Moreover, i∗, j∗, and j! are fully faithful. For a sheaf F ∈ Db
ctf (Xét,Λ) (resp. D

b
ctf (X

an,Λ)) we
have the following distinguished triangles

j!j
∗F → F → i∗i

∗F
+1−−→ and, i∗i

!F → F → j∗j
∗F

+1−−→

in Db
ctf (Xét,Λ) (resp. D

b
ctf (X

an,Λ)). The data described in this paragraph form a recollement

of Db
ctf (Xét,Λ) (resp. D

b
ctf (X

an,Λ)) in the sense of [BBD82, §1.4.3].

2.4. Comparison of analytic and étale topos. Recall from [BBD82, §6.1, 6.2] that there is a
morphism of topos Xan → Xét which induces a fully faithful functor

ε∗ : {Zariski constructible étale Λ-sheaf} {Zariski constructible Λ-sheaf}

ε∗ : Db
c(Xét,Qℓ) Db

c(X
an,Qℓ).

The essential image of the functor ε∗ consists of objects F such that HiF is the image of a
Zariski constructible étale Λ-sheaf under ε∗. In fact, as noted in [BBD82] the functor is not an
equivalence of categories.

2.5. Vanishing cycles. Let Xan be a complex algebraic variety, F ∈ Db
ctf (X

an,Λ) with

Λ ∈ {Z/ℓnZ,Zℓ,Qℓ}, and f : Xan → C be a morphism. Set Xan
0 = f−1(0) and denote by

i the closed embedding i : Xan
0 ↪→ Xan. Let p̃ : X̃ → Xan be the pullback of f along the

composite C̃× → C× ↪→ C, where C̃× is the universal cover of C×. The vanishing cycle ϕan
f (F )

of F with respect to the map f is defined to be the cone Cone(i∗F → i∗p̃∗p̃
∗F ). The superscript

an has been added to the standard notation to remind us that the objects f,Xan, and F are
analytic in nature. The functor ϕan

f : Db(Xan,Λ) → Db(Xan
0 ,Λ) preserves constructibility ([Sch,

Thm. 4.0.2]).

Let X be an algebraic variety and f : X → A1 be a morphism of algebraic varieties. Let Osh
A1,{0}

denote the strict henselization of the local ring of A1 at the point {0}. We continue to denote by
f the base change of f via the map Spec(Osh

A1,{0}) → A1. Let s̄ and η̄ respectively be a closed

geometric and a generic geometric point of Spec(Osh
A1,{0}). Let i : Xs̄ → X and j : Xη̄ → X

respectively be the pullback of s̄ → Spec(Osh
A1,{0}) and η̄ → Spec(Osh

A1,{0}) along the morphism f .

The natural map F → j∗j
∗F induces the map i∗F → i∗j∗j

∗F . The vanishing cycle ϕalg
f (F ) of F

with respect to the map f is defined to be the cone Cone(i∗F → i∗j∗j
∗F ). The superscript alg

has been added to the standard notation to remind ourselves that the objects f,X, and F are

algebraic in nature. The functor ϕalg
f : Db(X,Λ) → Db(X0,Λ) preserves constructibility. This

is given by [SGA4 1
2 , Thm. 3.2] when Λ = Z/ℓnZ for some n. The case of Λ = Zℓ follows from

applying the aforementioned theorem for Λ = Z/ℓnZ for all n ≥ 1 by the standard arguments,
and finally the case of Λ = Qℓ is immediate.
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When X is an algebraic variety and f : X → A1 is a morphism of algebraic varieties, we have two

notions of vanishing cycles ϕalg
f (F ) and ϕan

f (ε∗F ). The morphism of topos ε gives the canonical
map

compét, Betti : ε
∗(ϕalg

f (F )) → ϕan
f(C)(ε

∗(F )).

The following comparison result for vanishing cycles is due to Deligne.

Theorem 2.1 ([SGA7II], Expose XIV, Theorem 2.8). The map compét, Betti is an isomorphism.

Let X and S be algebraic varieties, f : X → S be a morphism, and F be in Db
ctf (Xét,Λ) with Λ

a finite local ring. Let x̄ ∈ X(C) be a geometric point of X and f(x̄) ∈ S(C) be the image of x̄
under f . The map f induces a local homomorphism of local rings OS,f(x̄) → OX,x̄, and hence

also a homomorphism on their strict henselizations Osh
S,f(x̄) → Osh

X,x̄.

Let fsh : Spec(Osh
X,x̄) → Spec(Osh

S,f(x̄)) be the induced map. Let Mx̄,s̄ denote the fiber

product Spec(Osh
X,x̄)×Spec(Osh

S,f(x̄)
) s̄ for a geometric point s̄ ∈ Spec(Osh

S,f(x̄)). The canonical map

Mx̄,s̄ → Spec(Osh
X,x̄) induces a pullback map

αx̄,s̄ : Γ(Spec(Osh
X,x̄), F ) → Γ(Mx̄,s̄, F ).

We say that F is locally acyclic with respect to f if αx̄,s̄ are isomorphisms for all geometric
points x̄ ∈ X and a generization s̄ of f(x̄) ∈ S. In the situation when the algebraic variety S is
of dimension 1, we have the following well known lemma which relates the local acyclicity with
the vanishing cycles.

Lemma 2.2. Suppose that X,S, f : X → S, and F are as above. Then F is locally acyclic with
respect to the morphism f ⇔ ϕf (F ) = 0.

Proof. ϕf (F ) = 0 ⇔ i∗F → i∗j∗j
∗F is an isomorphism ⇔ F → j∗j

∗F is an isomorphism. Taking
stalks at a geometric point x̄ ∈ Xs̄ we get

Γ(Spec(Osh
X,x̄, F ) ∼= (j∗j

∗F )x̄ ∼= Γ(Spec(Osh
X,x̄), j∗j

∗F ) ∼= Γ(Spec(Osh
X,x̄)η̄, F ).

The isomorphism in the last step follows due to the property that nearby cycles commutes with a
finite base change (See [Sai17, Prop. 2.7]). The isomorphism of the two extreme terms precisely
means that F is locally acyclic with respect to the morphism f . The lemma follows. □

In a more general setup than the one considered above, the given definition of local acyclicity
has several issues such as, the sheaf of vanishing cycles may not be constructible2, the vanishing
cycles functor may not commute with the base change, and the data of the local acyclicity cannot
be captured by a lemma as simple as above. The appearance of non-finite type schemes such
as the Milnor tubes can be circumvented by using the characterization of universally acyclic
complex of sheaves developed by Lu-Zheng [LZ19] and Hansen-Scholze [HS23].

2.6. Cycle class. Let X be an equidimensional algebraic variety. For a natural number n, let
CHn(X) denote the formal sum of irreducible algebraic varieties of X of codimension n up to
rational equivalence. There is the following cycle class map

CHn(X)
cl−→ H2n(Xét,Qℓ),

assigning to a closed subvariety Y of X of codimension n, a refined cycle class [Y ] ∈ H2n
Y (Xét,Qℓ)

(See [Jan88, Thm. 3.23]) which under the canonical map H2n
Y (Xét,Qℓ) → H2n(Xét,Qℓ) maps

to cl(Y ). We will write cl for the refined cycle class map as well. Note that the tate twists

2But it is constructible after a modification of the base (See [Org06, Thm. 6.1])
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do not appear here since we opted to work over the algebraically closed field C. Let c be a
correspondence as below

C

X Z

f g ,

where C is an algebraic variety, f is a locally complete intersection morphism and g is proper.
Then, c∗ the pushforward map along c is defined to be the composite g∗f

∗,

c∗ : CHn(X) → CHn+dimZ−dimC(Z).

Similarly3, the maps

c∗ : H2n(Xét,Qℓ) → H2n+2dimZ−2 dimC(Zét,Qℓ)

c∗ : H2n
Y (Xét,Qℓ) → H2n+2dimZ−2 dimC

g◦f−1(Y ) (Zét,Qℓ)

is defined to be the composite g∗f
∗.

Recall that by our assumption the varieties X,Z, and C are smooth. This in particular implies
that the morphisms are locally complete intersections4. The cycle class map is functorial with
respect to the pushforward maps under correspondences, that is, the diagram below commutes.

CHn(X) H2n(Xét,Qℓ)

CHn+dimZ−dimC(Z) H2n+2dimZ−2 dimC(Zét,Qℓ).

cl

c∗ c∗

cl

Lemma 2.3. Let c be a correspondence as above, Y ⊂ X be an equidimensional Zariski closed
subset with the reduced induced subscheme structure, let c0(Y ) denote the Zariski closed subset
g ◦ f−1(Y ), and let n be the codimension of Y in X. Then the refined cycle class map is also
functorial. That is, the diagram below commutes.

CH0(Y ) H2n
Y (Xét,Qℓ)

CHdimZ−dimC(c0(Y )) H2n+2dimZ−2 dimC
c0(Y ) (Zét,Qℓ)

cl

c∗ c∗

cl

Proof. The commutativity of the above diagram can be broken into functoriality of the refined
cycle class map for 1. pullback along locally complete intersection morphism5 and 2. pushforward
along proper morphism. Note that any lci morphism can be factored as a composition of regular
embedding followed by a projection map which is flat. The Functoriality of the cycle class map
for pullbacks under the projection map is clear. See [Ful, Chapter 19, Lemma 19.2(a)] for the
functoriality of the cycle class maps for pullback via a regular embedding. See [Ful, Lemma
19.1.2] for functoriality of the cycle class map under pushforward along proper morphisms. □

2.7. Closed conical subsets of cotangent bundle. Let X be an algebraic variety, then its
cotangent bundle T ∗X is again an algebraic variety equipped with a canonical 1-form ω. With
this choice dω is a closed 2-form on T ∗X making it into a symplectic manifold. A Zariski closed
subset C ⊂ T ∗X is called a conical subset if it is stable under the obvious action of Gm on
T ∗X. The first and perhaps the example that is most pertinent to us is T ∗

SX, the closure in
the Zariski topology of the conormal bundle of X along a smooth locally closed subset in the

3Here we do not need the assumption of f being lci.
4abrreviated as lci in the rest of the document.
5Note that any morphism among smooth varieties is a locally complete intersection.
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Zariski topology S ⊂ X(See [KS, Prop. 8.5.4]). Let Csm ⊂ C be the smooth locus of C which is
in fact dense in the Zariski topology. We call C to be isotropic if dω|Csm ≡ 0, and C is said to be
involutive if for all p ∈ Csm, TpC is an involutive subset of TpT

∗X for the symplectic pairing
on TpT

∗X induced by ω. A subset C is called Lagrangian if C is an isotropic and involutive subset.

In the case of complex analytic variety Xan, the above paragraph must be read replacing Zariski
topology, and Gm respectively by Euclidean topology and, C×.

3. Singular supports and characteristic cycles

3.1. Analytic. Let Λ ∈ {Z/ℓnZ,Zℓ,Qℓ} except in the last paragraph where we assume Λ = Qℓ.

To any sheaf F ∈ Db
ctf (X

an,Λ), Kashiwara-Schapira associates a closed conical isotropic involutive

subset of T ∗Xan denoted in this article by SSKS(F ) (See [KS, Thm. 8.5.5]). The definition in the
book perhaps cannot be seen to be immediately related to the definition of the singular supports
due to Beilinson. We quote here a result from the book which resembles Beilinson’s definition

Theorem-Definition 3.1 ([KS], Prop. 8.6.4). Let π : T ∗Xan → Xan be the cotangent bundle
of Xan. The following are equivalent:

(1) p ∈ T ∗Xan does not belong to the singular support of F .
(2) There exists an open neighbourhood U6 of p and a holomorphic function f defined on

some open neighbourhood V of π(p) satisfying f(π(p)) = 0 and df(π(p)) ∈ U , such that
ϕan
f (F )π(p) = 0.

Kashiwara-Schapira further define a cycle which is a formal sum of closed conical Lagrangians
which appear in the singular support of the sheaf with certain integer coefficients as explained
below. Although §8.5 and 8.6 of the book deals with complex manifold, it must be noted that
Chapter 9 considers only real analytic manifolds and so the following paragraphs require further
clarification7. The constructions described below continue to make sense since any complex
manifold has an underlying real analytic manifold. The equality in displayed equation (2) is
(possibly)8 not true unless X is treated as a real analytic manifold. In equation (2), the closed
subanalytic subsets which appear are of pure dimension due to [KS, Prop. 9.2.7], which again
is the same as the dimension of the regular locus of SSKS(F ). Hence these subanalytic closed
subsets are necessarily the closure (Euclidean topology) of connected components of the regular
locus of the singular support. That is the closed subanalytic subsets which appear in (2) are
necessarily complex analytic closed subset of cotangent bundle of Xan. Any other citations which
refer to the book of Kashiwara-Schapira are independent of the considerations of whether the
underlying manifold is real analytic or complex analytic.

Let π : T ∗Xan → Xan be the cotangent bundle of Xan, p1, p2 respectively be the first and second
projections of Xan ×Xan → Xan, and δ : Xan → Xan ×Xan be the diagonal embedding. The
characteristic class C(F ) ∈ H0

supp(F )(X
an, ωXan) is defined to be the image of the identity map

of F , denoted by idF ∈ hom(F, F ), under the following composite

Rhom(F, F )
∼−→ δ!(F ⊠DXanF ) → δ∗(F ⊠DXanF )

∼−→ F ⊗DXanF
tr−→ ωXan .

Here ωXan(= ΛXan [2 dimXan]) denote the dualizing sheaf of Xan. The above morphisms can be
lifted to a map of sheaves on the cotangent bundle of Xan using the technique of microlocalization.

6U is open subset in the Euclidean topology.
7This was pointed out to us by the referee.
8At least the proof of Kashiwara-Schapira do not extend verbatim.
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We refer the reader to [KS, §9.4] for the definition of the characteristic cycle, and to [KS, Ch. IV]
for the definition of microlocalization. This allows us to write a morphism (See [KS, pp. 352])

(1) Rhom(F, F ) → Rπ∗RΓSSKS(F )(π
−1ωXan).

The image of idF ∈ Rhom(F, F ) under the above map is an equivalence class

H0
SSKS(F)(T

∗Xan, π−1ωXan),

to be denoted by CCKS(F ). Since Xan is a complex manifold, we have a canonical isomorphism
ωXan ≃ ΛXan [2 dimXan]. We now make the assumption that Λ is a field of characteristic 0.
Denote by C S •(T ∗Xan) the sheaf of subanalytic chains in T ∗Xan (See [KS, §9.2]). Using [KS,
Prop. 9.2.6(iv)] we get the following series of isomorphisms

H0
SSKS(F)(T

∗Xan,ΛT∗Xan [2 dimXan]) = H−2 dimXan

SSKS(F )
(T ∗Xan,C S •(T

∗Xan))

⊂ C S T∗Xan

2 dimXan(SSKS(F ))

=

{∑
aiX

an
i

∣∣∣∣∣ Xan
i ⊂ SSKS(F ) locally closed subanalytic,

dim(Xan
i ) = 2 dimXan and ai ∈ Λ

}
.

(2)

The image of the cohomology class CCKS(F ) under the identification in (2) will again be denoted
by CCKS(F ). [KS, Prop. 9.4.5] proves that the cycle CCKS(F ) is defined over the ring of intergers
Z. We will also need the following

Lemma 3.2. For a perverse sheaf F , CCKS(F ) ≥ 0 and is supported on SSKS(F ), the singular
support of F .

Proof. The singular support commutes with the Riemann-Hilbert correspondence functor DRXan

(See [KS, Theorem 11.3.3]). The characteristic cycle commutes with DRXan as well (See [SV00,
pp.1115-1116]). But for holonomic D-modules the assertion that the characteristic cycle is
supported on the characteristic variety is clear from the definition. □

3.2. Algebraic. We assume Λ = Z/ℓnZ in this section unless otherwise mentioned. In [Bei17]
Beilinson defines the notion of the weak singular support of a constructible sheaf F ∈ Db

ctf (Xét,Λ)
to be the smallest closed conical subsets C of T ∗X satisfying the following : for every C-
transversal9 test pair (j, f) with j : U ↪→ X an open embedding, and a morphism f : X → A1,
F |U is locally acyclic with respect to the map f . Explicitly the weak singular support can also
be described as the Zariski closure in T ∗X of the set

{(x, df(x)) | x ∈ X(C) and f is not locally acyclic relative to F at x ∈ X(C)}.
It is proved that SSB(F ) is a closed conical isotropic subset and each of its irreducible components
are of dimension n = dim(X) (See [Sai20, Prop. 2.2.7]).

Remark 3.3.

(1) Let f : U → A1 be a SSKS(F )
Zar

-transversal pair, then df(x) /∈ SSKS(F )
Zar

for any

x ∈ U . Hence ϕan
f (F |U ) = 0. Using Theorem 2.1 we get that ϕalg

f (F |U ) = 0. Thus,

F is microsupported on the Zariski closed subset SSKS(F )
Zar

. Hence the inclusion

SSB(F ) ⊂ SSKS(F )
Zar

holds.
(2) For the sake of clarity we mention here that the notion of the weak singular support

coincides with the notion of singular support as has been proved by Beilinson [Bei17,
§1.5, Theorem].

9Recall that a pair (h, f) is said to be C-transversal if df−1
x (Cx) \ {0} = ∅. Here Cx denotes the set C ∩ T ∗

xX,

and dfx denotes the stalk at x ∈ X of the morphism df : T ∗A1 → T ∗X.
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To any F ∈ Db
ctf (X,Λ), Saito [Sai17] associates a cycle (not just a class!) supported on SSB(F )

with integer coefficients (See [Sai17, Prop. 5.18]). We denote this cycle by CCS(F ). More
precisely if SSB(F ) = ∪

i
Ci then CCS(F ) :=

∑
i

mi[Ci] is such that for any triple (j, f, u) in the set

{
(j : U → X, f : U → A1, u ∈ U(C))

∣∣∣∣∣ (j, f) is a test pair and,

(j|U\u, f |U\u) is a SSB(F )-transversal test pair.

}
,

the equality

(Milnor formula) −tot dim(ϕalg
u (j∗F, f)) = (CCS(F ), df)T∗U,u

holds. Here ϕalg
u (j∗F, f) denotes the vanishing cycle of j∗F with respect to the morphism f and

(CCS(F ), df)T∗U,u denotes the intersection of the cycle CCS(F ) with the graph of the map df
induced by the morphism f , and tot dim(K) denotes the alternating sum

∑
(−1)i dim(Hi(K))

for K a bounded complex of projective Λ-modules. The intersection number is well defined since
f is assumed to be transversal to SSB(F ) \ {u}. For a perverse sheaf F , the coefficients of the
cycle CCS(F ) are nonnegative integers ([Sai17, Prop. 5.14]).

For the remaining part of this subsection we assume Λ = Zℓ. For any torsion free Zariski
constructible étale sheaf F with coefficients in Λ, there exists étale sheaves Fn with coefficients
in Λ/ℓn such that Fn is flat over Λ/ℓn, and Fn+1 ⊗Λ/ℓn+1 Λ/ℓn ∼= Fn. It follows from the

definitions of the singular support and of the characteristic cycle that SSB(Fn+1) = SSB(Fn) and
CCS(Fn+1) = CCS(Fn). Hence, it is meaningful to define

SSB({Fn}n) := SSB(F0), CCS({Fn}n) := CCS(F0).

It is proved in [UYZ20, Thm. 5.3.3] that F is in fact mircosupported on SSB(F) and that CCS(F)
satisfies the (Milnor formula). For any F ∈ Db

ctf (Xét,Λ)[ℓ
−1], there exist torsion free sheaves

F i with coefficients in Λ such that F i ⊗Λ Frac(Λ) ∼= Hi(F ). Following a suggestion of Saito,
Umezaki-Yang-Zhao [UYZ20] define

CCSUYZ(F ) :=
∑
i

(−1)iCCS(F i), and SSBUYZ(F ) :=
⋃
i

Supp
(
CCSUYZ(pHi(F ))

)
.

In the following proposition we list and indicate a quick proof of some expected properties of
SSBUYZ and CCSUYZ.

Proposition 3.4. With the notation as above, the following holds:

(1) For any F ∈ Db
ctf (Xét,Λ)[ℓ

−1],

SSBUYZ(F ) =
⋃
i

SSBUYZ(pHi(F )) and CCSUYZ(F ) =
∑
i

CCSUYZ(pHi(F )).

(2) For a perverse sheaf F ∈ Db
ctf (Xét,Λ)[ℓ

−1], the coefficients of the cycle CCSUYZ(F ) are
all nonnegative.

(3) Let 0 → F1 → F2 → F3 → 0 be an exact sequence of perverse sheaves in Db
ctf (Xét,Λ)[λ

−1].

Then SSBUYZ(F2) = SSBUYZ(F1) ∪ SSBUYZ(F3) and

CCSUYZ(F2) = CCSUYZ(F1) + CCSUYZ(F3).
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(4) Suppose that U
j
↪→ X is an open subset of X such that Z = X \ U =

n
∪
i=1

Di is a

normal crossing divisor. Set DI := ∩{i∈I}Di and D∅ := X. Let F be a locally con-

stant constructible Qℓ-sheaf
10 on U . Then SSBUYZ(j!F [dimX]) = ∪

I⊂{1,2,...,n}
T ∗
DI

X and

CCSUYZ(j!F [dimX]) = rk(F )
∑

I⊂{1,2,...,n}
T ∗
DI

X.

Proof.

(1) The equality on the singular supports and the characteristic cycles is clear from the
definition.

(2) We know from [UYZ20, Thm. 5.3.3] that CCSUYZ satisfies the Milnor number formula.
We may use [Bei17, §4.9(i)], more precisely its refinement [Sai17, Lemma 4.10] to conclude
that the coefficients are nonnegative.

(3) The equality on the characteristic cycles follows from the definition. The equality on the
singular supports follows from the definition and part (2).

(4) Note that j! is t-exact and hence, j!F [dimX] is also perverse. In this case the equality
SSBUYZ(j!F ) = Supp(CCSUYZ(j!F )) follows from the definitions of SSBUYZ and CCBUYZ.
Thus it is enough to prove that CCSUYZ(j!F [dimX]) = rk(F )

∑
I⊂{1,2,...,n}

T ∗
DI

X. This

follows by putting together [UYZ20, §5.2.7] and [Sai17, Prop. 4.11].

□

3.3. Three lemmas. In this subsection we assume that Λ = Qℓ unless otherwise mentioned.

Consider the following diagram U X D,
j i where U = X \D, j is an open immersion

and i is a closed immersion such that D =
r
∪
i=1

Di is a strict normal crossing divisor. Let F be

a local system on the open set Uan, then j!F is a perverse sheaf on Xan (See [BBD82, Cor.
4.1.10]).

Lemma 3.5. Let X,D, and U be as above, and F be a finite dimensional locally constant
constructible sheaf valued in Qℓ. Define DI := ∩{i∈I}Di and D∅ := X. Then,

CCKS(j!F ) = (−1)dimC Xan

rk(F |U )
∑

I⊂{1,2,...,r}

T ∗
Dan

I
Xan.

Proof. Since the question is local (in fact microlocal) we may assume that Xan = Cn,
D = {z1z2 . . . zr = 0}, and F = j!L, where L is a Qℓ-local system on (C×)r × Cn−r. It is
clear from the definition of CCKS that CCKS(F ) = CCKS(F ⊗Λ C). Thus we may further assume
F = j!(L ⊗ C). Since CCKS is additive for distinguished triangles (See §3.4(2)), thus we may
also assume that L is an irreducible local system with complex coefficients. So we may write
L = L1 ⊠ · · · ⊠ Lr

11 for certain irreducible local system Li of C×. Let ja : C× ↪→ C be the
restriction of j to the a-th coordinate for 1 ≤ a ≤ r and ja = id for r + 1 ≤ a ≤ n, then
j∗ = j∗1 ×· · ·×j∗n. Since j! is left adjoint to j∗ = j∗1 ×· · ·×j∗n, j!L = j1!L1⊠j2!L2⊠ · · ·⊠jr!Lr⊠C.
We know from [KS, pp. 378] that CCKS(j!L) = CCKS(j1!L1) ⊠ · · · ⊠ CCKS(jr!Lr) ⊠ CCKS(C).

10To avoid any confusion, we emphasize that F is necessarily tamely ramified Qℓ-sheaf since X is defined over
a field of characteristic 0.

11Note that all the irreducible representations of π1((C×)r) = Zr over an algebraically closed field is one

dimensional and is product of one dimensional representation.
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Supposing we also know that CCKS(jt!Lt) = − rk(Lt)([T
∗
CC] + [T ∗

{0}C]), we get

CCKS(j!L) = (−1)dimX rk(L)([T ∗
CC]+[T ∗

{0}C])⊠ · · ·⊠ ([T ∗
CC] + [T ∗

{0}C])⊠ [T ∗
Cn−rCn−r]

= (−1)dimX rk(L)
∑

I⊂{1,...,r}

T ∗
DI

X.

It remains to prove the equality CCKS(j!L) = − rk(L)([T ∗
CC] + [T ∗

{0}C]) where L is a one

dimensional local system with coefficients in C. We first prove this when L is a trivial local
system. Applying 2 of §3.4 to the triangle j!j

∗C → C → i∗i
∗C we get

CCKS(j!C) = CCKS(C)− CCKS(i∗C) = −[T ∗
CC]− [T ∗

{0}C].

Thus proving the claim in this case. If L is a nontrivial simple local system then the canonical
map j!L → j∗L is an isomorphism. In this case we have the following commutative diagram

j!(L⊗ L∨) j!L⊗ j∗L
∨ j!L⊗D(j!L)

j!C ωXan

j!(C⊗ C) j!(C)⊗ j∗(C) j!(C)⊗D(j!C)

∼ ∼

∼

∼

∼ ∼

Chasing the image of the identity morphism in Rhom(j!L, j!L) and Rhom(j!C, j!C) in the
sequence of arrows in the definition of characteristic cycle (See [KS, §9.4]) we conclude using the
diagram above that their images in Rπ∗RΓSS(π

−1ωXan) coincide. Hence

CCKS(j!L) = CCKS(j!C) = −[T ∗
CC]− [T ∗

{0}C].

This finishes the proof of the lemma. □

Lemma 3.6. Let p : Y → X be a projective morphism of algebraic varieties and F ∈ Db
ctf (Yét,Λ).

Assume Λ ∈ {Z/ℓnZ,Zℓ} and CCKS(F ) = CCS(F ), or Λ = Qℓ and CCKS(F ) = CCSUYZ(F ).
Then CCKS(p∗F ) = CCSUYZ(p∗F ).

Proof. Let the pushforward in cycles (resp. cohomology) along the correspondence

T ∗X ×X Y

T ∗Y T ∗X.

dp

be denoted by p! (resp. p∗). We have the following equality of cycles

CCSUYZ(p∗F )
(1)
= p!CC

SUYZ(F )
(2)
= p∗CC

KS(F )
(3)
= CCKS(p∗F ).

Using [UYZ20, Thm. 5.17(1)] we are reduced to proving (1) for a Zariski constructible étale sheaf
F with coefficients in OΛ/ℓ

n. The equality (1) for F ∈ Db
c(Yét,OΛ/ℓ

n) is the content of [Sai20,
Prop. 2.2.7(2)]. Saito first proves that the equality holds under certain addtional assumption
on the dimension of f0(SS(F )) (See [Sai20, Thm. 2.2.5]). He then proves that this additional
assumption is automatically satisfied when X is defined over a field of characteristic 0. This
finishes the proof of equality (1) above. The equality (3) is the content of [KS, Prop. 9.4.2]. The
equality (2) is explained in Lemma 2.3 of §2.6. □

Remark 3.7. The assumption in the above lemma can be relaxed to - f a quasi-projective map
and proper on the support of F . This assumption is forced on us since we rely crucially on Saito’s
result [Sai20, Prop. 2.2.7(2)].
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Lemma 3.8. Let F be a perverse sheaf on X such that F |U is isomorphic to L|U where L|U is a
simple local system. Then ICX(L|U ) is the only simple subquotient of F with support containing
the open subset U .

Proof. This statement is about composition series and hence we may assume that F is semisimple.
Moreover F may be assumed to be simple since the local system of interest is simple. So it suffices
to observe that for a simple perverse sheaf F , if F |U is isomorphic to a simple local system L|U ,
then F ∼= ICX(L|U ). □

3.4. Summary of properties of singular supports and characteristic cycles. The prop-
erties of the singular supports and the characteristic cycles are summarised below. In this
subsection the notation SS(F ) and CC(F ) are used to signify that the properties enumerated
below continues to hold true for both the notions of the singular support and of the characteristic
cycle discussed in §3.1 and §3.2. Note that the assumption Λ = Qℓ is in effect here.

(1) SS(F ) = ∪iSS(
pHi(F )), CC(F ) =

∑
i

CC(pHi(F )). See [KS, Prop. 5.1.3(iii), Prop. 9.4.5],

[Sai17, Lemma 5.13(1)], and Propisition 3.4(1) above.
(2) For an exact sequence of perverse sheaves 0 → F1 → F2 → F3 → 0, the equalities

SS(F2) = SS(F1) ∪ SS(F2) and CC(F2) = CC(F1) + CC(F3) holds. See [KS, Prop.
9.4.5(ii)], [Sai17, Lemma 5.13(1)], and Proposition 3.4(3).

(3) Suppose that U
j
↪→ X is an open subset of X such that Z = X \ U =

n
∪
i=1

Di is a normal

crossing divisor. Let F be a locally constant constructible sheaf on U , whose complement
isD. Then SS(j!F ) = ∪

I⊂{1,2,...,n}
T ∗
DI

X, and CC(j!F ) = (−1)dimX rk(F )
∑

I⊂{1,2,...,n}
T ∗
DI

X.

See Proposition 3.4(4) and Lemma 3.5 above.
(4) Let p : X → Y be a projective morphism between smooth varieties. Then

CCKS(F ) = CCSUYZ(F ) ⇒ CCKS(p∗F ) = CCSUYZ(p∗F ).

See Lemma 3.6 above.

4. Main theorem and proof

Theorem 4.1. Let X be a smooth algebraic variety over C, and F ∈ Db
c(Xét,Qℓ). Then

CCSUYZ(F ) = CCKS(F ).

Proof. We may assume F ̸= 0 since the theorem is clear when F = 0. The proof of the theorem
proceeds via an induction argument on the dimension of the support. The case of objects
F ∈ Db

c(Xét,Qℓ) supported of dimension 0 is obvious. We may thus begin the induction process.

Step 1. Reduce to F a simple perverse sheaf . An application of §3.4(1) implies that it is enough
to prove the theorem for a perverse sheaf F . Using §3.4(2) we are reduced to considering
only simple perverse sheaves.

Step 2. Behaviour under taking subobjects and quotients. Let 0 → F1 → F2 → F3 → 0 be an
exact sequence of perverse sheaves. If the theorem holds for any two out of the three
perverse sheaves F1, F2, and F3, then it holds for the remaining one as well. This is again
clear by using §3.4(2).

Step 3. Reduction to F = j!∗LU where j : U ↪→ X is an open embedding whose complement
is strict normal crossing divisor . Let F be a simple perverse sheaf. We may assume
that F = j!∗LU , where LU is a simple local system on U . After possibly choosing a
smaller open subset U and using Hironaka’s theorem on resolution of singularities, we can

ensure that there exists a smooth variety X̃ and a projective birational map r : X̃ → X,
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such that r|r−1(U) : r−1(U) → U is an isomorphism and r−1(U) X̃ Z,
j̃ ĩ

where Z ⊂ X̃ is a strict normal crossing divisor. Let F̃ := j!∗Lr−1(U). Then using the

decomposition theorem with respect to supports for perverse sheaf F̃ , we get

r∗F̃ = pH0(r∗F )⊕

{
shifted direct sum of perverse sheaves supported on

smaller dimensional subvarieties.

}

Assuming that the theorem holds for F̃ , we use §3.4(4) to conclude that the theorem

holds for r∗F̃ . An application of Step 2 above, and the hypothesis that the theorem holds
for all perverse sheaves supported on closed subsets of X of dimension < dimX implies

that the theorem holds for pH0(r∗F ). Using Lemma 2.5 we get that F ↪→ pH0(r∗F̃ ) with
the quotient being supported on smaller dimensional smooth varieties. An application of
step 2 and the hypothesis that the theorem holds for all perverse sheaves supported on
closed subsets of X of dimension < dimX we get that the theorem is true for F . Thus
completing the proof of this step.

Step 4. Proof of the theorem for F as in Step 3 . Let F be a perverse sheaf on a smooth variety
such that F = j!∗(LU ) and X \ U is a strict normal crossing divisor. The triangle
· · · → j!j

∗F → F → i∗i
∗F → · · · gives the following exact sequence of perverse sheaves

(See [BBD82, Cor. 4.1.10(ii)])

0 → i∗
pH−1i∗F → j!j

∗F → F → i∗
pH0i∗F → 0.

To prove the theorem for F , it is enough to prove the theorem for all objects in the the
above exact sequence other than F . By induction hypothesis we may asusme that the
theorem holds for the extreme terms. Thus it is enough to prove the theorem for j!j

∗F
which follows form §3.4(3).

□

Corollary 4.2. With notation as in the previous theorem, SSBUYZ(F ) = SSKS(F )

Proof. Let F be a perverse sheaf. We know from [Sai20, Prop. 5.14(2)] that support of the
cycle CCS(F ) is SSB(F ). It is clear from the definitions of the extended notions of characteristic
cycles to Qℓ-sheaves that the support of the cycle CCSUYZ(F ) is SSBUYZ(F ). On the other
hand, the arguments of Kashiwara-Schapira and Schmid-Vilonen as summarized in Lemma 3.2
implies that support of the Lagrangian cycle CCKS(F ) is SSKS(F ). Now taking supports of both
sides of the equality established in Theorem 4.1 we get that for a perverse sheaf F , the equality
SSBUYZ(F ) = SSKS(F ) holds. Now using §3.4(1) the equality holds for all F ∈ Db

c(Xét,Qℓ). □

5. Qℓ-sheaves

Until the last section, this article discusses only the case of Qℓ-sheaves. The methods of this
article extend to Qℓ-sheaves and it is the purpose of this section to illustrate this. Fix an algebraic
closure Qℓ of Qℓ. Let E ⊂ Qℓ be a finite extension of Qℓ, OE denote the integral closure of Zℓ

in E, and ϖE denote the choice of a uniformizer of the discrete valuation ring OE . Then the
derived category Db

ctf (Xét,OE) is defined as follows

Db
ctf (Xét,OE) = 2-lim

n
Db

ctf (Xét,OE/ϖ
n
E).

See §2.2 for more details on the 2-lim construction. The derived category Db
ctf (Xét, E) is defined

to be the derived category Db
ctf (Xét,OE)[ℓ

−1] obtained by inverting ℓ. For an extension E′/E,
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there is the following map Db
ctf (Xét,OE) → Db

ctf (Xét,OE′) given by F 7→ F ⊗OE′ which induces

a fully faithful functor12 on the quotient categories

−⊗ E′ : Db
c(Xét, E) → Db

c(Xét, E
′).

For three extensions E′′/E′/E, there is a canonical isomorphism (−⊗E E′)⊗E′ E′′ ∼= −⊗E E′′.
Define

Db
c(Xét,Qℓ) = 2-colim

[E:Qℓ]<∞
Db

c(Xét, E).

The notions SSSUYZ(F ) and CCSUYZ(F ) for objects F ∈ Db
c(Xét, E) where E is a finite extension

of Qℓ may be defined in the same manner as in §3.2. It is straightforward to check that all
the results that are summarized in §3.4 continue to remain true for F ∈ Db

c(Xét, E) where E
is a finite extension of Qℓ. Proofs of Theorem 4.1 and Corollary 4.2 remain valid as is for
F ∈ Db

c(Xét, E) as they depend on [BBD82] and results from §3.4. For any F ∈ Db
c(Xét,Qℓ),

there exists F0 ∈ Db
c(Xét, E0) where E0 is a finite extension of Qℓ such that F0 ⊗Qℓ

∼= F . It is
clear from the definition of SSKS and CCKS that they are invariant under extending coefficient
system along field extensions, in particular the following holds

SSKS(F ) = SSKS(F0), and CCKS(F ) = CCKS(F0).

It only remains to see that the decomposition homomorphism dX (see [UYZ20, §5.2.6]) commutes
with change of coeffcients in a suitable way,

dX(F0 ⊗Qℓ) = dX(F0)⊗OE0
/ϖE0

Fℓ.

It follows from the construction of CCBUYZ and CCSUYZ that they are invariant under change of
coefficient system along field extensions, in particular the following holds

SSBUYZ(F ) = SSBUYZ(F0), and CCSUYZ(F ) = CCSUYZ(F0).

As argued above, Theorem 4.1 and Corollary 4.2 are already known for F0. Hence the theorem
and its corollary follow for F ∈ Db

c(Xét,Qℓ).

Appendix A. Coefficients in CCKS and CCS

The characteristic cycle CCS(F ) of a constructible sheaf F ∈ Db(X,Λ) defined by Saito have
coefficients in the ring of integers irrespective of the ring of coefficients Λ. On the other hand
characteristic cycle as constructed13 by Kashwara-Schapira have coefficients in the ring Λ. Under
the assumption that Λ is a field of characteristic 0, it is proved ([KS, Prop. 9.4.5]) that charac-
teristic cycle CCKS(−) has coefficients in the ring Z. In this section we wish to understand the
dependence of the characteristic cycle on the coefficient system.

Let Λ ∈ {Z/ℓnZ,Zℓ} and F ∈ Db
c(Xét,Λ). For convenience we denote the sheaf ε∗F again

by F in this section. Recall that CCS(F ) is an element of CH0(SSB(F )) and CCKS(F ) is an
element of H0

SS(F )(T
∗Xan, ωXan). Since Λ is a noetherian ring we may associate a well-defined

integer tot dim(K) to a perfect complex K ∈ Db
perf (Λ-mod). We proceed as in [KS, pp. 382];

for F ∈ Db
c(X

an,Λ) and p in an irreducible component V of SS(F ) there exists K ∈ Db(Λ-mod)

such that F
∼−→ A ([KS, Prop. 6.6.2]) in Db(Xan; p) ([KS, §6.1]) and we define mV := tot dim(A).

Then the image of id ∈ Rhom(F, F )p = H0(µhom(F, F ))p ([KS, Thm. 6.1.2]) in Λ is given by
the image of tot dim(A) in the ring Λ under the canonical map Z → Λ. Now using Theorem 4.1
we get

Lemma A.1. The image of CCS(F ) under the canonical map Z → Λ is the cycle CCKS(F ).

12This is clear from the description in [BBD82, §2.2.18]
13Note that in [KS, §9.4], it is assumed that Λ = k is a field of characteristic 0, but clearly the maps make

sense for any ring Λ of finite global dimension.
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Appendix B. Characteristic cycles for Qℓ-sheaves

We have already seen that the notion of CCS has been extended for F ∈ Db
c(Xét,Qℓ) by Umezaki-

Yang-Zhao. In a recent article [Bar23], Barrett has extended the definition of singular support
SSB by utilizing the interpretation of the condition of local acylicity (≡ universal local acyclicity)
in terms of dualizable objects in a certain 2-monoidal category developed by Lu-Zheng and
Hansen-Scholze. This allows him to bypass nonfinite type schemes such as Milnor fibers (denoted
Mx̄,s̄ in §2.5) over which six functors may not preserve the derived category of Zariski constructible

étale Qℓ-sheaves. He also uses the proétale topology to bypass the 2-limit construction of derived
category of Qℓ-sheaves which allows for cleaner arguments once certain technical results are
proved (See [Bar23, §2, §3]).

In this article Barrett constructs a torsion free Zℓ-model of a Qℓ-perverse sheaves. More precisely
it is shown that given a perverse sheaf F ∈ Perv(X,Qℓ), there exists F ∈ Perv(X,Zℓ) which is
torsion free and F ⊗Qℓ

∼= F . The singular support for F can now be defined as

SSBB(F ) := SSB(F ⊗ Fℓ), where F is torsion free and F ⊗Qℓ
∼= F.

It is natural to extend the definition of characteristic cycles along the same lines and define

CCSB(F ) := CCS(F ⊗ Fℓ).

It can be proved as in [UYZ20, Thm. 5.3.3], that CCSB satisfies the Milnor number formula.
Thus we may prove the following

Lemma B.1. For a perverse sheaf F ∈ Perv(Xét,Qℓ), we have CCSUYZ(F ) = CCSB(F ).

Proof. This follows immediately from [Sai17, Lemma 4.10] and the fact that both the notions
satisfy Milnor formula. □

It follows from [Sai17, Prop. 5.14(2)] that Supp(CCSB(F )) = SSBB(F ) for any perverse sheaf
F ∈ Perv(Xét,Qℓ). In light of the above lemma, we get SSBB = SSBUYZ. Thus the definition of
singular support SSBUYZ coincides with the definition of singular supports developed by Barrett.
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